\[ \begin{array}{|c|c|} \hline \text{Hipótesis nula ($H_0$)} & \text{Hipótesis alternativa ($H_1$)} \\ \hline H_0: \mu \geq \mu_0 \leftrightarrow \mu - \mu_0 \geq 0 & H_1: \mu < \mu_0 \leftrightarrow \mu - \mu_0 < 0 \\ \hline H_0: \mu = \mu_0 \leftrightarrow \mu - \mu_0 = 0 & H_1: \mu \neq \mu_0 \leftrightarrow \mu - \mu_0 \neq 0 \\ \hline H_0: \mu \leq \mu_0 \leftrightarrow \mu - \mu_0 \leq 0 & H_1: \mu > \mu_0 \leftrightarrow \mu - \mu_0 > 0 \\ \hline \end{array} \]
\[ \text{Si }X{\sim}N(\mu,\sigma_x^2)\text{ entonces }\frac{\overline{x}-\mu_0}{\sqrt{\frac{\sigma_x^2}{n}}}{\sim}N(0,1) \]
\[ \text{Si }X{\sim}P\left(E_P(X),Var_P(X)\right)\text{ entonces }\frac{\overline{x}-\mu_0}{\sqrt{\frac{\sigma_x^2}{n}}}\stackrel{n{\rightarrow}\infty}{\sim}N(0,1) \]
\[ \text{Si }X{\sim}N(\mu,\sigma_x^2)\text{ entonces }\frac{\overline{x}-\mu_0}{\sqrt{\frac{S_x^2}{n}}}{\sim}t_{(n-1)} \]
\[ \text{Si }X{\sim}P\left(E_P(X),Var_P(X)\right)\text{ entonces }\frac{\overline{x}-\mu_0}{\sqrt{\frac{S_x^2}{n}}}\stackrel{n{\rightarrow}\infty}{\sim}N(0,1) \]
\[ \begin{array}{|c|c|c|} \hline \text{Hipótesis nula ($H_0$)} & \text{Hipótesis alternativa ($H_1$)} & \text{Región de rechazo ($H_0$)} \\ \hline H_0: \mu \geq \mu_0 \leftrightarrow \mu - \mu_0 \geq 0 & H_1: \mu < \mu_0 \leftrightarrow \mu - \mu_0 < 0 & \left( -\infty, \overline{x} - Z_{1-\alpha}\sqrt{\frac{\sigma_x^2}{n}} \right) \\ \hline H_0: \mu = \mu_0 \leftrightarrow \mu - \mu_0 = 0 & H_1: \mu \neq \mu_0 \leftrightarrow \mu - \mu_0 \neq 0 & \left( -\infty, \overline{x} - Z_{1-\frac{\alpha}{2}}\sqrt{\frac{\sigma_x^2}{n}} \right) \cup \left( \overline{x} + Z_{1-\frac{\alpha}{2}}\sqrt{\frac{\sigma_x^2}{n}}, +\infty \right) \\ \hline H_0: \mu \leq \mu_0 \leftrightarrow \mu - \mu_0 \leq 0 & H_1: \mu > \mu_0 \leftrightarrow \mu - \mu_0 > 0 & \left( \overline{x} + Z_{1-\alpha}\sqrt{\frac{\sigma_x^2}{n}}, +\infty \right) \\ \hline \end{array} \]
\[ \begin{array}{|c|c|c|} \hline \text{Hipótesis nula ($H_0$)} & \text{Hipótesis alternativa ($H_1$)} & \text{Región de rechazo ($H_0$)} \\ \hline H_0: \mu \geq \mu_0 \leftrightarrow \mu - \mu_0 \geq 0 & H_1: \mu < \mu_0 \leftrightarrow \mu - \mu_0 < 0 & \left( -\infty, \overline{x} - t_{\left(n-1,1-\alpha\right)}\sqrt{\frac{S_x^2}{n}} \right) \\ \hline H_0: \mu = \mu_0 \leftrightarrow \mu - \mu_0 = 0 & H_1: \mu \neq \mu_0 \leftrightarrow \mu - \mu_0 \neq 0 & \left( -\infty, \overline{x} - t_{\left(n-1,1-\frac{\alpha}{2}\right)}\sqrt{\frac{S_x^2}{n}} \right) \cup \left( \overline{x} + t_{\left(n-1,1-\frac{\alpha}{2}\right)}\sqrt{\frac{S_x^2}{n}}, +\infty \right) \\ \hline H_0: \mu \leq \mu_0 \leftrightarrow \mu - \mu_0 \leq 0 & H_1: \mu > \mu_0 \leftrightarrow \mu - \mu_0 > 0 & \left( \overline{x} + t_{\left(n-1,1-\alpha\right)}\sqrt{\frac{S_x^2}{n}}, +\infty \right) \\ \hline \end{array} \]
\[ \begin{array}{|c|c|c|} \hline \text{Hipótesis nula ($H_0$)} & \text{Hipótesis alternativa ($H_1$)} & \text{Región de rechazo ($H_0$)} \\ \hline H_0: \mu \geq \mu_0 \leftrightarrow \mu - \mu_0 \geq 0 & H_1: \mu < \mu_0 \leftrightarrow \mu - \mu_0 < 0 & \left( -\infty, \overline{x} - Z_{1-\alpha}\sqrt{\frac{S_x^2}{n}} \right) \\ \hline H_0: \mu = \mu_0 \leftrightarrow \mu - \mu_0 = 0 & H_1: \mu \neq \mu_0 \leftrightarrow \mu - \mu_0 \neq 0 & \left( -\infty, \overline{x} - Z_{1-\frac{\alpha}{2}}\sqrt{\frac{S_x^2}{n}} \right) \cup \left( \overline{x} + Z_{1-\frac{\alpha}{2}}\sqrt{\frac{S_x^2}{n}}, +\infty \right) \\ \hline H_0: \mu \leq \mu_0 \leftrightarrow \mu - \mu_0 \leq 0 & H_1: \mu > \mu_0 \leftrightarrow \mu - \mu_0 > 0 & \left( \overline{x} + Z_{1-\alpha}\sqrt{\frac{S_x^2}{n}}, +\infty \right) \\ \hline \end{array} \]
Suponer una población de habitantes con un salario mínimo de $1.462.000 pesos; simular la población tomar una muestrra y probar las hipótesis con respecto a la media de que ésta es, efectivamente, $1.462.000.
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(mosaic)
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
##
## The following object is masked from 'package:Matrix':
##
## mean
##
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
##
## The following object is masked from 'package:purrr':
##
## cross
##
## The following object is masked from 'package:ggplot2':
##
## stat
##
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var
##
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
# Fijar los parámetros poblacionales
mu <- 1462000
sigma2 <- runif(
n=1,
min=162000,
max=162000
)
# Simular la población
ingresos <- rnorm(
n=1000000,
mean=mu,
sd=sqrt(sigma2)
)
# Crear un data frame
INGRESOS <- data.frame(
ingresos
)
INGRESOS %>%
ggplot(
mapping=aes(
y=ingresos
)
) +
geom_boxplot(
colour="cyan",
fill="magenta"
) +
labs(
title="Boxplot de Ingresos",
y="Ingresos",
x=""
)
\[ \begin{array}{|c|c|c|} \hline \text{Hipótesis nula ($H_0$)} & \text{Hipótesis alternativa ($H_1$)} & \text{Región de rechazo ($H_0$)} \\ \hline H_0: \mu \geq \mu_0=1462000 & H_1: \mu < \mu_0=1462000 & \left( -\infty, \overline{x} - t_{\left(n-1,1-\alpha\right)}\sqrt{\frac{S_x^2}{n}} \right) \\ \hline \end{array} \]
muestra <- INGRESOS %>%
sample_frac(
size=0.3
)
ggplot(
muestra,
aes(
x="",
y=ingresos
)
) +
geom_jitter(
width=0.2,
height=0
) +
stat_summary(
fun.data="mean_se",
col="red"
) +
labs(
title="Gráfico para Jitter la muestra de ingresos",
y="Ingresos",
x=""
)
t.test(
x=muestra,
alternative="less",
mu=1462000
)
##
## One Sample t-test
##
## data: muestra
## t = -0.55063, df = 3e+05, p-value = 0.2909
## alternative hypothesis: true mean is less than 1462000
## 95 percent confidence interval:
## -Inf 1462001
## sample estimates:
## mean of x
## 1462000
\[ \begin{array}{|c|c|c|} \hline \text{Hipótesis nula ($H_0$)} & \text{Hipótesis alternativa ($H_1$)} & \text{Región de rechazo ($H_0$)} \\ \hline H_0: \mu \geq \mu_0=2000000 & H_1: \mu < \mu_0=2000000 & \left( -\infty, \overline{x} - t_{\left(n-1,1-\alpha\right)}\sqrt{\frac{S_x^2}{n}} \right) \\ \hline \end{array} \]
muestra <- INGRESOS %>%
sample_frac(
size=0.2
)
ggplot(
muestra,
aes(
x="",
y=ingresos
)
) +
geom_jitter(
width=0.2,
height=0
) +
stat_summary(
fun.data="mean_se",
col="red"
) +
labs(
title="Gráfico para Jitter la muestra de ingresos",
y="Ingresos",
x=""
)
t.test(
x=muestra,
alternative="less",
mu=2000000
)
##
## One Sample t-test
##
## data: muestra
## t = -598101, df = 2e+05, p-value < 2.2e-16
## alternative hypothesis: true mean is less than 2e+06
## 95 percent confidence interval:
## -Inf 1462002
## sample estimates:
## mean of x
## 1462000
\[ \begin{array}{|c|c|c|} \hline \text{Hipótesis nula ($H_0$)} & \text{Hipótesis alternativa ($H_1$)} & \text{Región de rechazo ($H_0$)} \\ \hline H_0: \mu = \mu_0=1462000 & H_1: \mu \neq \mu_0=1462000 & \left( -\infty, \overline{x} - t_{\left(n-1,1-\frac{\alpha}{2}\right)}\sqrt{\frac{S_x^2}{n}} \right) \cup \left( \overline{x} + t_{\left(n-1,1-\frac{\alpha}{2}\right)}\sqrt{\frac{S_x^2}{n}}, +\infty \right) \\ \hline \end{array} \]
muestra <- INGRESOS %>%
sample_frac(
size=0.1
)
ggplot(
muestra,
aes(
x="",
y=ingresos
)
) +
geom_jitter(
width=0.2,
height=0
) +
stat_summary(
fun.data="mean_se",
col="red"
) +
labs(
title="Gráfico para Jitter la muestra de ingresos",
y="Ingresos",
x=""
)
t.test(
x=muestra,
alternative="two.sided",
mu=1462000
)
##
## One Sample t-test
##
## data: muestra
## t = 1.7321, df = 99999, p-value = 0.08326
## alternative hypothesis: true mean is not equal to 1462000
## 95 percent confidence interval:
## 1462000 1462005
## sample estimates:
## mean of x
## 1462002
\[ \begin{array}{|c|c|c|} \hline \text{Hipótesis nula ($H_0$)} & \text{Hipótesis alternativa ($H_1$)} & \text{Región de rechazo ($H_0$)} \\ \hline H_0: \mu = \mu_0=2000000 & H_1: \mu \neq \mu_0=2000000 & \left( -\infty, \overline{x} - t_{\left(n-1,1-\frac{\alpha}{2}\right)}\sqrt{\frac{S_x^2}{n}} \right) \cup \left( \overline{x} + t_{\left(n-1,1-\frac{\alpha}{2}\right)}\sqrt{\frac{S_x^2}{n}}, +\infty \right) \\ \hline \end{array} \]
muestra <- INGRESOS %>%
sample_frac(
size=0.03
)
ggplot(
muestra,
aes(
x="",
y=ingresos
)
) +
geom_jitter(
width=0.2,
height=0
) +
stat_summary(
fun.data="mean_se",
col="red"
) +
labs(
title="Gráfico para Jitter la muestra de ingresos",
y="Ingresos",
x=""
)
t.test(
x=muestra,
alternative="two.sided",
mu=2000000
)
##
## One Sample t-test
##
## data: muestra
## t = -230776, df = 29999, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 2e+06
## 95 percent confidence interval:
## 1461994 1462003
## sample estimates:
## mean of x
## 1461998
\[ \begin{array}{|c|c|c|} \hline \text{Hipótesis nula ($H_0$)} & \text{Hipótesis alternativa ($H_1$)} & \text{Región de rechazo ($H_0$)} \\ \hline H_0: \mu \leq \mu_0=1462000 & H_1: \mu > \mu_0=1462000 & \left( \overline{x} + t_{\left(n-1,1-\alpha\right)}\sqrt{\frac{S_x^2}{n}}, +\infty \right) \\ \hline \end{array} \]
muestra <- INGRESOS %>%
sample_frac(
size=0.02
)
ggplot(
muestra,
aes(
x="",
y=ingresos
)
) +
geom_jitter(
width=0.2,
height=0
) +
stat_summary(
fun.data="mean_se",
col="red"
) +
labs(
title="Gráfico para Jitter la muestra de ingresos",
y="Ingresos",
x=""
)
t.test(
x=muestra,
alternative="greater",
mu=1462000
)
##
## One Sample t-test
##
## data: muestra
## t = 0.1528, df = 19999, p-value = 0.4393
## alternative hypothesis: true mean is greater than 1462000
## 95 percent confidence interval:
## 1461996 Inf
## sample estimates:
## mean of x
## 1462000
\[ \begin{array}{|c|c|c|} \hline \text{Hipótesis nula ($H_0$)} & \text{Hipótesis alternativa ($H_1$)} & \text{Región de rechazo ($H_0$)} \\ \hline H_0: \mu \leq \mu_0=2000000 & H_1: \mu > \mu_0=2000000 & \left( \overline{x} + t_{\left(n-1,1-\alpha\right)}\sqrt{\frac{S_x^2}{n}}, +\infty \right) \\ \hline \end{array} \]
muestra <- INGRESOS %>%
sample_frac(
size=0.01
)
ggplot(
muestra,
aes(
x="",
y=ingresos
)
) +
geom_jitter(
width=0.2,
height=0
) +
stat_summary(
fun.data="mean_se",
col="red"
) +
labs(
title="Gráfico para Jitter la muestra de ingresos",
y="Ingresos",
x=""
)
t.test(
x=muestra,
alternative="greater",
mu=2000000
)
##
## One Sample t-test
##
## data: muestra
## t = -132942, df = 9999, p-value = 1
## alternative hypothesis: true mean is greater than 2e+06
## 95 percent confidence interval:
## 1461995 Inf
## sample estimates:
## mean of x
## 1462002