Water Quality v Precipitation Variability

Author

Kathleen Kirsch

Scatterplots

Water quality vs. rainfall in the Democratic Republic of the Congo

Water quality vs. rainfall in Rwanda

Runoff vs. rainfall in the Democratic Republic of the Congo

Runoff vs. rainfall in Rwanda

Time Series Data

Precipitation & Runoff Time Series: Democratic Republic of the Congo

Time series for precipitation (blue) and runoff (red) in the Democratic Republic of the Congo

Precipitation & Runoff Time Series: Rwanda

Time series for precipitation (blue) and runoff (red) in Rwanda.

Water Quality Mapping Data

Mapped Water Quality: Democratic Republic of the Congo

Precipitation & Runoff Time Series: Rwanda

Note: Given tight clustering, this is zoomed in so far it does not display mapping resolution details. The water quality data is also not pulling in in gradient form (not reading as continuous?). For discussion with Denis on better mapping path.

Linear Regressions

Check correlation coefficient to assess linearity

Democratic Republic of the Congo

       cor 
-0.1416783 

Rwanda

      cor 
0.1431377 

Linear regression of water quality versus rainfall in the Democratic Republic of the Congo:


Call:
lm(formula = Colony ~ imerg_rf, data = rf_at_wq_DRC_all)

Residuals:
    Min      1Q  Median      3Q     Max 
 -940.2  -913.2  -723.0   -80.5 13059.8 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   940.23     183.62   5.121 7.57e-07 ***
imerg_rf      -20.59      10.55  -1.952   0.0524 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2197 on 186 degrees of freedom
Multiple R-squared:  0.02007,   Adjusted R-squared:  0.0148 
F-statistic:  3.81 on 1 and 186 DF,  p-value: 0.05245

Linear regression of water quality versus rainfall in Rwanda:


Call:
lm(formula = MPN ~ imerg_rf, data = rf_at_wq_Rwanda_all)

Residuals:
   Min     1Q Median     3Q    Max 
-83.53 -34.52 -29.76  57.70  65.54 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  34.4567     1.7938  19.209  < 2e-16 ***
imerg_rf      1.4186     0.3244   4.372 1.37e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 44.43 on 914 degrees of freedom
Multiple R-squared:  0.02049,   Adjusted R-squared:  0.01942 
F-statistic: 19.12 on 1 and 914 DF,  p-value: 1.37e-05

Binomial Regressions of Water Quality versus Rainfall

Negative binomial regression of water quality versus rainfall in the Democratic Republic of the Congo:


Call:
glm.nb(formula = Colony ~ imerg_rf, data = rf_at_wq_DRC_all, 
    init.theta = 0.2851242306, link = log)

Coefficients:
             Estimate Std. Error z value Pr(>|z|)    
(Intercept)  6.862953   0.156535  43.843  < 2e-16 ***
imerg_rf    -0.048036   0.009004  -5.335 9.56e-08 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(0.2851) family taken to be 1)

    Null deviance: 273.67  on 187  degrees of freedom
Residual deviance: 253.81  on 186  degrees of freedom
AIC: 2476.3

Number of Fisher Scoring iterations: 1

              Theta:  0.2851 
          Std. Err.:  0.0237 

 2 x log-likelihood:  -2470.3450 

(With Site Fixed Effects): Negative binomial regression of water quality versus rainfall in the Democratic Republic of the Congo:


Call:
glm.nb(formula = Colony ~ imerg_rf + SiteID, data = rf_at_wq_DRC_all, 
    init.theta = 0.2853835486, link = log)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  7.180e+00  6.997e-01  10.261  < 2e-16 ***
imerg_rf    -4.649e-02  9.492e-03  -4.898 9.66e-07 ***
SiteID      -1.105e-09  2.353e-09  -0.470    0.639    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(0.2854) family taken to be 1)

    Null deviance: 273.91  on 187  degrees of freedom
Residual deviance: 253.77  on 185  degrees of freedom
AIC: 2478.1

Number of Fisher Scoring iterations: 1

              Theta:  0.2854 
          Std. Err.:  0.0238 

 2 x log-likelihood:  -2470.0830 

Binomial mixed effects model of water quality versus rainfall in the Democratic Republic of the Congo:

#m3DRC <- glmer(
#  Colony ~ imerg_rf + SiteID, 
#  data = rf_at_wq_DRC_all, 
#  family = binomial(link = "logit")
#)

#summary(m3DRC)

Note: Error: “No random effects”

Negative binomial regression of water quality versus rainfall in Rwanda

Note: Initially got error – “Error in prettyNum(.Internal(format(x, trim, digits, nsmall, width, 3L, : invalid ‘nsmall’ argument.” I believe this is either due to high AIC or theta? Even with including AIC and theta adjustments “control = glm.control(maxit = 500), init.theta = 1.0” the model doesn’t run. Is this underdispersion due to only baselining? Should we revert to a Poisson model?

(With Site Fixed Effects): Negative binomial regression of water quality versus rainfall in Rwanda:

#m2Rwanda <- glm.nb(MPN ~ imerg_rf + SiteID, data=rf_at_wq_Rwanda_all)
#summary(m2Rwanda)

Note: Initially got error – “Error in prettyNum(.Internal(format(x, trim, digits, nsmall, width, 3L, : invalid ‘nsmall’ argument.” I believe this is either due to high AIC or theta? Even with including AIC and theta adjustments “control = glm.control(maxit = 500), init.theta = 1.0” the model doesn’t run.

Binomial mixed effects model of water quality versus rainfall in Rwanda:

#m3Rwanda <- glmer(
#  MPN ~ imerg_rf + SiteID, 
#  data = rf_at_wq_Rwanda_all, 
#  family = binomial(link = "logit")
#)

#summary(m3Rwanda)

Note: Error: “No random effects”

Negative binomial regression of water quality versus 7-day rainfall in the Democratic Republic of the Congo:


Call:
glm.nb(formula = Colony ~ img7d, data = rf_at_wq_DRC_all, init.theta = 0.2704613534, 
    link = log)

Coefficients:
             Estimate Std. Error z value Pr(>|z|)    
(Intercept)  6.940258   0.199472  34.793   <2e-16 ***
img7d       -0.006656   0.002789  -2.387    0.017 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(0.2705) family taken to be 1)

    Null deviance: 259.81  on 187  degrees of freedom
Residual deviance: 255.90  on 186  degrees of freedom
AIC: 2491.7

Number of Fisher Scoring iterations: 1

              Theta:  0.2705 
          Std. Err.:  0.0224 

 2 x log-likelihood:  -2485.6670 

(With Site Fixed Effects): Negative binomial regression of water quality versus 7-day rainfall in the Democratic Republic of the Congo:


Call:
glm.nb(formula = Colony ~ img7d + SiteID, data = rf_at_wq_DRC_all, 
    init.theta = 0.2719376215, link = log)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  7.741e+00  7.071e-01  10.948   <2e-16 ***
img7d       -6.347e-03  2.945e-03  -2.155   0.0312 *  
SiteID      -2.765e-09  2.420e-09  -1.143   0.2532    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(0.2719) family taken to be 1)

    Null deviance: 261.21  on 187  degrees of freedom
Residual deviance: 255.68  on 185  degrees of freedom
AIC: 2492.1

Number of Fisher Scoring iterations: 1

              Theta:  0.2719 
          Std. Err.:  0.0225 

 2 x log-likelihood:  -2484.0800 

Binomial mixed effects model of water quality versus 7-day rainfall in the Democratic Republic of the Congo:

#m3DRC <- glmer(
#  Colony ~ img7d + SiteID, 
#  data = rf_at_wq_DRC_all, 
#  family = binomial(link = "logit")
#)

#summary(m3DRC)

Note: Error: “No random effects”

Negative binomial regression of water quality versus 7-day rainfall in Rwanda

Note: Got error – “invalid ‘nsmall’ argument.” I believe this is either due to high AIC or theta?

(With Site Fixed Effects): Negative binomial regression of water quality versus 7-day rainfall in Rwanda:

#m2Rwanda <- glm.nb(MPN ~ img7d + SiteID, data=rf_at_wq_Rwanda_all)
#summary(m2Rwanda)

Note: Got error – “invalid ‘nsmall’ argument.” I believe this is either due to high AIC or theta?

Binomial mixed effects model of water quality versus 7-day rainfall in Rwanda:

#m3Rwanda <- glmer(
#  MPN ~ img7d + SiteID, 
#  data = rf_at_wq_Rwanda_all, 
#  family = binomial(link = "logit")
#)

#summary(m3Rwanda)

Note: Error: “No random effects”

Negative binomial regression of water quality versus 14-day rainfall in the Democratic Republic of the Congo:


Call:
glm.nb(formula = Colony ~ img14d, data = rf_at_wq_DRC_all, init.theta = 0.2671893276, 
    link = log)

Coefficients:
             Estimate Std. Error z value Pr(>|z|)    
(Intercept)  6.738707   0.209998  32.089   <2e-16 ***
img14d      -0.001098   0.001677  -0.655    0.513    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(0.2672) family taken to be 1)

    Null deviance: 256.72  on 187  degrees of freedom
Residual deviance: 256.39  on 186  degrees of freedom
AIC: 2495.2

Number of Fisher Scoring iterations: 1

              Theta:  0.2672 
          Std. Err.:  0.0221 

 2 x log-likelihood:  -2489.2190 

(With Site Fixed Effects): Negative binomial regression of water quality versus 14-day rainfall in the Democratic Republic of the Congo:


Call:
glm.nb(formula = Colony ~ img14d + SiteID, data = rf_at_wq_DRC_all, 
    init.theta = 0.2688414129, link = log)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  7.581e+00  7.079e-01  10.710   <2e-16 ***
img14d      -7.803e-04  1.757e-03  -0.444    0.657    
SiteID      -2.958e-09  2.414e-09  -1.225    0.221    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(0.2688) family taken to be 1)

    Null deviance: 258.28  on 187  degrees of freedom
Residual deviance: 256.14  on 185  degrees of freedom
AIC: 2495.4

Number of Fisher Scoring iterations: 1

              Theta:  0.2688 
          Std. Err.:  0.0223 

 2 x log-likelihood:  -2487.4190 

Binomial mixed effects model of water quality versus 14-day rainfall in the Democratic Republic of the Congo:

#m3DRC <- glmer(
#  Colony ~ img14d + SiteID, 
#  data = rf_at_wq_DRC_all, 
#  family = binomial(link = "logit")
#)

#summary(m3DRC)

Note: Error: “No random effects”

Negative binomial regression of water quality versus 14-day rainfall in Rwanda

Note: Got error – “invalid ‘nsmall’ argument.” I believe this is either due to high AIC or theta?

(With Site Fixed Effects): Negative binomial regression of water quality versus 14-day rainfall in Rwanda:

#m2Rwanda <- glm.nb(MPN ~ img14d + SiteID, data=rf_at_wq_Rwanda_all)
#summary(m2Rwanda)

Note: Got error – “invalid ‘nsmall’ argument.” I believe this is either due to high AIC or theta?

Binomial mixed effects model of water quality versus 14-day rainfall in Rwanda:

#m3Rwanda <- glmer(
#  MPN ~ img14d + SiteID, 
#  data = rf_at_wq_Rwanda_all, 
#  family = binomial(link = "logit")
#)

#summary(m3Rwanda)

Note: Error: “No random effects”

Negative binomial regression of water quality versus 30-day rainfall in the Democratic Republic of the Congo:


Call:
glm.nb(formula = Colony ~ img30d, data = rf_at_wq_DRC_all, init.theta = 0.2671192387, 
    link = log)

Coefficients:
             Estimate Std. Error z value Pr(>|z|)    
(Intercept) 6.5415653  0.2233972  29.282   <2e-16 ***
img30d      0.0005253  0.0009469   0.555    0.579    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(0.2671) family taken to be 1)

    Null deviance: 256.66  on 187  degrees of freedom
Residual deviance: 256.40  on 186  degrees of freedom
AIC: 2495.3

Number of Fisher Scoring iterations: 1

              Theta:  0.2671 
          Std. Err.:  0.0221 

 2 x log-likelihood:  -2489.2950 

(With Site Fixed Effects): Negative binomial regression of water quality versus 30-day rainfall in the Democratic Republic of the Congo:


Call:
glm.nb(formula = Colony ~ img30d + SiteID, data = rf_at_wq_DRC_all, 
    init.theta = 0.2688855106, link = log)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  7.441e+00  7.053e-01  10.550   <2e-16 ***
img30d       4.761e-04  9.719e-04   0.490    0.624    
SiteID      -3.025e-09  2.366e-09  -1.278    0.201    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(0.2689) family taken to be 1)

    Null deviance: 258.33  on 187  degrees of freedom
Residual deviance: 256.13  on 185  degrees of freedom
AIC: 2495.4

Number of Fisher Scoring iterations: 1

              Theta:  0.2689 
          Std. Err.:  0.0223 

 2 x log-likelihood:  -2487.3720 

Binomial mixed effects model of water quality versus 30-day rainfall in the Democratic Republic of the Congo:

#m3DRC <- glmer(
#  Colony ~ img30d + SiteID, 
#  data = rf_at_wq_DRC_all, 
#  family = binomial(link = "logit")
#)

#summary(m3DRC)

Note: Error: “No random effects”

Negative binomial regression of water quality versus 30-day rainfall in Rwanda

Note: Got error – “invalid ‘nsmall’ argument.” I believe this is either due to high AIC or theta?

(With Site Fixed Effects): Negative binomial regression of water quality versus 30-day rainfall in Rwanda:

#m2Rwanda <- glm.nb(MPN ~ img30d + SiteID, data=rf_at_wq_Rwanda_all)
#summary(m2Rwanda)

Note: Got error – “invalid ‘nsmall’ argument.” I believe this is either due to high AIC or theta?

Binomial mixed effects model of water quality versus 30-day rainfall in Rwanda:

#m3Rwanda <- glmer(
#  MPN ~ img30d + SiteID, 
#  data = rf_at_wq_Rwanda_all, 
#  family = binomial(link = "logit")
#)

#summary(m3Rwanda)

Note: Error: “No random effects”

Binomial Regressions of Water Quality versus Runoff

Negative binomial regression of water quality versus runoff in the Democratic Republic of the Congo:


Call:
glm.nb(formula = Colony ~ lis_runoff, data = rf_at_wq_DRC_all, 
    init.theta = 0.2794810443, link = log)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  6.77367    0.15203  44.554  < 2e-16 ***
lis_runoff  -0.07996    0.01933  -4.137 3.52e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(0.2795) family taken to be 1)

    Null deviance: 268.34  on 187  degrees of freedom
Residual deviance: 254.60  on 186  degrees of freedom
AIC: 2482.1

Number of Fisher Scoring iterations: 1

              Theta:  0.2795 
          Std. Err.:  0.0232 

 2 x log-likelihood:  -2476.1330 

(With Site Fixed Effects): Negative binomial water quality versus runoff in the Democratic Republic of the Congo:

Note: Initially got error – “Error in glm.fitter() NA/NaN/Inf in ‘x’” but there are no missing values. Model not converging. Should we revert to a Poisson model, often shown as the correction?

Binomial mixed effects model of water quality versus runoff in the Democratic Republic of the Congo:

#m3DRC <- glmer(
#  Colony ~ lis_runoff + SiteID, 
#  data = rf_at_wq_DRC_all, 
#  family = binomial(link = "logit")
#)

#summary(m3DRC)

Note: Error: “No random effects”

Negative binomial regression of water quality versus runoff in Rwanda

Note: Got error – “invalid ‘nsmall’ argument.” I believe this is either due to high AIC or theta?

(With Site Fixed Effects): Negative binomial regression of water quality versus runoff in Rwanda:

#m2Rwanda <- glm.nb(MPN ~ lis_runoff + SiteID, data=rf_at_wq_Rwanda_all)
#summary(m2Rwanda)

Note: Got error – “invalid ‘nsmall’ argument.” I believe this is either due to high AIC or theta?

Binomial mixed effects model of water quality versus runoff in Rwanda:

#m3Rwanda <- glmer(
#  MPN ~ lis_runoff + SiteID, 
#  data = rf_at_wq_Rwanda_all, 
#  family = binomial(link = "logit")
#)

#summary(m3Rwanda)

Note: Error: “No random effects”

Negative binomial regression of water quality versus 30-day runoff in the Democratic Republic of the Congo:


Call:
glm.nb(formula = Colony ~ lis30d, data = rf_at_wq_DRC_all, init.theta = 0.2670300772, 
    link = log)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept) 6.574489   0.200938  32.719   <2e-16 ***
lis30d      0.001066   0.002377   0.448    0.654    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(0.267) family taken to be 1)

    Null deviance: 256.57  on 187  degrees of freedom
Residual deviance: 256.41  on 186  degrees of freedom
AIC: 2495.4

Number of Fisher Scoring iterations: 1

              Theta:  0.2670 
          Std. Err.:  0.0221 

 2 x log-likelihood:  -2489.3930 

(With Site Fixed Effects): Negative binomial water quality versus 30-day runoff in the Democratic Republic of the Congo:


Call:
glm.nb(formula = Colony ~ lis30d + SiteID, data = rf_at_wq_DRC_all, 
    init.theta = 0.268849347, link = log)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  7.476e+00  7.053e-01  10.599   <2e-16 ***
lis30d       1.112e-03  2.423e-03   0.459    0.646    
SiteID      -3.072e-09  2.351e-09  -1.307    0.191    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(0.2688) family taken to be 1)

    Null deviance: 258.29  on 187  degrees of freedom
Residual deviance: 256.14  on 185  degrees of freedom
AIC: 2495.4

Number of Fisher Scoring iterations: 1

              Theta:  0.2688 
          Std. Err.:  0.0223 

 2 x log-likelihood:  -2487.4110 

Binomial mixed effects model of water quality versus 30-day runoff in the Democratic Republic of the Congo:

#m3DRC <- glmer(
#  Colony ~ lis30d + SiteID, 
#  data = rf_at_wq_DRC_all, 
#  family = binomial(link = "logit")
#)

#summary(m3DRC)

Note: Error: “No random effects”

Negative binomial regression of water quality versus 30-day runoff in Rwanda

Note: Got error – “invalid ‘nsmall’ argument.” I believe this is either due to high AIC or theta?

(With Site Fixed Effects): Negative binomial regression of water quality versus 30-day runoff in Rwanda:

#m2Rwanda <- glm.nb(MPN ~ lis30d + SiteID, data=rf_at_wq_Rwanda_all)
#summary(m2Rwanda)

Note: Got error – “invalid ‘nsmall’ argument.” I believe this is either due to high AIC or theta?

Binomial mixed effects model of water quality versus 30-day runoff in Rwanda:

#m3Rwanda <- glmer(
#  MPN ~ lis30d + SiteID, 
#  data = rf_at_wq_Rwanda_all, 
#  family = binomial(link = "logit")
#)

#summary(m3Rwanda)

Note: Error: “No random effects”


Create Categorical Variables: WHO Risks for the Democratic Republic of the Congo:

#rf_at_wq_DRC_all$Categories <- cut(rf_at_wq_DRC_all$Colony,
              #breaks=c(0, 1, 10, 100, 100000),
              #labels=c('Low_Risk', 'Intermediate Risk', 'High_Risk', 'Very_High_Risk'))

rf_at_wq_DRC_all <- within(rf_at_wq_DRC_all, {   
  Colony.cat <- NA # need to initialize variable
  Colony.cat[Colony < 1] <- "Low_Risk"
  Colony.cat[Colony >= 1 & Colony < 11 ] <- "Intermediate_Risk"
  Colony.cat[Colony >= 11 & Colony < 100] <- "High_Risk"  
  Colony.cat[Colony >= 100] <- "Very_High_Risk"
   } )
  
table1 <- 
  rf_at_wq_DRC_all %>%
  tbl_summary(include = c(Colony, Colony.cat)) %>%
  modify_header(label = "**WHO Risk Categories for Samples from the DRC**")

table1
WHO Risk Categories for Samples from the DRC N = 1881
Colony 58 (12, 323)
Colony.cat
    High_Risk 72 (38%)
    Intermediate_Risk 39 (21%)
    Low_Risk 6 (3.2%)
    Very_High_Risk 71 (38%)
1 Median (IQR); n (%)

Create Categorical Variables: WHO Risks for Rwanda:

#rf_at_wq_Rwanda_all$Categories <- cut(rf_at_wq_Rwanda_all$MPN,
              #breaks=c(0, 1, 10, 100, 100000),
              #labels=c('Low_Risk', 'Intermediate Risk', 'High_Risk', 'Very_High_Risk'))

rf_at_wq_Rwanda_all <- within(rf_at_wq_Rwanda_all, {   
  MPN.cat <- NA # need to initialize variable
  MPN.cat[MPN < 1] <- "Low_Risk"
  MPN.cat[MPN >= 1 & MPN < 11 ] <- "Intermediate_Risk"
  MPN.cat[MPN >= 11 & MPN < 100] <- "High_Risk"  
  MPN.cat[MPN >= 100] <- "Very_High_Risk"
   } )
  
table1 <- 
  rf_at_wq_Rwanda_all %>%
  tbl_summary(include = c(MPN, MPN.cat))%>%
  modify_header(label = "**WHO Risk Categories for Samples from the Rwanda**")

table1
WHO Risk Categories for Samples from the Rwanda N = 9161
MPN 10 (0, 100)
MPN.cat
    High_Risk 146 (16%)
    Intermediate_Risk 186 (20%)
    Low_Risk 279 (30%)
    Very_High_Risk 305 (33%)
1 Median (IQR); n (%)

Multinomial Logistic Regression Model of water quality versus precipitation in the DRC:

#rf_at_wq_DRC_all$Colony2.cat <- relevel(rf_at_wq_DRC_all$Colony.cat, ref = "imerg_rf")
#test <- multinom(Colony2.cat ~ imerg_rf, data = rf_at_wq_DRC_all)
#summary(test)

#mldata <- mlogit.data(mydata, choice="y", shape="wide")
#mlogit.model1 <- mlogit(y ~ 1| col1+col2, data=mldata)

#mlogit.model2 = multinom(y ~ 1 + col1+col2, data=mydata)
#stargazer(mlogit.model2)

#my.model <- multinom(Colony.cat ~ imerg_rf, data=rf_at_wq_DRC_all)
#tidy(my.model, exponentiate = FALSE) #display model
# calculate predicted probabilities
#pred.probs <- predict(my.model, type = "probs")

mlr_DRC <- multinom(Colony.cat ~ imerg_rf, data = rf_at_wq_DRC_all)
# weights:  12 (6 variable)
initial  value 260.623340 
iter  10 value 219.583146
iter  20 value 219.273110
final  value 219.273103 
converged
summary(mlr_DRC)
Call:
multinom(formula = Colony.cat ~ imerg_rf, data = rf_at_wq_DRC_all)

Coefficients:
                  (Intercept)     imerg_rf
Intermediate_Risk -0.58909144 -0.002498249
Low_Risk          -2.29899838 -0.025932813
Very_High_Risk     0.09942931 -0.013638748

Std. Errors:
                  (Intercept)   imerg_rf
Intermediate_Risk   0.2310889 0.01237902
Low_Risk            0.4684435 0.03725894
Very_High_Risk      0.1918352 0.01139374

Residual Deviance: 438.5462 
AIC: 450.5462 
parameters(mlr_DRC, exponentiate=T, summary=T, digits=3, ci_digits=3)
# Response level: intermediate_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |     p
------------------------------------------------------------------
(Intercept) |      0.555 | 0.128 | [0.353, 0.873] | -2.549 | 0.011
imerg rf    |      0.998 | 0.012 | [0.974, 1.022] | -0.202 | 0.840

# Response level: low_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |      p
-------------------------------------------------------------------
(Intercept) |      0.100 | 0.047 | [0.040, 0.251] | -4.908 | < .001
imerg rf    |      0.974 | 0.036 | [0.906, 1.048] | -0.696 | 0.486 

# Response level: very_high_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |     p
------------------------------------------------------------------
(Intercept) |      1.105 | 0.212 | [0.758, 1.609] |  0.518 | 0.604
imerg rf    |      0.986 | 0.011 | [0.965, 1.009] | -1.197 | 0.231

Model: Colony.cat ~ imerg_rf (188 Observations)
Residual standard deviation: 1.552 (df = 182)
McFadden's R2: 0.004; adjusted McFadden's R2: -9.852e-05

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
  using a Wald normal distribution approximation.
mpred_DRC <- ggemmeans(mlr_DRC, terms="imerg_rf")
Data were 'prettified'. Consider using `terms="imerg_rf [all]"` to get
  smooth plots.
print(mpred_DRC, digits=4)
# Predicted probabilities of Colony.cat

Colony.cat: High_Risk

imerg_rf | Predicted |         95% CI
-------------------------------------
       0 |    0.3624 | 0.3444, 0.3807
      15 |    0.3996 | 0.3814, 0.4180
      25 |    0.4239 | 0.3987, 0.4495
      40 |    0.4592 | 0.4188, 0.5001
      65 |    0.5140 | 0.4448, 0.5827

Colony.cat: Intermediate_Risk

imerg_rf | Predicted |         95% CI
-------------------------------------
       0 |    0.2010 | 0.1907, 0.2118
      15 |    0.2135 | 0.2031, 0.2244
      25 |    0.2209 | 0.2064, 0.2362
      40 |    0.2305 | 0.2069, 0.2560
      65 |    0.2424 | 0.2010, 0.2893

Colony.cat: Low_Risk

imerg_rf | Predicted |         95% CI
-------------------------------------
       0 |    0.0364 | 0.0353, 0.0375
      15 |    0.0272 | 0.0264, 0.0279
      25 |    0.0222 | 0.0215, 0.0230
      40 |    0.0163 | 0.0157, 0.0170
      65 |    0.0096 | 0.0092, 0.0100

Colony.cat: Very_High_Risk

imerg_rf | Predicted |         95% CI
-------------------------------------
       0 |    0.4002 | 0.3811, 0.4197
      15 |    0.3597 | 0.3422, 0.3776
      25 |    0.3329 | 0.3104, 0.3563
      40 |    0.2939 | 0.2635, 0.3264
      65 |    0.2340 | 0.1970, 0.2755

Not all rows are shown in the output. Use `print(..., n = Inf)` to show
  all rows.

Multinomial Logistic Regression Model of water quality versus precipitation in Rwanda:

mlr_Rwanda <- multinom(MPN.cat ~ imerg_rf, data = rf_at_wq_Rwanda_all)
# weights:  12 (6 variable)
initial  value 1269.845635 
iter  10 value 1221.974910
final  value 1221.974265 
converged
summary(mlr_Rwanda)
Call:
multinom(formula = MPN.cat ~ imerg_rf, data = rf_at_wq_Rwanda_all)

Coefficients:
                  (Intercept)    imerg_rf
Intermediate_Risk   0.3514480 -0.03615092
Low_Risk            0.7997770 -0.05270517
Very_High_Risk      0.6412275  0.02598464

Std. Errors:
                  (Intercept)   imerg_rf
Intermediate_Risk   0.1359110 0.02596295
Low_Risk            0.1256048 0.02441102
Very_High_Risk      0.1252081 0.02096953

Residual Deviance: 2443.949 
AIC: 2455.949 
parameters(mlr_Rwanda, exponentiate=T, summary=T, digits=3, ci_digits=3)
# Response level: intermediate_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |     p
------------------------------------------------------------------
(Intercept) |      1.421 | 0.193 | [1.089, 1.855] |  2.586 | 0.010
imerg rf    |      0.964 | 0.025 | [0.917, 1.015] | -1.392 | 0.164

# Response level: low_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |      p
-------------------------------------------------------------------
(Intercept) |      2.225 | 0.279 | [1.739, 2.846] |  6.367 | < .001
imerg rf    |      0.949 | 0.023 | [0.904, 0.995] | -2.159 | 0.031 

# Response level: very_high_risk

Parameter   | Odds Ratio |    SE |         95% CI |     z |      p
------------------------------------------------------------------
(Intercept) |      1.899 | 0.238 | [1.486, 2.427] | 5.121 | < .001
imerg rf    |      1.026 | 0.022 | [0.985, 1.069] | 1.239 | 0.215 

Model: MPN.cat ~ imerg_rf (916 Observations)
Residual standard deviation: 1.639 (df = 910)
McFadden's R2: 0.008; adjusted McFadden's R2: 0.007

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
  using a Wald normal distribution approximation.
mpred_Rwanda <- ggemmeans(mlr_Rwanda, terms="imerg_rf")
Data were 'prettified'. Consider using `terms="imerg_rf [all]"` to get
  smooth plots.
print(mpred_Rwanda, digits=4)
# Predicted probabilities of MPN.cat

MPN.cat: High_Risk

imerg_rf | Predicted |         95% CI
-------------------------------------
       0 |    0.1528 | 0.1492, 0.1565
       5 |    0.1651 | 0.1615, 0.1687
      15 |    0.1773 | 0.1673, 0.1878
      20 |    0.1767 | 0.1631, 0.1913
      35 |    0.1546 | 0.1342, 0.1775

MPN.cat: Intermediate_Risk

imerg_rf | Predicted |         95% CI
-------------------------------------
       0 |    0.2171 | 0.2115, 0.2229
       5 |    0.1958 | 0.1913, 0.2004
      15 |    0.1465 | 0.1386, 0.1548
      20 |    0.1219 | 0.1140, 0.1303
      35 |    0.0620 | 0.0576, 0.0667

MPN.cat: Low_Risk

imerg_rf | Predicted |         95% CI
-------------------------------------
       0 |    0.3400 | 0.3313, 0.3487
       5 |    0.2822 | 0.2755, 0.2890
      15 |    0.1790 | 0.1690, 0.1894
      20 |    0.1371 | 0.1282, 0.1464
      35 |    0.0544 | 0.0513, 0.0577

MPN.cat: Very_High_Risk

imerg_rf | Predicted |         95% CI
-------------------------------------
       0 |    0.2901 | 0.2828, 0.2975
       5 |    0.3569 | 0.3492, 0.3647
      15 |    0.4972 | 0.4739, 0.5205
      20 |    0.5643 | 0.5329, 0.5952
      35 |    0.7290 | 0.6881, 0.7663

Not all rows are shown in the output. Use `print(..., n = Inf)` to show
  all rows.

Multinomial Logistic Regression Model of water quality versus 30-day precipitation in the DRC:

mlr_DRC <- multinom(Colony.cat ~ img30d, data = rf_at_wq_DRC_all)
# weights:  12 (6 variable)
initial  value 260.623340 
iter  10 value 216.972592
iter  20 value 216.752608
final  value 216.752599 
converged
summary(mlr_DRC)
Call:
multinom(formula = Colony.cat ~ img30d, data = rf_at_wq_DRC_all)

Coefficients:
                  (Intercept)       img30d
Intermediate_Risk  -0.2232167 -0.002134128
Low_Risk           -1.4774963 -0.007888178
Very_High_Risk      0.1980009 -0.001092324

Std. Errors:
                  (Intercept)      img30d
Intermediate_Risk   0.3128995 0.001365626
Low_Risk            0.5234399 0.003975044
Very_High_Risk      0.2761166 0.001130584

Residual Deviance: 433.5052 
AIC: 445.5052 
parameters(mlr_DRC, exponentiate=T, summary=T, digits=3, ci_digits=3)
# Response level: intermediate_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |     p
------------------------------------------------------------------
(Intercept) |      0.800 | 0.250 | [0.433, 1.477] | -0.713 | 0.476
img30d      |      0.998 | 0.001 | [0.995, 1.001] | -1.563 | 0.118

# Response level: low_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |     p
------------------------------------------------------------------
(Intercept) |      0.228 | 0.119 | [0.082, 0.637] | -2.823 | 0.005
img30d      |      0.992 | 0.004 | [0.984, 1.000] | -1.984 | 0.047

# Response level: very_high_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |     p
------------------------------------------------------------------
(Intercept) |      1.219 | 0.337 | [0.710, 2.094] |  0.717 | 0.473
img30d      |      0.999 | 0.001 | [0.997, 1.001] | -0.966 | 0.334

Model: Colony.cat ~ img30d (188 Observations)
Residual standard deviation: 1.543 (df = 182)
McFadden's R2: 0.016; adjusted McFadden's R2: 0.011

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
  using a Wald normal distribution approximation.
mpred_DRC <- ggemmeans(mlr_DRC, terms="img30d")
Data were 'prettified'. Consider using `terms="img30d [all]"` to get
  smooth plots.
print(mpred_DRC, digits=4)
# Predicted probabilities of Colony.cat

Colony.cat: High_Risk

img30d | Predicted |         95% CI
-----------------------------------
     0 |    0.3080 | 0.2864, 0.3304
   100 |    0.3518 | 0.3338, 0.3702
   200 |    0.3923 | 0.3755, 0.4094
   300 |    0.4308 | 0.4088, 0.4530
   500 |    0.5036 | 0.4608, 0.5464

Colony.cat: Intermediate_Risk

img30d | Predicted |         95% CI
-----------------------------------
     0 |    0.2464 | 0.2284, 0.2652
   100 |    0.2273 | 0.2156, 0.2395
   200 |    0.2048 | 0.1953, 0.2146
   300 |    0.1817 | 0.1713, 0.1925
   500 |    0.1386 | 0.1264, 0.1517

Colony.cat: Low_Risk

img30d | Predicted |         95% CI
-----------------------------------
     0 |    0.0703 | 0.0662, 0.0745
   100 |    0.0365 | 0.0354, 0.0376
   200 |    0.0185 | 0.0181, 0.0189
   300 |    0.0092 | 0.0091, 0.0094
   500 |    0.0022 | 0.0022, 0.0022

Colony.cat: Very_High_Risk

img30d | Predicted |         95% CI
-----------------------------------
     0 |    0.3754 | 0.3500, 0.4015
   100 |    0.3844 | 0.3656, 0.4036
   200 |    0.3844 | 0.3677, 0.4013
   300 |    0.3784 | 0.3578, 0.3994
   500 |    0.3556 | 0.3196, 0.3933

Not all rows are shown in the output. Use `print(..., n = Inf)` to show
  all rows.

Multinomial Logistic Regression Model of water quality versus 30-day precipitation in Rwanda:

mlr_Rwanda <- multinom(MPN.cat ~ img30d, data = rf_at_wq_Rwanda_all)
# weights:  12 (6 variable)
initial  value 1269.845635 
iter  10 value 1213.468905
final  value 1213.456471 
converged
summary(mlr_Rwanda)
Call:
multinom(formula = MPN.cat ~ img30d, data = rf_at_wq_Rwanda_all)

Coefficients:
                  (Intercept)       img30d
Intermediate_Risk  0.07346234  0.001380618
Low_Risk           1.43486332 -0.007384692
Very_High_Risk     0.97812592 -0.002079327

Std. Errors:
                  (Intercept)      img30d
Intermediate_Risk   0.2540412 0.001875967
Low_Risk            0.2194868 0.001743542
Very_High_Risk      0.2234346 0.001698282

Residual Deviance: 2426.913 
AIC: 2438.913 
parameters(mlr_Rwanda, exponentiate=T, summary=T, digits=3, ci_digits=3)
# Response level: intermediate_risk

Parameter   | Odds Ratio |    SE |         95% CI |     z |     p
-----------------------------------------------------------------
(Intercept) |      1.076 | 0.273 | [0.654, 1.771] | 0.289 | 0.772
img30d      |      1.001 | 0.002 | [0.998, 1.005] | 0.736 | 0.462

# Response level: low_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |      p
-------------------------------------------------------------------
(Intercept) |      4.199 | 0.922 | [2.731, 6.456] |  6.537 | < .001
img30d      |      0.993 | 0.002 | [0.989, 0.996] | -4.235 | < .001

# Response level: very_high_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |      p
-------------------------------------------------------------------
(Intercept) |      2.659 | 0.594 | [1.716, 4.121] |  4.378 | < .001
img30d      |      0.998 | 0.002 | [0.995, 1.001] | -1.224 | 0.221 

Model: MPN.cat ~ img30d (916 Observations)
Residual standard deviation: 1.633 (df = 910)
McFadden's R2: 0.015; adjusted McFadden's R2: 0.014

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
  using a Wald normal distribution approximation.
mpred_Rwanda <- ggemmeans(mlr_Rwanda, terms="img30d")
Data were 'prettified'. Consider using `terms="img30d [all]"` to get
  smooth plots.
print(mpred_Rwanda, digits=4)
# Predicted probabilities of MPN.cat

MPN.cat: High_Risk

img30d | Predicted |         95% CI
-----------------------------------
     0 |    0.1119 | 0.1081, 0.1159
    60 |    0.1386 | 0.1351, 0.1422
   120 |    0.1647 | 0.1613, 0.1680
   160 |    0.1806 | 0.1759, 0.1854
   280 |    0.2173 | 0.2026, 0.2329

MPN.cat: Intermediate_Risk

img30d | Predicted |         95% CI
-----------------------------------
     0 |    0.1205 | 0.1163, 0.1247
    60 |    0.1621 | 0.1578, 0.1665
   120 |    0.2091 | 0.2047, 0.2136
   160 |    0.2424 | 0.2359, 0.2490
   280 |    0.3443 | 0.3206, 0.3688

MPN.cat: Low_Risk

img30d | Predicted |         95% CI
-----------------------------------
     0 |    0.4700 | 0.4525, 0.4875
    60 |    0.3738 | 0.3643, 0.3834
   120 |    0.2850 | 0.2788, 0.2913
   160 |    0.2327 | 0.2263, 0.2391
   280 |    0.1154 | 0.1107, 0.1203

MPN.cat: Very_High_Risk

img30d | Predicted |         95% CI
-----------------------------------
     0 |    0.2977 | 0.2850, 0.3106
    60 |    0.3255 | 0.3168, 0.3343
   120 |    0.3412 | 0.3342, 0.3483
   160 |    0.3444 | 0.3354, 0.3534
   280 |    0.3229 | 0.3029, 0.3436

Not all rows are shown in the output. Use `print(..., n = Inf)` to show
  all rows.

Multinomial Logistic Regression Model of water quality versus runoff in the DRC:

mlr_DRC <- multinom(Colony.cat ~ lis_runoff, data = rf_at_wq_DRC_all)
# weights:  12 (6 variable)
initial  value 260.623340 
iter  10 value 219.216231
final  value 219.202148 
converged
summary(mlr_DRC)
Call:
multinom(formula = Colony.cat ~ lis_runoff, data = rf_at_wq_DRC_all)

Coefficients:
                  (Intercept)  lis_runoff
Intermediate_Risk -0.56886053 -0.01170086
Low_Risk          -2.35382556 -0.04339782
Very_High_Risk     0.09301715 -0.03310042

Std. Errors:
                  (Intercept) lis_runoff
Intermediate_Risk   0.2211892 0.02643448
Low_Risk            0.4579263 0.07562028
Very_High_Risk      0.1846879 0.02465760

Residual Deviance: 438.4043 
AIC: 450.4043 
parameters(mlr_DRC, exponentiate=T, summary=T, digits=3, ci_digits=3)
# Response level: intermediate_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |     p
------------------------------------------------------------------
(Intercept) |      0.566 | 0.125 | [0.367, 0.873] | -2.572 | 0.010
lis runoff  |      0.988 | 0.026 | [0.938, 1.041] | -0.443 | 0.658

# Response level: low_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |      p
-------------------------------------------------------------------
(Intercept) |      0.095 | 0.044 | [0.039, 0.233] | -5.140 | < .001
lis runoff  |      0.958 | 0.072 | [0.826, 1.111] | -0.574 | 0.566 

# Response level: very_high_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |     p
------------------------------------------------------------------
(Intercept) |      1.097 | 0.203 | [0.764, 1.576] |  0.504 | 0.615
lis runoff  |      0.967 | 0.024 | [0.922, 1.015] | -1.342 | 0.179

Model: Colony.cat ~ lis_runoff (188 Observations)
Residual standard deviation: 1.552 (df = 182)
McFadden's R2: 0.005; adjusted McFadden's R2: 2.236e-04

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
  using a Wald normal distribution approximation.
mpred_DRC <- ggemmeans(mlr_DRC, terms="lis_runoff")
Data were 'prettified'. Consider using `terms="lis_runoff [all]"` to get
  smooth plots.
print(mpred_DRC, digits=4)
# Predicted probabilities of Colony.cat

Colony.cat: High_Risk

lis_runoff | Predicted |         95% CI
---------------------------------------
         0 |    0.3625 | 0.3452, 0.3801
         5 |    0.3936 | 0.3765, 0.4110
        10 |    0.4249 | 0.4014, 0.4488
        20 |    0.4869 | 0.4415, 0.5324
        30 |    0.5462 | 0.4774, 0.6132

Colony.cat: Intermediate_Risk

lis_runoff | Predicted |         95% CI
---------------------------------------
         0 |    0.2052 | 0.1951, 0.2158
         5 |    0.2102 | 0.2004, 0.2203
        10 |    0.2140 | 0.2008, 0.2279
        20 |    0.2181 | 0.1936, 0.2448
        30 |    0.2177 | 0.1812, 0.2591

Colony.cat: Low_Risk

lis_runoff | Predicted |         95% CI
---------------------------------------
         0 |    0.0344 | 0.0335, 0.0354
         5 |    0.0301 | 0.0293, 0.0309
        10 |    0.0262 | 0.0253, 0.0271
        20 |    0.0194 | 0.0184, 0.0204
        30 |    0.0141 | 0.0133, 0.0149

Colony.cat: Very_High_Risk

lis_runoff | Predicted |         95% CI
---------------------------------------
         0 |    0.3978 | 0.3794, 0.4165
         5 |    0.3661 | 0.3494, 0.3831
        10 |    0.3349 | 0.3135, 0.3571
        20 |    0.2756 | 0.2437, 0.3100
        30 |    0.2221 | 0.1865, 0.2621

Not all rows are shown in the output. Use `print(..., n = Inf)` to show
  all rows.

Multinomial Logistic Regression Model of water quality versus runoff in Rwanda:

mlr_Rwanda <- multinom(MPN.cat ~ lis_runoff, data = rf_at_wq_Rwanda_all)
# weights:  12 (6 variable)
initial  value 1269.845635 
iter  10 value 1221.786973
final  value 1221.403118 
converged
summary(mlr_Rwanda)
Call:
multinom(formula = MPN.cat ~ lis_runoff, data = rf_at_wq_Rwanda_all)

Coefficients:
                  (Intercept) lis_runoff
Intermediate_Risk   0.3550655 -0.2814088
Low_Risk            0.7997008 -0.4618649
Very_High_Risk      0.7966031 -0.1185635

Std. Errors:
                  (Intercept) lis_runoff
Intermediate_Risk   0.1183346 0.10907852
Low_Risk            0.1098817 0.12679552
Very_High_Risk      0.1082055 0.07440961

Residual Deviance: 2442.806 
AIC: 2454.806 
parameters(mlr_Rwanda, exponentiate=T, summary=T, digits=3, ci_digits=3)
# Response level: intermediate_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |     p
------------------------------------------------------------------
(Intercept) |      1.426 | 0.169 | [1.131, 1.799] |  3.001 | 0.003
lis runoff  |      0.755 | 0.082 | [0.609, 0.935] | -2.580 | 0.010

# Response level: low_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |      p
-------------------------------------------------------------------
(Intercept) |      2.225 | 0.244 | [1.794, 2.760] |  7.278 | < .001
lis runoff  |      0.630 | 0.080 | [0.491, 0.808] | -3.643 | < .001

# Response level: very_high_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |      p
-------------------------------------------------------------------
(Intercept) |      2.218 | 0.240 | [1.794, 2.742] |  7.362 | < .001
lis runoff  |      0.888 | 0.066 | [0.768, 1.028] | -1.593 | 0.111 

Model: MPN.cat ~ lis_runoff (916 Observations)
Residual standard deviation: 1.638 (df = 910)
McFadden's R2: 0.008; adjusted McFadden's R2: 0.008

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
  using a Wald normal distribution approximation.
mpred_Rwanda <- ggemmeans(mlr_Rwanda, terms="lis_runoff")
Data were 'prettified'. Consider using `terms="lis_runoff [all]"` to get
  smooth plots.
print(mpred_Rwanda, digits=4)
# Predicted probabilities of MPN.cat

MPN.cat: High_Risk

lis_runoff | Predicted |         95% CI
---------------------------------------
         0 |    0.1456 | 0.1426, 0.1486
         2 |    0.2249 | 0.2166, 0.2335
         4 |    0.3131 | 0.2901, 0.3371
         6 |    0.4013 | 0.3580, 0.4463
         8 |    0.4844 | 0.4200, 0.5493

MPN.cat: Intermediate_Risk

lis_runoff | Predicted |         95% CI
---------------------------------------
         0 |    0.2076 | 0.2031, 0.2123
         2 |    0.1827 | 0.1745, 0.1913
         4 |    0.1449 | 0.1338, 0.1567
         6 |    0.1058 | 0.0961, 0.1163
         8 |    0.0727 | 0.0661, 0.0800

MPN.cat: Low_Risk

lis_runoff | Predicted |         95% CI
---------------------------------------
         0 |    0.3239 | 0.3168, 0.3311
         2 |    0.1987 | 0.1878, 0.2101
         4 |    0.1098 | 0.1016, 0.1186
         6 |    0.0559 | 0.0522, 0.0598
         8 |    0.0268 | 0.0256, 0.0280

MPN.cat: Very_High_Risk

lis_runoff | Predicted |         95% CI
---------------------------------------
         0 |    0.3229 | 0.3160, 0.3299
         2 |    0.3936 | 0.3783, 0.4091
         4 |    0.4322 | 0.4028, 0.4621
         6 |    0.4370 | 0.3927, 0.4823
         8 |    0.4161 | 0.3571, 0.4777

Multinomial Logistic Regression Model of water quality versus 30-day runoff in the DRC:

mlr_DRC <- multinom(Colony.cat ~ lis30d, data = rf_at_wq_DRC_all)
# weights:  12 (6 variable)
initial  value 260.623340 
iter  10 value 217.643922
final  value 216.629475 
converged
summary(mlr_DRC)
Call:
multinom(formula = Colony.cat ~ lis30d, data = rf_at_wq_DRC_all)

Coefficients:
                  (Intercept)       lis30d
Intermediate_Risk  -0.3178213 -0.004872353
Low_Risk           -1.5682144 -0.025752335
Very_High_Risk      0.1679766 -0.002821695

Std. Errors:
                  (Intercept)      lis30d
Intermediate_Risk   0.2830983 0.003468236
Low_Risk            0.4968186 0.014240793
Very_High_Risk      0.2450498 0.002796199

Residual Deviance: 433.259 
AIC: 445.259 
parameters(mlr_DRC, exponentiate=T, summary=T, digits=3, ci_digits=3)
# Response level: intermediate_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |     p
------------------------------------------------------------------
(Intercept) |      0.728 | 0.206 | [0.418, 1.267] | -1.123 | 0.262
lis30d      |      0.995 | 0.003 | [0.988, 1.002] | -1.405 | 0.160

# Response level: low_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |     p
------------------------------------------------------------------
(Intercept) |      0.208 | 0.104 | [0.079, 0.552] | -3.157 | 0.002
lis30d      |      0.975 | 0.014 | [0.948, 1.002] | -1.808 | 0.071

# Response level: very_high_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |     p
------------------------------------------------------------------
(Intercept) |      1.183 | 0.290 | [0.732, 1.912] |  0.685 | 0.493
lis30d      |      0.997 | 0.003 | [0.992, 1.003] | -1.009 | 0.313

Model: Colony.cat ~ lis30d (188 Observations)
Residual standard deviation: 1.543 (df = 182)
McFadden's R2: 0.016; adjusted McFadden's R2: 0.012

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
  using a Wald normal distribution approximation.
mpred_DRC <- ggemmeans(mlr_DRC, terms="lis30d")
Data were 'prettified'. Consider using `terms="lis30d [all]"` to get
  smooth plots.
print(mpred_DRC, digits=4)
# Predicted probabilities of Colony.cat

Colony.cat: High_Risk

lis30d | Predicted |         95% CI
-----------------------------------
     0 |    0.3206 | 0.3005, 0.3414
    40 |    0.3663 | 0.3493, 0.3837
    80 |    0.4060 | 0.3881, 0.4241
   130 |    0.4518 | 0.4247, 0.4792
   210 |    0.5218 | 0.4727, 0.5704

Colony.cat: Intermediate_Risk

lis30d | Predicted |         95% CI
-----------------------------------
     0 |    0.2333 | 0.2180, 0.2493
    40 |    0.2194 | 0.2088, 0.2303
    80 |    0.2001 | 0.1903, 0.2102
   130 |    0.1745 | 0.1626, 0.1871
   210 |    0.1365 | 0.1227, 0.1516

Colony.cat: Low_Risk

lis30d | Predicted |         95% CI
-----------------------------------
     0 |    0.0668 | 0.0633, 0.0705
    40 |    0.0273 | 0.0265, 0.0280
    80 |    0.0108 | 0.0106, 0.0110
   130 |    0.0033 | 0.0033, 0.0033
   210 |    0.0005 | 0.0005, 0.0005

Colony.cat: Very_High_Risk

lis30d | Predicted |         95% CI
-----------------------------------
     0 |    0.3793 | 0.3562, 0.4028
    40 |    0.3871 | 0.3695, 0.4049
    80 |    0.3832 | 0.3658, 0.4009
   130 |    0.3703 | 0.3458, 0.3956
   210 |    0.3413 | 0.3014, 0.3835

Not all rows are shown in the output. Use `print(..., n = Inf)` to show
  all rows.

Multinomial Logistic Regression Model of water quality versus 30-day runoff in Rwanda:

mlr_Rwanda <- multinom(MPN.cat ~ lis30d, data = rf_at_wq_Rwanda_all)
# weights:  12 (6 variable)
initial  value 1269.845635 
iter  10 value 1215.352033
final  value 1215.338919 
converged
summary(mlr_Rwanda)
Call:
multinom(formula = MPN.cat ~ lis30d, data = rf_at_wq_Rwanda_all)

Coefficients:
                  (Intercept)       lis30d
Intermediate_Risk   0.2976435 -0.004559746
Low_Risk            1.0023615 -0.040612954
Very_High_Risk      0.7860239 -0.004024339

Std. Errors:
                  (Intercept)      lis30d
Intermediate_Risk   0.1340987 0.006203705
Low_Risk            0.1286266 0.009190845
Very_High_Risk      0.1221299 0.005551870

Residual Deviance: 2430.678 
AIC: 2442.678 
parameters(mlr_Rwanda, exponentiate=T, summary=T, digits=3, ci_digits=3)
# Response level: intermediate_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |     p
------------------------------------------------------------------
(Intercept) |      1.347 | 0.181 | [1.035, 1.751] |  2.220 | 0.026
lis30d      |      0.995 | 0.006 | [0.983, 1.008] | -0.735 | 0.462

# Response level: low_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |      p
-------------------------------------------------------------------
(Intercept) |      2.725 | 0.350 | [2.118, 3.506] |  7.793 | < .001
lis30d      |      0.960 | 0.009 | [0.943, 0.978] | -4.419 | < .001

# Response level: very_high_risk

Parameter   | Odds Ratio |    SE |         95% CI |      z |      p
-------------------------------------------------------------------
(Intercept) |      2.195 | 0.268 | [1.727, 2.788] |  6.436 | < .001
lis30d      |      0.996 | 0.006 | [0.985, 1.007] | -0.725 | 0.469 

Model: MPN.cat ~ lis30d (916 Observations)
Residual standard deviation: 1.634 (df = 910)
McFadden's R2: 0.013; adjusted McFadden's R2: 0.013

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
  using a Wald normal distribution approximation.
mpred_Rwanda <- ggemmeans(mlr_Rwanda, terms="lis30d")
Data were 'prettified'. Consider using `terms="lis30d [all]"` to get
  smooth plots.
print(mpred_Rwanda, digits=4)
# Predicted probabilities of MPN.cat

MPN.cat: High_Risk

lis30d | Predicted |         95% CI
-----------------------------------
     0 |    0.1376 | 0.1346, 0.1407
    20 |    0.1830 | 0.1786, 0.1875
    40 |    0.2209 | 0.2112, 0.2309
    60 |    0.2508 | 0.2333, 0.2692
    80 |    0.2754 | 0.2484, 0.3042

MPN.cat: Intermediate_Risk

lis30d | Predicted |         95% CI
-----------------------------------
     0 |    0.1853 | 0.1809, 0.1899
    20 |    0.2250 | 0.2193, 0.2308
    40 |    0.2479 | 0.2366, 0.2595
    60 |    0.2570 | 0.2389, 0.2758
    80 |    0.2575 | 0.2328, 0.2839

MPN.cat: Low_Risk

lis30d | Predicted |         95% CI
-----------------------------------
     0 |    0.3750 | 0.3650, 0.3851
    20 |    0.2214 | 0.2138, 0.2291
    40 |    0.1186 | 0.1126, 0.1248
    60 |    0.0598 | 0.0571, 0.0626
    80 |    0.0291 | 0.0282, 0.0301

MPN.cat: Very_High_Risk

lis30d | Predicted |         95% CI
-----------------------------------
     0 |    0.3020 | 0.2945, 0.3097
    20 |    0.3706 | 0.3615, 0.3799
    40 |    0.4127 | 0.3957, 0.4299
    60 |    0.4324 | 0.4058, 0.4594
    80 |    0.4380 | 0.4010, 0.4757