Load the package
library(ggplot2)
library(tidyverse)
library(rio)
Load the data
# Load the GBR data
library(rio)
SHJP_JP_FA_GBR <- rio::import("../Data_output/SHJP_JP_FA_GBR.rds")
# Select necessary columns
SHJP_JP_FA_GBR <- SHJP_JP_FA_GBR %>%
select(AffiliateCode, year, AffiliateNameAlph, JPCode, Parent_NameAlphabet,
county, city, lat, lon, AddressAlph, countryname,
PayrollNumber, StartDate, FA_Sector, FA_SectorName)
# Create lmean
PayrollNumber_mean <- mean(SHJP_JP_FA_GBR$PayrollNumber, na.rm = TRUE)
SHJP_JP_FA_GBR$l <- ifelse(is.na(SHJP_JP_FA_GBR$PayrollNumber), PayrollNumber_mean, SHJP_JP_FA_GBR$PayrollNumber)
Desribe the location of
Japanese affiliate
# Barplot of number of affiliate by county in 1990
SHJP_JP_FA_GBR %>%
filter(year == 1990) %>%
group_by(county) %>%
summarise(N = n()) %>%
# keep the top county
top_n(30, N) %>%
ggplot(aes(x = county, y = N)) +
geom_bar(stat = "identity") +
labs(title = "Number of Japanese affiliate in the UK",
x = "county",
y = "Number of affiliate") +
theme_minimal() +
# make the graph horizontal
coord_flip()

Map the Japanese
affiliate with leaflet
in 2014
# subset the data, 2014
SHJP_JP_FA_GBR2014 <- subset(SHJP_JP_FA_GBR, year == 2014)
# subset the data, 2020
SHJP_JP_FA_GBR2020 <- subset(SHJP_JP_FA_GBR, year == 2020)
# 2014
library(leaflet)
leaflet(data = SHJP_JP_FA_GBR2014) %>% addTiles() %>%
addCircleMarkers(lng = ~lon, lat = ~lat, radius = ~l/1000,
color = "blue", popup = ~AffiliateNameAlph,
)
Map the Japanese
affiliate with leaflet
in 2020
# 2020
leaflet(data = SHJP_JP_FA_GBR2020) %>% addTiles() %>%
addCircleMarkers(lng = ~lon, lat = ~lat, radius = ~l/10000,
color = "blue", popup = ~AffiliateNameAlph)
Map the Japanese
affiliate with leaflet
: 2014
library(leaflet)
leaflet(data = SHJP_JP_FA_GBR2014) %>% addTiles() %>%
addMarkers(lng = ~lon, lat = ~lat,
popup = ~as.character(AffiliateNameAlph),
label = ~as.character(Parent_NameAlphabet),
clusterOptions = TRUE)
Map the Japanese
affiliate with leaflet
: 2020
library(leaflet)
leaflet(data = SHJP_JP_FA_GBR2020) %>% addTiles() %>%
addMarkers(lng = ~lon, lat = ~lat,
popup = ~as.character(AffiliateNameAlph),
label = ~as.character(Parent_NameAlphabet),
clusterOptions = TRUE)
Load the map of
rnaturalearth
- ne_countries() function is used to load the map of the UK.
- The map is plotted with ggplot2.
library(rnaturalearth)
library(rnaturalearthdata)
#library(rnaturalearthhires)
# load the map of the UK
ukmap <- ne_countries(country = "United Kingdom",
returnclass = "sf", scale = "medium")
# Plot the map
ggplot(ukmap) + geom_sf(alpha = 0.4)

plot(ukmap)

Drop Jersey
# Drop Jersey
SHJP_JP_FA_GBR2020 <- SHJP_JP_FA_GBR2020 %>%
filter(county != "Jersey")
# Keep the observation with lat >=48 & lat <= 60
SHJP_JP_FA_GBR2020 <- SHJP_JP_FA_GBR2020 %>%
filter(lat >= 48 & lat <= 60)
Plot the location of
Japanese affiliate in the UK map in 2020
library(ggplot2)
library(ggthemes)
library(ggrepel)
# Plot the location of Japanese affiliate in the UK map
ggplot() +
geom_sf(data = ukmap) +
geom_point(data = SHJP_JP_FA_GBR2020, aes(x = lon, y = lat),
size = 2, alpha = 0.3, color = "blue") +
theme_map() +
# limit the y-axis
coord_sf(xlim = c(-10, 2), ylim = c(48, 60)) +
theme(legend.position = "bottom")
