Sistemas de hipótesis

Dos muestras

\[ \begin{array}{|c|c|} \hline \textbf{Hipótesis nula ($H_0$)} & \textbf{Hipótesis alternativa ($H_1$)} \\ \hline H_0: \sigma_1^2 \geq \sigma_2^2 \leftrightarrow \frac{\sigma_1^2}{\sigma_2^2} \geq 1 & H_1: \sigma_1^2 < \sigma_2^2 \leftrightarrow \frac{\sigma_1^2}{\sigma_2^2} < 1 \\ \hline H_0: \sigma_1^2 = \sigma_2^2 \leftrightarrow \frac{\sigma_1^2}{\sigma_2^2} = 1 & H_1: \sigma_1^2 \neq \sigma_2^2 \leftrightarrow \frac{\sigma_1^2}{\sigma_2^2} \neq 1 \\ \hline H_0: \sigma_1^2 \leq \sigma_2^2 \leftrightarrow \frac{\sigma_1^2}{\sigma_2^2} \leq 1 & H_1: \sigma_1^2 > \sigma_2^2 \leftrightarrow \frac{\sigma_1^2}{\sigma_2^2} > 1 \\ \hline \end{array} \]

Estadístico de prueba

\[ F = \frac{S_1^2}{S_2^2}=\frac{\frac{\sum_{i=1}^{n_1}(x_i-\overline{x})^2}{n_1-1}}{\frac{\sum_{i=1}^{n_2}(x_i-\overline{x})^2}{n_2-1}}{\sim}F_{(n_1-1,n_2-1)} \]

Regiones de rechazo de la hipótesis nula (\(H_0\))

\[ \begin{array}{|c|c|c|} \hline \text{Hipótesis nula ($H_0$)} & \text{Hipótesis alternativa ($H_1$)} & \text{Región de rechazo ($H_0$)} \\ \hline H_0: \sigma_1^2 \geq \sigma_2^2 \leftrightarrow \frac{\sigma_1^2}{\sigma_2^2} \geq 1 & H_1: \sigma_1^2 < \sigma_2^2 \leftrightarrow \frac{\sigma_1^2}{\sigma_2^2} < 1 & \left( 0, F_{\alpha, n_1-1, n_2-1} \right) \\ \hline H_0: \sigma_1^2 = \sigma_2^2 \leftrightarrow \frac{\sigma_1^2}{\sigma_2^2} = 1 & H_1: \sigma_1^2 \neq \sigma_2^2 \leftrightarrow \frac{\sigma_1^2}{\sigma_2^2} \neq 1 & \left( 0, F_{\alpha/2, n_1-1, n_2-1} \right) \cup \left( F_{1-\alpha/2, n_1-1, n_2-1}, +\infty \right) \\ \hline H_0: \sigma_1^2 \leq \sigma_2^2 \leftrightarrow \frac{\sigma_1^2}{\sigma_2^2} \leq 1 & H_1: \sigma_1^2 > \sigma_2^2 \leftrightarrow \frac{\sigma_1^2}{\sigma_2^2} > 1 & \left( F_{1-\alpha, n_1-1, n_2-1}, +\infty \right) \\ \hline \end{array} \]

Ejercicios y ejemplos

Supongamos una población de trabajadores con un salario mínimo de $1.350.000 pesos, donde se desea comparar los salarios de hombres y mujeres. Se asume que el salario de los hombres tiene una varianza de $30.000, mientras que el de las mujeres tiene una varianza de $20.000.

Simularemos los salarios de ambos grupos, asumiendo que los hombres tienen un salario medio de $1.400.000 y las mujeres $1.300.000. Tomaremos muestras de cada grupo y realizaremos una prueba de hipótesis para determinar si hay evidencia suficiente para rechazar la hipótesis nula de que las varianzas de los salarios de hombres y mujeres son iguales.

Carga de librerías

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(mosaic)
## Registered S3 method overwritten by 'mosaic':
##   method                           from   
##   fortify.SpatialPolygonsDataFrame ggplot2
## 
## The 'mosaic' package masks several functions from core packages in order to add 
## additional features.  The original behavior of these functions should not be affected by this.
## 
## Attaching package: 'mosaic'
## 
## The following object is masked from 'package:Matrix':
## 
##     mean
## 
## The following objects are masked from 'package:dplyr':
## 
##     count, do, tally
## 
## The following object is masked from 'package:purrr':
## 
##     cross
## 
## The following object is masked from 'package:ggplot2':
## 
##     stat
## 
## The following objects are masked from 'package:stats':
## 
##     binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
##     quantile, sd, t.test, var
## 
## The following objects are masked from 'package:base':
## 
##     max, mean, min, prod, range, sample, sum

Simulación de la población

# Fijar los parámetros poblacionales
mu_hombres <- 1400000
sigma2_hombres <- 30000
mu_mujeres <- 1300000
sigma2_mujeres <- 20000

# Simular la población
set.seed(123)  # Para reproducibilidad
salarios_hombres <- rnorm(n=125000, mean=mu_hombres, sd=sqrt(sigma2_hombres))
salarios_mujeres <- rnorm(n=125000, mean=mu_mujeres, sd=sqrt(sigma2_mujeres))

# Crear un data frame
INGRESOS <- data.frame(
  tipo = rep(c("Hombres", "Mujeres"), each = 125000),
  salarios = c(salarios_hombres, salarios_mujeres)
)

Distribución de la población

INGRESOS %>% 
  ggplot(mapping=aes(x=tipo, y=salarios)) +
  geom_boxplot(colour="purple", fill="blue") +
  labs(title="Boxplot de Salarios", y="Salarios", x="")

Vamos a seleccionar una muestra aleatoria

muestra <- INGRESOS %>% 
  sample_frac(
    size=0.3
  )

Vamos a probar hipótesis

\[ \begin{array}{|c|c|c|} \hline \text{Hipótesis nula ($H_0$)} & \text{Hipótesis alternativa ($H_1$)} & \text{Región de rechazo ($H_0$)} \\ \hline H_0: \sigma_1^2 \geq \sigma_2^2 \leftrightarrow \frac{\sigma_1^2}{\sigma_2^2} \geq 1 & H_1: \sigma_1^2 < \sigma_2^2 \leftrightarrow \frac{\sigma_1^2}{\sigma_2^2} < 1 & \left( 0, F_{\alpha, n_1-1, n_2-1} \right) \\ \hline \end{array} \]

# Realizar la prueba de hipótesis (Prueba F)
prueba_f <- var.test(
  x=muestra[muestra$tipo=="Hombres", "salarios"],
  y=muestra[muestra$tipo=="Mujeres","salarios"],
  ratio = 1,
  alternative = "less",
  conf.level = 0.95
)

# Resultados
print(prueba_f)
## 
##  F test to compare two variances
## 
## data:  muestra[muestra$tipo == "Hombres", "salarios"] and muestra[muestra$tipo == "Mujeres", "salarios"]
## F = 1.4862, num df = 37441, denom df = 37557, p-value = 1
## alternative hypothesis: true ratio of variances is less than 1
## 95 percent confidence interval:
##  0.000000 1.511712
## sample estimates:
## ratio of variances 
##           1.486247

\[ \begin{array}{|c|c|c|} \hline \text{Hipótesis nula ($H_0$)} & \text{Hipótesis alternativa ($H_1$)} & \text{Región de rechazo ($H_0$)} \\ \hline H_0: \sigma_1^2 = \sigma_2^2 \leftrightarrow \frac{\sigma_1^2}{\sigma_2^2} = 1 & H_1: \sigma_1^2 \neq \sigma_2^2 \leftrightarrow \frac{\sigma_1^2}{\sigma_2^2} \neq 1 & \left( 0, F_{\alpha/2, n_1-1, n_2-1} \right) \cup \left( F_{1-\alpha/2, n_1-1, n_2-1}, +\infty \right) \\ \hline \end{array} \]

# Realizar la prueba de hipótesis (Prueba F)
prueba_f <- var.test(
  x=muestra[muestra$tipo=="Hombres", "salarios"],
  y=muestra[muestra$tipo=="Mujeres","salarios"],
  ratio = 1,
  alternative = "two.sided",
  conf.level = 0.95
)

# Resultados
print(prueba_f)
## 
##  F test to compare two variances
## 
## data:  muestra[muestra$tipo == "Hombres", "salarios"] and muestra[muestra$tipo == "Mujeres", "salarios"]
## F = 1.4862, num df = 37441, denom df = 37557, p-value < 2.2e-16
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  1.456464 1.516640
## sample estimates:
## ratio of variances 
##           1.486247

\[ \begin{array}{|c|c|c|} \hline \text{Hipótesis nula ($H_0$)} & \text{Hipótesis alternativa ($H_1$)} & \text{Región de rechazo ($H_0$)} \\ \hline H_0: \sigma_1^2 \leq \sigma_2^2 \leftrightarrow \frac{\sigma_1^2}{\sigma_2^2} \leq 1 & H_1: \sigma_1^2 > \sigma_2^2 \leftrightarrow \frac{\sigma_1^2}{\sigma_2^2} > 1 & \left( F_{1-\alpha, n_1-1, n_2-1}, +\infty \right) \\ \hline \end{array} \]

# Realizar la prueba de hipótesis (Prueba F)
prueba_f <- var.test(
  x=muestra[muestra$tipo=="Hombres", "salarios"],
  y=muestra[muestra$tipo=="Mujeres","salarios"],
  ratio = 1,
  alternative = "greater",
  conf.level = 0.95
)

# Resultados
print(prueba_f)
## 
##  F test to compare two variances
## 
## data:  muestra[muestra$tipo == "Hombres", "salarios"] and muestra[muestra$tipo == "Mujeres", "salarios"]
## F = 1.4862, num df = 37441, denom df = 37557, p-value < 2.2e-16
## alternative hypothesis: true ratio of variances is greater than 1
## 95 percent confidence interval:
##  1.461212      Inf
## sample estimates:
## ratio of variances 
##           1.486247