Data

library(readxl)
data1 <- read_excel("H:/Unidades compartidas/Ensayo yuca inoculacion/Datos_yuca_Lavega.xlsx", 
    sheet = "fenotipage 2")
str(data1)
## tibble [440 Ă— 9] (S3: tbl_df/tbl/data.frame)
##  $ F       : POSIXct[1:440], format: "2024-02-28" "2024-02-28" ...
##  $ M       : num [1:440] 1 1 1 1 1 1 1 1 1 1 ...
##  $ Variedad: chr [1:440] "V28" "V28" "V28" "V28" ...
##  $ Inoculo : chr [1:440] "No" "No" "No" "No" ...
##  $ INT     : chr [1:440] "V28-No" "V28-No" "V28-No" "V28-No" ...
##  $ PL      : num [1:440] 1 2 3 4 5 6 7 8 9 10 ...
##  $ UDPC    : num [1:440] 0 0 0 0 0 NA 0 0 0 0 ...
##  $ DIATA   : num [1:440] 3.5 3.34 3.3 2.56 3.11 2.74 3.16 3.15 3.03 3.28 ...
##  $ ALTPL   : num [1:440] 35 42.5 49.9 32.5 37 40.4 41 36.8 32.5 41.5 ...

Diametro de tallo

library(lattice)
# Interaccion variedad por tiempo
bwplot(DIATA ~ Variedad | as.factor(M), data=data1)

# Interaccion inoculo por tiempo
bwplot(DIATA ~ Inoculo | as.factor(M), data=data1)

# Interaccion variedad por inoculo por tiempo
xyplot(DIATA ~ as.factor(M) | Variedad , 
       data=data1, group = Inoculo,
       type = c("p", "g", "smooth"),
       xlab = "Muestreo", ylab = "Diametro de tallo (cm)")

# Altura de planta

library(lattice)
# Interaccion variedad por tiempo
bwplot(ALTPL ~ Variedad | as.factor(M), data=data1)

# Interaccion inoculo por tiempo
bwplot(ALTPL ~ Inoculo | as.factor(M), data=data1)

# Interaccion variedad por inoculo por tiempo
xyplot(ALTPL ~ as.factor(M) | Variedad , 
       data=data1, group = Inoculo,
       type = c("p", "g", "smooth"),
       xlab = "Muestreo", ylab = "Altura de planta (cm)")

# Ultimo muestreo

#
library(dplyr)
## 
## Adjuntando el paquete: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
M_fin <- data1 %>% filter(., M==11) %>% 
  filter(., !is.na(DIATA)) %>% 
  mutate(., Variedad=as.factor(Variedad), Inoculo=as.factor(Inoculo), INT=as.factor(INT) )
M_fin
## # A tibble: 36 Ă— 9
##    F                       M Variedad Inoculo INT        PL  UDPC DIATA ALTPL
##    <dttm>              <dbl> <fct>    <fct>   <fct>   <dbl> <dbl> <dbl> <dbl>
##  1 2024-05-08 00:00:00    11 V28      No      V28-No      1     0  6.41  61  
##  2 2024-05-08 00:00:00    11 V28      No      V28-No      2     0  6.46  73  
##  3 2024-05-08 00:00:00    11 V28      No      V28-No      3     0  6.36  79.5
##  4 2024-05-08 00:00:00    11 V28      No      V28-No      4     0  6.35  75  
##  5 2024-05-08 00:00:00    11 V28      No      V28-No      5     0  6.36  71  
##  6 2024-05-08 00:00:00    11 V28      Si      V28-Si      7     2  3.73  45.5
##  7 2024-05-08 00:00:00    11 V28      Si      V28-Si      8     3  3.35  49  
##  8 2024-05-08 00:00:00    11 V28      Si      V28-Si      9     4  2.57  38.5
##  9 2024-05-08 00:00:00    11 V28      Si      V28-Si     10     4  3.16  50  
## 10 2024-05-08 00:00:00    11 JA08     No      JA08-No     1     0  7.38  52  
## # ℹ 26 more rows

Estadistica descriptiva (ver tendencias, observar datos atĂ­picos)

Diametro de tallo

library(ggplot2)
#
ggplot(M_fin, aes(x=Inoculo, y=DIATA, fill=Inoculo) )+
  geom_boxplot()+
  facet_wrap(~Variedad, scales="free_x")+
  theme_bw()+
  labs(x="Tratamiento", y="DiĂ¡metro de tallo (cm)")+
  scale_fill_manual(values = c("No" = "lightblue", "Si" = "pink4"))

## Altura

#
ggplot(M_fin, aes(x=Inoculo, y=ALTPL, fill=Inoculo) )+
  geom_boxplot()+
  facet_wrap(~Variedad, scales="free_x")+
  theme_bw()+
  labs(x="Tratamiento", y="Altura (cm)")+
  scale_fill_manual(values = c("No" = "lightblue", "Si" = "pink4"))

AnĂ¡lisis de varianza (ANOVA)

Anova para el diametro

# ANOVA
aov_dia <- aov( DIATA ~ Variedad * Inoculo, data=M_fin)
summary(aov_dia)
##                  Df Sum Sq Mean Sq F value   Pr(>F)    
## Variedad          3  13.53    4.51   15.68 3.55e-06 ***
## Inoculo           1  32.71   32.71  113.68 2.29e-11 ***
## Variedad:Inoculo  3   9.17    3.06   10.62 7.81e-05 ***
## Residuals        28   8.06    0.29                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Supuestos del modelo
Residuales <- residuals(aov_dia)
res_estan <- Residuales/sd(Residuales)
# Test normalidad
shapiro.test(res_estan)
## 
##  Shapiro-Wilk normality test
## 
## data:  res_estan
## W = 0.97855, p-value = 0.6963
# Test de homocedasticidad
bartlett.test( res_estan ~ M_fin$Variedad )
## 
##  Bartlett test of homogeneity of variances
## 
## data:  res_estan by M_fin$Variedad
## Bartlett's K-squared = 3.7676, df = 3, p-value = 0.2877
bartlett.test( res_estan ~ M_fin$Inoculo )
## 
##  Bartlett test of homogeneity of variances
## 
## data:  res_estan by M_fin$Inoculo
## Bartlett's K-squared = 3.6653, df = 1, p-value = 0.05556

Anova para la altura

# ANOVA
aov_alt <- aov( ALTPL ~ Variedad * Inoculo, data=M_fin)
summary(aov_alt)
##                  Df Sum Sq Mean Sq F value   Pr(>F)    
## Variedad          3   3300  1100.0   30.36 6.04e-09 ***
## Inoculo           1    369   369.3   10.19  0.00347 ** 
## Variedad:Inoculo  3   1463   487.8   13.46 1.27e-05 ***
## Residuals        28   1014    36.2                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Supuestos del modelo
Residuales <- residuals(aov_alt)
res_estan <- Residuales/sd(Residuales)
# Test normalidad
shapiro.test(res_estan)
## 
##  Shapiro-Wilk normality test
## 
## data:  res_estan
## W = 0.96155, p-value = 0.2399
# Test de homocedasticidad
bartlett.test( res_estan ~ M_fin$Variedad )
## 
##  Bartlett test of homogeneity of variances
## 
## data:  res_estan by M_fin$Variedad
## Bartlett's K-squared = 9.6083, df = 3, p-value = 0.02221
bartlett.test( res_estan ~ M_fin$Inoculo )
## 
##  Bartlett test of homogeneity of variances
## 
## data:  res_estan by M_fin$Inoculo
## Bartlett's K-squared = 0.08824, df = 1, p-value = 0.7664

Pruebas poshoc

Diametro

aov_int_dia <- aov( DIATA ~ INT, data=M_fin )
library(agricolae)
LSD.test(y=aov_int_dia, trt="INT", group=TRUE, console=TRUE)
## 
## Study: aov_int_dia ~ "INT"
## 
## LSD t Test for DIATA 
## 
## Mean Square Error:  0.2877059 
## 
## INT,  means and individual ( 95 %) CI
## 
##          DIATA        std r        se      LCL      UCL  Min  Max    Q25   Q50
## AN04-No 6.9640 0.68027935 5 0.2398774 6.472633 7.455367 6.03 7.53 6.4600 7.290
## AN04-Si 6.1700 0.48067661 5 0.2398774 5.678633 6.661367 5.66 6.84 5.7500 6.250
## JA08-No 7.1400 0.37155080 5 0.2398774 6.648633 7.631367 6.77 7.66 6.8700 7.020
## JA08-Si 4.1250 1.32228968 2 0.3792795 3.348081 4.901919 3.19 5.06 3.6575 4.125
## T28-No  6.8540 0.24419255 5 0.2398774 6.362633 7.345367 6.47 7.05 6.7600 6.950
## T28-Si  5.4740 0.71251667 5 0.2398774 4.982633 5.965367 4.64 6.56 5.1000 5.470
## V28-No  6.3880 0.04658326 5 0.2398774 5.896633 6.879367 6.35 6.46 6.3600 6.360
## V28-Si  3.2025 0.48369240 4 0.2681911 2.653135 3.751865 2.57 3.73 3.0125 3.255
##            Q75
## AN04-No 7.5100
## AN04-Si 6.3500
## JA08-No 7.3800
## JA08-Si 4.5925
## T28-No  7.0400
## T28-Si  5.6000
## V28-No  6.4100
## V28-Si  3.4450
## 
## Alpha: 0.05 ; DF Error: 28
## Critical Value of t: 2.048407 
## 
## Groups according to probability of means differences and alpha level( 0.05 )
## 
## Treatments with the same letter are not significantly different.
## 
##          DIATA groups
## JA08-No 7.1400      a
## AN04-No 6.9640     ab
## T28-No  6.8540    abc
## V28-No  6.3880     bc
## AN04-Si 6.1700      c
## T28-Si  5.4740      d
## JA08-Si 4.1250      e
## V28-Si  3.2025      e

Altura

aov_int_alt <- aov( ALTPL ~ INT, data=M_fin )
library(agricolae)
LSD.test(y=aov_int_alt, trt="INT", group=TRUE, console=TRUE)
## 
## Study: aov_int_alt ~ "INT"
## 
## LSD t Test for ALTPL 
## 
## Mean Square Error:  36.22636 
## 
## INT,  means and individual ( 95 %) CI
## 
##         ALTPL      std r       se      LCL      UCL  Min  Max   Q25   Q50   Q75
## AN04-No 66.10 8.855789 5 2.691704 60.58629 71.61371 52.0 76.5 66.50 67.00 68.50
## AN04-Si 60.50 7.818248 5 2.691704 54.98629 66.01371 49.5 69.5 56.00 63.00 64.50
## JA08-No 52.80 2.588436 5 2.691704 47.28629 58.31371 50.0 56.0 51.00 52.00 55.00
## JA08-Si 48.00 1.414214 2 4.255958 39.28207 56.71793 47.0 49.0 47.50 48.00 48.50
## T28-No  73.90 4.321458 5 2.691704 68.38629 79.41371 69.5 79.0 69.50 74.50 77.00
## T28-Si  82.88 4.560373 5 2.691704 77.36629 88.39371 77.0 89.5 81.00 82.90 84.00
## V28-No  71.90 6.859300 5 2.691704 66.38629 77.41371 61.0 79.5 71.00 73.00 75.00
## V28-Si  45.75 5.204165 4 3.009417 39.58549 51.91451 38.5 50.0 43.75 47.25 49.25
## 
## Alpha: 0.05 ; DF Error: 28
## Critical Value of t: 2.048407 
## 
## Groups according to probability of means differences and alpha level( 0.05 )
## 
## Treatments with the same letter are not significantly different.
## 
##         ALTPL groups
## T28-Si  82.88      a
## T28-No  73.90      b
## V28-No  71.90     bc
## AN04-No 66.10     cd
## AN04-Si 60.50     de
## JA08-No 52.80     ef
## JA08-Si 48.00      f
## V28-Si  45.75      f

Grafico de interaccion

Diametro

library(phia)
## Warning: package 'phia' was built under R version 4.4.1
## Cargando paquete requerido: car
## Cargando paquete requerido: carData
## 
## Adjuntando el paquete: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
grafica_diametro <- interactionMeans(aov_dia)
plot(grafica_diametro)

Altura

grafica_altura <- interactionMeans(aov_alt)
plot(grafica_altura)