This code examines the community composition of mesozooplankton in Quartermaster Harbor, Sinclair Inlet, Budd Inlet, and Eld Inlet inside and outside of jellyfish aggregations.

load packages

library(dplyr)
library(forcats)
library(stringr)
library(tidyverse)
library(janitor)
library(reshape2)
library(vegan)
devtools::install_github("GuillemSalazar/EcolUtils")
library(EcolUtils)
library(ggrepel)
library(ggpubr)

Data Prep

subset database to field stations

Read database into R. If current database changes, just change the path

Database <- read.csv("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/data/current_data/Final_Aurelia_Database_Jan11_2023.csv")

subset

#select only field data
Field_data<-subset(Database,Trial.Type=="Field")

Combine taxa

recode copepod names

Field_data$Species_lifestage <- paste(Field_data$Genus.species, Field_data$Life.History.Stage, sep="_")
Field_data <- Field_data %>%
                   mutate(Species_lifestage_combined = fct_recode(Species_lifestage,
                                     "Siphonophore" = "SIPHONOPHORA_Gonophore",
                                     "Siphonophore" = "SIPHONOPHORA_Bract",
                                     "Siphonophore" ="SIPHONOPHORA_Unknown",
                                     "AETIDEUS_Female, Adult"="AETIDEUS_Copepodite",
                                     "JELLYFISHES_Ephyra" = "AURELIA LABIATA_Ephyra",
                                     "CALANOIDA_Medium" = "ACARTIA_Copepodite", 
                                     "CALANOIDA_Medium" = "ACARTIA_Female, Adult",
                                     "CALANUS PACIFICUS" = "CALANUS PACIFICUS_C5-adult",
                                     "CALANUS PACIFICUS" = "CALANUS PACIFICUS_C5-Adult",
                                     "CALANUS PACIFICUS" = "CALANUS PACIFICUS_Copepodite",
                                     "CALANUS PACIFICUS" = "CALANUS PACIFICUS_Female,
                                     Adult",
                                     "CALANUS PACIFICUS" = "CALANUS PACIFICUS_Male, Adult",
                                     "DITRICHOCORYCAEUS ANGLICUS" = "DITRICHOCORYCAEUS ANGLICUS_Large",
                                     "DITRICHOCORYCAEUS ANGLICUS" = "DITRICHOCORYCAEUS ANGLICUS_Small"))
unique(Field_data$Species_lifestage_combined)
##  [1] CALANOIDA_Medium                  AETIDEUS_Female, Adult           
##  [3] JELLYFISHES_Ephyra                BARNACLES_Cyprid larva           
##  [5] BARNACLES_Nauplius                BIVALVIA_Veliger                 
##  [7] BRACHYURA_Unknown                 BRYOZOA_Cyphonaut                
##  [9] CALANOIDA_Copepodite              CALANOIDA_Large                  
## [11] CALANOIDA_Small                   CALANUS PACIFICUS                
## [13] CALANUS PACIFICUS_Female, Adult   CENTROPAGES_Female, Adult        
## [15] Chaet/Euphaus Egg_Egg             CHAETOGNATHA_Unknown             
## [17] CLADOCERA_Unknown                 CLYTIA GREGARIA_Medusa           
## [19] COPEPODA_Egg                      COPEPODA_Nauplius                
## [21] CRABS_Megalopa                    CRABS_Zoea                       
## [23] Diatom-Centric_Unknown            DITRICHOCORYCAEUS ANGLICUS       
## [25] ECHINODERMATA_Pluteus larva       EUPHAUSIIDAE_Calyptopis          
## [27] EUPHAUSIIDAE_Furcilia             EUPHAUSIIDAE_Nauplius            
## [29] EUTONINA INDICANS_Medusa          FISH_Egg                         
## [31] FISH_Larva                        GAETANUS_Adult                   
## [33] GAMMARIDEA_Unknown                GASTROPODA_Veliger               
## [35] HARPACTICOIDA_Unknown             HYPERIIDEA_Unknown               
## [37] Insecta_Unknown                   ISOPODA_Unknown                  
## [39] JELLYFISHES_Medusa                JELLYFISHES_Planula larvae       
## [41] LARVACEA_Unknown                  LITTORINA_Egg                    
## [43] METRIDIA_Female, Adult            MOLLUSCA_Trochophore larva       
## [45] Nemertea_Pilidium                 NEOTRYPAEA CALIFORNIENSIS_Unknown
## [47] NOCTILUCA_Unknown                 OITHONA_Unknown                  
## [49] POLYCHAETA_Unknown                SHRIMP_Unknown                   
## [51] Siphonophore                      TORTANUS DISCAUDATUS_Adult       
## [53] UNKNOWN_Larva                    
## 53 Levels: CALANOIDA_Medium AETIDEUS_Female, Adult ... UNKNOWN_Larva

Deal with duplicate station names

# combine station and date for unique stations
Field_data$Station_unique <- paste(Field_data$Station, Field_data$Sample.Date)
unique(Field_data$Station_unique)
##  [1] "QM1 08/28/2019"    "SC4 09/25/2019"    "SC2 09/25/2019"   
##  [4] "SC3 09/25/2019"    "SC1 09/25/2019"    "QM10 08/24/2021"  
##  [7] "Eld4s 08/28/2020"  "QM5b 07/29/2021"   "QM6b 07/29/2021"  
## [10] "BUDD2s 08/27/2020" "BUDD1 08/27/2020"  "QM2c 08/22/2021"  
## [13] "SC11 08/26/2021"   "BUDD3 08/27/2021"  "SC5c 08/25/2021"  
## [16] "SC6c 08/25/2021"   "SC1a 07/27/2021"   "SC4a 07/27/2021"  
## [19] "SC16 08/26/2021"   "SC10 08/26/2021"   "SC7 08/25/2021"   
## [22] "BUDD4s 08/27/2020" "QM1b 07/29/2021"   "SC2c 08/24/2021"  
## [25] "BUDD4 08/27/2020"  "QM1c 08/22/2021"   "BUDD2a 08/27/2020"
## [28] "BUDD1s 08/27/2020" "SC14 08/26/2021"   "Eld1 08/28/2020"  
## [31] "BUDD5 08/27/2020"  "Eld4 08/28/2020"   "Eld3s 08/28/2020" 
## [34] "SC3a 07/27/2021"   "QM9 08/23/2021"    "SC5d 08/25/2021"  
## [37] "QM2b 07/28/2021"   "SC3c 08/24/2021"   "QM6c 08/22/2021"  
## [40] "QM5c 08/22/2021"   "SC17 08/27/2021"   "QM3c 08/22/2021"  
## [43] "Eld2s 08/28/2020"  "BUDD3s 08/27/2020" "SC5 09/25/2019"   
## [46] "QM6 08/28/2019"    "QM5 08/28/2019"    "QM2 08/28/2019"   
## [49] "SC6 09/25/2019"    "QM3 08/28/2019"    "QM4 08/28/2019"   
## [52] "QM3a 08/29/2020"   "QM1a 08/28/2020"   "SC2a 07/27/2021"  
## [55] "QM5a 08/29/2020"   "QM4a 08/29/2020"   "SC8 08/25/2021"   
## [58] "SC12 08/26/2021"   "SC4c 08/25/2021"   "BUDD7 08/28/2020" 
## [61] "SC6a 07/27/2021"   "QM11 08/24/2021"   "QM4b 07/29/2021"  
## [64] "BUDD6 08/27/2020"  "Eld2b 07/28/2021"  "QM12 08/24/2021"  
## [67] "SC5a 07/27/2021"   "QM3b 07/29/2021"   "QM2 07/24/2019"   
## [70] "QM6 07/24/2019"    "QM1 07/24/2019"    "QM2a 08/28/2020"  
## [73] "QM8a 08/29/2020"   "BUDD4a 07/28/2021" "BUDD3a 07/28/2021"
## [76] "BUDD1a 07/28/2021" "Eld1s 08/28/2020"  "BUDD2s 07/28/2021"
## [79] "Eld2 08/28/2020"   "Eld1b 07/28/2021"  "Eld3b 07/28/2021" 
## [82] "QM3 07/24/2019"    "QM5 07/24/2019"    "QM4 07/24/2019"   
## [85] "QM7a 08/29/2020"   "QM4c 08/22/2021"
Field_data$Station_unique <-recode(Field_data$Station_unique, 
                                 'QM1 07/24/2019'='QM1s 07/24/2019',
                                 'QM2 07/24/2019'='QM2s 07/24/2019',
                                 'QM3 07/24/2019'='QM3s 07/24/2019',
                                 'QM4 07/24/2019'='QM4s 07/24/2019',
                                 'QM5 07/24/2019'='QM5s 07/24/2019',
                                 'QM6 07/24/2019'='QM6s 07/24/2019',
                                 'BUDD2s 08/27/2020'='BUDD2s_2020 08/27/2020')
#remove date
Field_data$Station_unique<-str_sub(Field_data$Station_unique, end=-12)
unique(Field_data$Station_unique)
##  [1] "QM1"         "SC4"         "SC2"         "SC3"         "SC1"        
##  [6] "QM10"        "Eld4s"       "QM5b"        "QM6b"        "BUDD2s_2020"
## [11] "BUDD1"       "QM2c"        "SC11"        "BUDD3"       "SC5c"       
## [16] "SC6c"        "SC1a"        "SC4a"        "SC16"        "SC10"       
## [21] "SC7"         "BUDD4s"      "QM1b"        "SC2c"        "BUDD4"      
## [26] "QM1c"        "BUDD2a"      "BUDD1s"      "SC14"        "Eld1"       
## [31] "BUDD5"       "Eld4"        "Eld3s"       "SC3a"        "QM9"        
## [36] "SC5d"        "QM2b"        "SC3c"        "QM6c"        "QM5c"       
## [41] "SC17"        "QM3c"        "Eld2s"       "BUDD3s"      "SC5"        
## [46] "QM6"         "QM5"         "QM2"         "SC6"         "QM3"        
## [51] "QM4"         "QM3a"        "QM1a"        "SC2a"        "QM5a"       
## [56] "QM4a"        "SC8"         "SC12"        "SC4c"        "BUDD7"      
## [61] "SC6a"        "QM11"        "QM4b"        "BUDD6"       "Eld2b"      
## [66] "QM12"        "SC5a"        "QM3b"        "QM2s"        "QM6s"       
## [71] "QM1s"        "QM2a"        "QM8a"        "BUDD4a"      "BUDD3a"     
## [76] "BUDD1a"      "Eld1s"       "BUDD2s"      "Eld2"        "Eld1b"      
## [81] "Eld3b"       "QM3s"        "QM5s"        "QM4s"        "QM7a"       
## [86] "QM4c"

Deal with Jelly density

#convert sample year to a factor
Field_data$Sample.Year<- as.factor(Field_data$Sample.Year)
#remove commas from jelly density
Field_data$Jelly.Density <- as.numeric(gsub(",","",Field_data$Jelly.Density..g.m3.))
#add 1 to jelly  density for analyses that prohibit zeroes
Field_data$Jelly.Density <-Field_data$Jelly.Density+1
colnames(Field_data)
##  [1] "BugSampleID"                "Project"                   
##  [3] "Sample.Code"                "Sampling.Group"            
##  [5] "Station"                    "Site"                      
##  [7] "Site.Name"                  "Basin"                     
##  [9] "Sub.Basin"                  "Latitude"                  
## [11] "Longitude"                  "Sample.Date"               
## [13] "Sample.Year"                "Sample.Month"              
## [15] "Sample.Time"                "Tow.Type"                  
## [17] "Mesh.Size"                  "Station.Depth..m."         
## [19] "Flow.meter..revs."          "Broad.Group"               
## [21] "Mid.Level.Group"            "X1st.Word.Taxa"            
## [23] "Genus.species"              "Life.History.Stage"        
## [25] "Total.Ct"                   "Density....m3."            
## [27] "Vol.Filtered..m3."          "Jelly.Mass..g."            
## [29] "Number.of.Jellies"          "Trial.Time"                
## [31] "Trial.Type"                 "Jelly.Size"                
## [33] "Jelly.Density....m3."       "Jelly.Density..g.m3."      
## [35] "Location"                   "Species_lifestage"         
## [37] "Species_lifestage_combined" "Station_unique"            
## [39] "Jelly.Density"

add up multiple lines per station

colnames(Field_data)
##  [1] "BugSampleID"                "Project"                   
##  [3] "Sample.Code"                "Sampling.Group"            
##  [5] "Station"                    "Site"                      
##  [7] "Site.Name"                  "Basin"                     
##  [9] "Sub.Basin"                  "Latitude"                  
## [11] "Longitude"                  "Sample.Date"               
## [13] "Sample.Year"                "Sample.Month"              
## [15] "Sample.Time"                "Tow.Type"                  
## [17] "Mesh.Size"                  "Station.Depth..m."         
## [19] "Flow.meter..revs."          "Broad.Group"               
## [21] "Mid.Level.Group"            "X1st.Word.Taxa"            
## [23] "Genus.species"              "Life.History.Stage"        
## [25] "Total.Ct"                   "Density....m3."            
## [27] "Vol.Filtered..m3."          "Jelly.Mass..g."            
## [29] "Number.of.Jellies"          "Trial.Time"                
## [31] "Trial.Type"                 "Jelly.Size"                
## [33] "Jelly.Density....m3."       "Jelly.Density..g.m3."      
## [35] "Location"                   "Species_lifestage"         
## [37] "Species_lifestage_combined" "Station_unique"            
## [39] "Jelly.Density"
Field_data <- Field_data %>%
  group_by(Station_unique,Site,Sample.Year,Location,Sample.Month,Species_lifestage_combined) %>%
  summarise(
    copepod_density = sum(Density....m3.),
    jelly_biomass = mean(Jelly.Density))

Add CTD data

some of this code is similar to 13_filed_CTD-table

import CTD downcasts into one file

#set working directory to folder with CTD files
setwd("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/data/current_data/CTD/CTD_Downcasts-edited")

CTDCombined <-
    list.files(pattern = "*.csv") %>% 
    map_df(~read_csv(.))

salinity

loop through stations: interpolate to equal intervals and take mean

results_list <- list()
unique_factors <-unique(CTDCombined$Station)
for (factor_value in unique_factors) {
  subset_data <- CTDCombined[CTDCombined$Station == factor_value, ]
   table <- as.data.frame(approx(x = subset_data$Depth, y = subset_data$salinity, method = "linear", n = 100))
    summarize <- table %>%
    summarise(
      FactorValue = factor_value,
      Smean = mean(y), 
      Smin = min(y),
      Smax = max(y),
      Ssd = sd(y)
    )
    results_list[[factor_value]] <- summarize
}

salinity <- bind_rows(results_list)

Temperature

results_list <- list()
unique_factors <-unique(CTDCombined$Station)
for (factor_value in unique_factors) {
  subset_data <- CTDCombined[CTDCombined$Station == factor_value, ]
   table <- as.data.frame(approx(x = subset_data$Depth, y = subset_data$Temp, method = "linear", n = 100))
    summarize <- table %>%
    summarise(
      FactorValue = factor_value,
      Tmean = mean(y), 
      Tmin = min(y),
      Tmax = max(y),
      Tsd = sd(y)
    )
    results_list[[factor_value]] <- summarize
}

Temp <- bind_rows(results_list)

Oxygen

results_list <- list()
unique_factors <-unique(CTDCombined$Station)
for (factor_value in unique_factors) {
  subset_data <- CTDCombined[CTDCombined$Station == factor_value, ]
   table <- as.data.frame(approx(x = subset_data$Depth, y = subset_data$Oxygen, method = "linear", n = 100))
    summarize <- table %>%
    summarise(
      FactorValue = factor_value,
      Omean = mean(y), 
      Omin = min(y),
      Omax = max(y),
      Osd = sd(y)
    )
    results_list[[factor_value]] <- summarize
}

Oxygen <- bind_rows(results_list)

pH

results_list <- list()
unique_factors <-unique(CTDCombined$Station)
for (factor_value in unique_factors) {
  subset_data <- CTDCombined[CTDCombined$Station == factor_value, ]
   table <- as.data.frame(approx(x = subset_data$Depth, y = subset_data$pH, method = "linear", n = 100))
    summarize <- table %>%
    summarise(
      FactorValue = factor_value,
      pHmean = mean(y), 
      pHmin = min(y),
      pHmax = max(y),
      pHsd = sd(y)
    )
    results_list[[factor_value]] <- summarize
}

pH <- bind_rows(results_list)

fluorescence

results_list <- list()
unique_factors <-unique(CTDCombined$Station)
for (factor_value in unique_factors) {
  subset_data <- CTDCombined[CTDCombined$Station == factor_value, ]
   table <- as.data.frame(approx(x = subset_data$Depth, y = subset_data$fluorescence, method = "linear", n = 100))
    summarize <- table %>%
    summarise(
      FactorValue = factor_value,
      Fmean = mean(y), 
      Fmin = min(y),
      Fmax = max(y),
      Fsd = sd(y)
    )
    results_list[[factor_value]] <- summarize
}

fluorescence <- bind_rows(results_list)

combine dataframes

Env<-merge(salinity, Oxygen,by=c("FactorValue"))
Env1<-merge(Env,Temp,by=c("FactorValue"),all.x = TRUE)
Env2<-merge(Env1,pH,by=c("FactorValue"))
Env3<-merge(Env2, fluorescence,by=c("FactorValue"))
#rename station column
Env3 <- Env3 %>% 
       rename("Station" = "FactorValue")

recode to match database names

Env3$Station <-recode(Env3$Station, '2020_BUDD2s'='BUDD2s_2020', 'Budd1a'='BUDD1a', 'Budd2s'='BUDD2s','Budd3a'='BUDD3a','Budd4a'='BUDD4a')

remove stations that didn’t get full water column profile due to low battery or some other reason

Env3<-subset(Env3, ! Station %in% c("BUDD1a","BUDD2s","BUDD3a","BUDD4a","Eld1b","Eld2b","Eld3b","QM1b","QM2b","QM3b","QM4b","QM5b","QM6b"))

Add Nutrient Data

prepare data

Import data

Nutrients1 <- read.csv("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/data/current_data/Nutrients/jk2101.csv")
Nutrients2 <- read.csv("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/data/current_data/Nutrients/jk2102.csv")

reformat dataframes

#remove header rows
Nutrients1<-Nutrients1[-(1:19),]
Nutrients2<-Nutrients2[-(1:19),]

#convert first row into column names
Nutrients1<-Nutrients1 %>%
  row_to_names(row_number = 1)
Nutrients2<-Nutrients2 %>%
  row_to_names(row_number = 1)

#remove unnecessary rows and columns
Nutrients1<-Nutrients1[-(1:4),]
Nutrients2<-Nutrients2[-(1:4),]

Nutrients1<-Nutrients1[-(85:88),]
Nutrients2<-Nutrients2[-(57:73),]

Nutrients1 <- Nutrients1[ -c(1,3:5) ]
Nutrients2 <- Nutrients2[ -c(1,3:5) ]

#remove rows with empty cells
Nutrients1<-Nutrients1[!apply(Nutrients1 == "", 1, all), ] 
Nutrients2<-Nutrients2[!apply(Nutrients2 == "", 1, all), ]

#combine two dataframes
Nutrients<-rbind(Nutrients1, Nutrients2)

add station info

Nutrient_stations <- read.csv("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/data/current_data/Nutrients/Nutrients_station-match.csv")

Nutrients<-merge(Nutrient_stations, Nutrients, by.x = "Bottle..",by.y = "Bottle#")

summarize by station

#add depth category
Nutrients$Depth_category<-factor(ifelse(Nutrients$Depth<5,"shallow","deep"))

#subset to shallow depths
Nutrients_shallow<- subset(Nutrients, Depth_category =="shallow")

#remove replicates
Nutrients_shallow<- subset(Nutrients_shallow, Notes !="replicate 2")

recode station names

# combine station and date for unique stations
Nutrients_shallow$Station_Date <- paste(Nutrients_shallow$Station, Nutrients_shallow$Date)
unique(Nutrients_shallow$Station_Date)
##  [1] "Budd 2 8/27/20"     "Budd 3 8/27/20"     "Budd 3S 8/27/20"   
##  [4] "Eld 4S 8/28/20"     "Budd 4S 8/27/20"    "Budd 1S 8/27/20"   
##  [7] "Eld 2S 8/28/20"     "Eld 1S 8/28/20"     "Budd 2S 8/27/20"   
## [10] "Eld 3S 8/28/20"     "SC 5 8/25/21"       "SC 8 8/25/21"      
## [13] "SC 3 8/24/21"       "SC 7 8/25/21"       "SC 6 8/25/21"      
## [16] "SC 12 8/26/21"      "SC 17 8/27/21"      "SC 2 8/24/21"      
## [19] "SC 10 8/26/21"      "SC 1S 7/27/21"      "SC 3S 7/27/21"     
## [22] "SC 6S 7/27/21"      "Eld 1S 7/28/21"     "Eld 2S 7/28/21"    
## [25] "Qmaster 1S 7/29/21" "Qmaster 3S 7/29/21" "Qmaster 5S 7/29/21"
## [28] "Qmaster 1 8/22/21"  "Qmaster 2 8/22/21"  "Qmaster 3 8/22/21" 
## [31] "Qmaster 4 8/23/21"  "Qmaster 5 8/23/21"  "Qmaster 6 8/23/21" 
## [34] "Qmaster 9 8/23/21"  "Qmaster 10 8/23/21" "Qmaster 11 8/24/21"
## [37] "Qmaster 12 8/24/21" "SC 4 8/25/21"       "Budd 4 8/27/20"    
## [40] "Budd 5 8/27/20"     "Budd 7 8/27/20"     "Eld 1 8/28/20"     
## [43] "Eld 2 8/28/20"      "Eld 3 8/28/20"      "Eld 4 8/28/20"     
## [46] "Eld 5 8/28/20"      "Qmaster 1 8/28/20"  "Qmaster 2 8/28/20" 
## [49] "Qmaster 3 8/29/20"  "Qmaster 4 8/29/20"  "Qmaster 5 8/29/20" 
## [52] "Qmaster 7 8/29/20"  "Qmaster 8 8/29/20"
Nutrients_shallow$Station_Date <-recode(Nutrients_shallow$Station_Date, 
                                        'Budd 2 8/27/20'='BUDD2a', 
                                        'Budd 3 8/27/20'='BUDD3',
                                        'Budd 3S 8/27/20'='BUDD3s',
                                        'Eld 4S 8/28/20'='Eld4s',
                                        'Budd 4S 8/27/20'='BUDD4s',
                                        'Budd 1S 8/27/20'='BUDD1s',
                                        'Eld 2S 8/28/20'='Eld2s',
                                        'Eld 1S 8/28/20'='Eld1s',
                                        'Budd 2S 8/27/20'='BUDD2s_2020',
                                        'Eld 3S 8/28/20'='Eld3s',
                                        'SC 5 8/25/21'='SC5c',
                                        'SC 8 8/25/21'='SC8',
                                        'SC 3 8/24/21'='SC3c',
                                        'SC 7 8/25/21'='SC7',
                                        'SC 6 8/25/21'='SC6c',
                                        'SC 12 8/26/21'='SC12',
                                        'SC 17 8/27/21'='SC17',
                                        'SC 2 8/24/21'='SC2c',
                                        'SC 10 8/26/21'='SC10',
                                        'SC 1S 7/27/21'='SC1a',
                                        'SC 3S 7/27/21'='SC3a',
                                        'SC 6S 7/27/21'='SC6a',
                                        'Eld 1S 7/28/21'='Eld1b',
                                        'Eld 2S 7/28/21'='Eld2b',
                                        'Qmaster 1S 7/29/21'='QM1b',
                                        'Qmaster 3S 7/29/21'='QM3b',
                                        'Qmaster 5S 7/29/21'='QM5b',
                                        'Qmaster 1 8/22/21'='QM1c',
                                        'Qmaster 2 8/22/21'='QM2c',
                                        'Qmaster 3 8/22/21'='QM3c',
                                        'Qmaster 4 8/23/21'='QM4c',
                                        'Qmaster 5 8/23/21'='QM5c',
                                        'Qmaster 6 8/23/21'='QM6c',
                                        'Qmaster 9 8/23/21'='QM9',
                                        'Qmaster 10 8/23/21'='QM10',
                                        'Qmaster 11 8/24/21'='QM11',
                                        'Qmaster 12 8/24/21'='QM12',
                                        'SC 4 8/25/21'='SC4c',
                                        'Budd 4 8/27/20'='BUDD4',
                                        'Budd 5 8/27/20'='BUDD5',
                                        'Budd 7 8/27/20'='BUDD7',
                                        'Eld 1 8/28/20'='Eld1',
                                        'Eld 2 8/28/20'='Eld2',
                                        'Eld 3 8/28/20'='Eld3',
                                        'Eld 4 8/28/20'='Eld4',
                                        'Eld 5 8/28/20'='Eld5',
                                        'Qmaster 1 8/28/20'='QM1a',
                                        'Qmaster 2 8/28/20'='QM2a',
                                        'Qmaster 3 8/29/20'='QM3a',
                                        'Qmaster 4 8/29/20'='QM4a',
                                        'Qmaster 5 8/29/20'='QM5a',
                                        'Qmaster 7 8/29/20'='QM7a',
                                        'Qmaster 8 8/29/20'='QM8a')

cut down columns and rename

Nutrients_shallow <- Nutrients_shallow[ -c(1:6,12) ]
colnames(Nutrients_shallow)
## [1] "[ PO4 ]"      "[ Si(OH)4 ]"  "[ NO3 ]"      "[ NO2 ]"      "[ NH4 ]"     
## [6] "Station_Date"
Nutrients_shallow <- Nutrients_shallow %>% 
                    rename("PO4" = "[ PO4 ]",
                           "SiOH4" = "[ Si(OH)4 ]",
                           "NO3" = "[ NO3 ]",
                           "NO2" = "[ NO2 ]",
                           "NH4" = "[ NH4 ]",
                           "Station" = "Station_Date")

merge with CTD

CTD_Nutrients <- merge(Env3,Nutrients_shallow,by.x = "Station")

#keep only stations with CTD and Nutrient values
CTD_Nutrients_full <- na.omit(CTD_Nutrients)

merge with database

CTD_Nutrients_full$Station_unique<-CTD_Nutrients_full$Station
Field_data_merged <- merge(Field_data,CTD_Nutrients_full,by.x = "Station_unique",by.y="Station_unique", all.x = TRUE)

Prepare for NMDS

exclude some taxa

Field_data_merged<-subset(Field_data_merged, Species_lifestage_combined!="Diatom-Centric_Unknown")
Field_data_merged<-subset(Field_data_merged, Species_lifestage_combined!="COPEPODA_Egg")
Field_data_merged<-subset(Field_data_merged, Species_lifestage_combined!="NOCTILUCA_Unknown")
Field_data_merged<-subset(Field_data_merged, Species_lifestage_combined!="MOLLUSCA_Trochophore larva")

subset to QM and SC

Field_data_merged_SCQM<-subset(Field_data_merged, Site!="BUDD")
Field_data_merged_SCQM<-subset(Field_data_merged_SCQM, Site!="ELD")

change from long to wide format

colnames(Field_data_merged)
##  [1] "Station_unique"             "Site"                      
##  [3] "Sample.Year"                "Location"                  
##  [5] "Sample.Month"               "Species_lifestage_combined"
##  [7] "copepod_density"            "jelly_biomass"             
##  [9] "Station"                    "Smean"                     
## [11] "Smin"                       "Smax"                      
## [13] "Ssd"                        "Omean"                     
## [15] "Omin"                       "Omax"                      
## [17] "Osd"                        "Tmean"                     
## [19] "Tmin"                       "Tmax"                      
## [21] "Tsd"                        "pHmean"                    
## [23] "pHmin"                      "pHmax"                     
## [25] "pHsd"                       "Fmean"                     
## [27] "Fmin"                       "Fmax"                      
## [29] "Fsd"                        "PO4"                       
## [31] "SiOH4"                      "NO3"                       
## [33] "NO2"                        "NH4"
Field_data_wide<-dcast(Field_data_merged_SCQM, Station_unique+Site+Sample.Year+Location+Sample.Month+jelly_biomass+Smean+Omean+Tmean+pHmean+Fmean+PO4+SiOH4+NO3+NO2+NH4~ Species_lifestage_combined,value.var = "copepod_density")

remove non-data columns, convert to proportionas, and arcsine sqrt transformation

Field_data_wide$Location=as.factor(Field_data_wide$Location)
RE2<- Field_data_wide[,17:ncol(Field_data_wide)]
#replace N/A with 0
RE2[is.na(RE2)] <- 0
#convert to proportions
RE2<-RE2/rowSums(RE2)
#arcsine sqrt transformation
RE2<-asin(sqrt(RE2))
RE3<-as.matrix(RE2)

PERMANOVA

dist<-vegdist(RE2, method='bray')
dist
##            1         2         3         4         5         6         7
## 2  0.4121771                                                            
## 3  0.3856948 0.2168520                                                  
## 4  0.4298004 0.2467691 0.2049678                                        
## 5  0.2187767 0.4566839 0.3942068 0.4563936                              
## 6  0.2205526 0.4556252 0.3865937 0.4159069 0.1807713                    
## 7  0.4549382 0.1096249 0.2826591 0.3003055 0.4658224 0.4740125          
## 8  0.4673451 0.4432572 0.3626843 0.4144222 0.4020346 0.4084880 0.4805196
## 9  0.3639461 0.4026242 0.4087459 0.3249416 0.4679352 0.4502002 0.4203894
## 10 0.3754760 0.3228043 0.2913597 0.2682543 0.3469639 0.3973983 0.4046717
## 11 0.2980098 0.3669296 0.2955462 0.3355356 0.3133844 0.2877000 0.3959244
## 12 0.4742213 0.1503188 0.3011890 0.2607581 0.4932537 0.4987061 0.1295895
## 13 0.4882579 0.4747556 0.4705434 0.5012200 0.4020082 0.4155691 0.5074440
## 14 0.3061909 0.3889675 0.3549741 0.2844879 0.3987243 0.4465746 0.4340789
## 15 0.3894772 0.4140292 0.4257939 0.3838292 0.3518621 0.4182259 0.4657438
## 16 0.3240094 0.3257621 0.2683896 0.2878878 0.3099190 0.2988863 0.3640716
## 17 0.4267383 0.1123914 0.2671703 0.2426941 0.4676363 0.5016564 0.1445345
## 18 0.4687510 0.3967565 0.3309412 0.3386780 0.3775446 0.4626176 0.4657573
## 19 0.2957687 0.3703378 0.3047456 0.2830608 0.3448523 0.3658342 0.4301565
## 20 0.2817946 0.4364525 0.3733272 0.4374732 0.1628574 0.2771295 0.4511025
## 21 0.4159284 0.3794996 0.2823847 0.3203224 0.3950381 0.3653051 0.4129419
## 22 0.4687923 0.1458994 0.2916680 0.2738124 0.4751582 0.5011158 0.1453663
## 23 0.4874992 0.4527448 0.3953100 0.3626969 0.5033493 0.4848156 0.4974557
## 24 0.4598789 0.5210487 0.4239644 0.4328815 0.5124102 0.5337979 0.5744356
## 25 0.3910472 0.3763866 0.3778321 0.3650866 0.2924843 0.3926008 0.4473554
## 26 0.4357108 0.4067627 0.3538407 0.3668248 0.4839844 0.4437526 0.4474491
## 27 0.4899599 0.1971391 0.3730379 0.3633606 0.5450145 0.5664347 0.1326243
## 28 0.4631143 0.4713250 0.3658972 0.4038865 0.5011397 0.5315600 0.5231862
## 29 0.5102486 0.5570740 0.4749417 0.4843915 0.5884704 0.5827703 0.6208421
## 30 0.4603118 0.4005002 0.3802051 0.3691165 0.4803064 0.4819476 0.4129914
## 31 0.3415280 0.1885272 0.2020698 0.2649100 0.3031020 0.3309574 0.1903812
## 32 0.4104546 0.4634875 0.3550731 0.4031024 0.4971453 0.5303123 0.5124152
## 33 0.3500422 0.3519970 0.3324456 0.3171759 0.3370682 0.4202713 0.4056205
## 34 0.3252517 0.3512252 0.2194310 0.2883474 0.3721585 0.4048044 0.4273719
## 35 0.4189421 0.1435976 0.2086655 0.2145098 0.4286537 0.4559567 0.2015954
## 36 0.2468624 0.4977639 0.3908397 0.4945184 0.2626221 0.2759178 0.5285639
## 37 0.5252432 0.5067929 0.4887774 0.5209738 0.3966408 0.4169177 0.4961713
## 38 0.4700560 0.4596575 0.4440188 0.4690480 0.3627745 0.3809899 0.4456328
## 39 0.3753000 0.3569029 0.3033715 0.3263495 0.3830062 0.3642616 0.4069570
## 40 0.4074651 0.4696153 0.4459508 0.4589291 0.3308287 0.3528503 0.4928304
## 41 0.5103728 0.5369061 0.4935575 0.5324951 0.3781408 0.3952570 0.5293036
## 42 0.4124957 0.3381917 0.2523225 0.2430577 0.4326100 0.3938728 0.3809282
## 43 0.2599082 0.4309934 0.3932717 0.4515459 0.2820412 0.2913101 0.4036968
## 44 0.3946146 0.4634418 0.3012893 0.3557829 0.4140422 0.4413845 0.4997761
## 45 0.3022289 0.5136949 0.4868841 0.5223826 0.3272651 0.3069793 0.4914278
## 46 0.5306937 0.5365621 0.4761509 0.5228601 0.4445109 0.4541383 0.5316033
## 47 0.2720098 0.4261592 0.3403407 0.4149947 0.2652989 0.3261669 0.4433898
## 48 0.3319006 0.5428570 0.4764430 0.5506717 0.3153495 0.2768364 0.5299569
## 49 0.4482538 0.4620373 0.4265148 0.4560513 0.3401804 0.3492898 0.4547352
## 50 0.2334057 0.4646617 0.4038263 0.4260195 0.3346485 0.2454790 0.4736174
## 51 0.2985143 0.3824041 0.3674876 0.3363311 0.3833876 0.3523721 0.4322829
## 52 0.3766805 0.3367542 0.2947917 0.2908039 0.3885753 0.3462450 0.3737634
## 53 0.4928700 0.4994530 0.4474919 0.3926473 0.5834673 0.4979923 0.5271822
## 54 0.3259602 0.3724520 0.2979601 0.3074077 0.3637188 0.3126702 0.4341595
## 55 0.4093618 0.4620454 0.3949033 0.4412890 0.2906194 0.3012124 0.4589829
## 56 0.5421444 0.5553660 0.5362614 0.5580341 0.4201625 0.4356613 0.5520255
## 57 0.3640842 0.4787211 0.3190389 0.3828300 0.3930977 0.4389803 0.5125951
## 58 0.3532465 0.3784162 0.2968771 0.2998813 0.4083897 0.3611153 0.4298771
## 59 0.4149468 0.3893803 0.3465738 0.4034574 0.3687319 0.3605940 0.3883107
## 60 0.4170926 0.4621665 0.4276544 0.4536161 0.3481270 0.3229179 0.4879462
## 61 0.4040214 0.3242319 0.2332033 0.2870895 0.4130752 0.3838384 0.3769820
##            8         9        10        11        12        13        14
## 2                                                                       
## 3                                                                       
## 4                                                                       
## 5                                                                       
## 6                                                                       
## 7                                                                       
## 8                                                                       
## 9  0.4762633                                                            
## 10 0.3172824 0.3298462                                                  
## 11 0.3531955 0.3403755 0.3125320                                        
## 12 0.4682131 0.3742645 0.3900192 0.4025109                              
## 13 0.2044664 0.5475144 0.4182804 0.4128900 0.5282040                    
## 14 0.4650396 0.1896290 0.2544780 0.3295725 0.4001777 0.5558555          
## 15 0.4244546 0.3628176 0.2486602 0.3646005 0.4313740 0.4587782 0.3628812
## 16 0.3628294 0.3698821 0.2725784 0.1542790 0.4187931 0.4217848 0.3107670
## 17 0.5019025 0.4010795 0.3485159 0.4221759 0.1362535 0.5501768 0.3648761
## 18 0.3416609 0.4217514 0.2463186 0.3638779 0.4345432 0.4518637 0.3643536
## 19 0.4274284 0.2553854 0.2468396 0.2969244 0.4209768 0.5044678 0.1726979
## 20 0.3412382 0.4630060 0.3186822 0.3445555 0.4895981 0.3818153 0.4167889
## 21 0.3745923 0.4435447 0.3309077 0.2480922 0.4630653 0.4190130 0.4167485
## 22 0.4818320 0.4122776 0.3997555 0.4208788 0.1342819 0.5584406 0.3976275
## 23 0.4613748 0.3366658 0.3164629 0.3736976 0.4482879 0.5239085 0.3145546
## 24 0.4999864 0.4978310 0.4538896 0.4811727 0.5842305 0.5425402 0.4060735
## 25 0.3441109 0.4000738 0.2017360 0.3729031 0.4237355 0.3465247 0.3475073
## 26 0.5096210 0.3835061 0.3718132 0.3330569 0.4267111 0.5415970 0.3506906
## 27 0.5410270 0.4289764 0.4747119 0.4561849 0.1485079 0.5610216 0.4673372
## 28 0.4598725 0.4917588 0.3946488 0.4197123 0.5262540 0.5620400 0.3897737
## 29 0.4862693 0.5560620 0.4806659 0.5263700 0.6133682 0.5464556 0.4433856
## 30 0.5227542 0.3469277 0.3748232 0.3992893 0.3885578 0.5428560 0.3727884
## 31 0.4162223 0.3561800 0.3689815 0.2892412 0.2517938 0.4605292 0.3604511
## 32 0.4390883 0.4789494 0.3956693 0.4265821 0.5168953 0.5492522 0.4090666
## 33 0.3518026 0.3204372 0.1660762 0.3212649 0.3738324 0.4521783 0.2352814
## 34 0.3554877 0.3427884 0.2506796 0.3229838 0.3863613 0.4632171 0.2450980
## 35 0.4256323 0.4024609 0.3215891 0.3281430 0.2043026 0.4891541 0.3464038
## 36 0.4912357 0.4418098 0.4415588 0.3704474 0.5311137 0.5176146 0.3879038
## 37 0.3786481 0.5444680 0.4729436 0.4283737 0.5174216 0.4189946 0.6047672
## 38 0.3490286 0.5111869 0.4231181 0.3911984 0.4772831 0.4148721 0.5476539
## 39 0.3612951 0.3772938 0.2814449 0.2666337 0.4314419 0.4656392 0.3577478
## 40 0.3437341 0.5341084 0.3716970 0.3951166 0.5118092 0.4098454 0.5278302
## 41 0.3474696 0.5633570 0.4608800 0.4555507 0.5413629 0.4284404 0.5808271
## 42 0.3507781 0.3221789 0.2621654 0.2715023 0.3734730 0.4518076 0.3051353
## 43 0.3835466 0.3439827 0.3690951 0.2867427 0.4439244 0.4319634 0.3657245
## 44 0.4329131 0.4286559 0.3851159 0.4018104 0.4864139 0.5329390 0.3622496
## 45 0.5202489 0.4134693 0.4737281 0.3906102 0.5316312 0.5309156 0.4272229
## 46 0.3949634 0.5679530 0.4703261 0.4633806 0.5301113 0.4730516 0.5830582
## 47 0.4167766 0.3471574 0.3352917 0.3270403 0.4552047 0.4971239 0.3040683
## 48 0.4560638 0.4253249 0.4678812 0.3980797 0.5733088 0.5190306 0.4673002
## 49 0.3562528 0.5045428 0.4069531 0.3956577 0.5033859 0.4334618 0.5139922
## 50 0.4444128 0.3289077 0.3982164 0.2747928 0.4734141 0.4784273 0.2957426
## 51 0.4572747 0.3439403 0.3346946 0.2252500 0.4320540 0.5141832 0.2748551
## 52 0.3489703 0.3414633 0.2762379 0.2587258 0.3898161 0.4465318 0.3055540
## 53 0.4683338 0.4532501 0.4860317 0.4473860 0.5371318 0.5517844 0.4374974
## 54 0.3790694 0.3289859 0.2530019 0.2234142 0.4477154 0.4465792 0.2679643
## 55 0.3689641 0.4637179 0.3988860 0.3561877 0.4770492 0.4140984 0.4725421
## 56 0.4188276 0.6262246 0.4945245 0.4759122 0.5653161 0.4469727 0.6478270
## 57 0.3949690 0.3899982 0.3606529 0.3360178 0.5152104 0.5009268 0.3076369
## 58 0.3751984 0.3080118 0.2695091 0.2519521 0.4290844 0.4561694 0.2657877
## 59 0.3283570 0.4080096 0.3626078 0.2842098 0.4163604 0.4165703 0.4449583
## 60 0.3856286 0.4965429 0.3894091 0.3701618 0.5195757 0.4115817 0.5206616
## 61 0.3240990 0.3743058 0.3061295 0.2488801 0.3786806 0.4325071 0.3620369
##           15        16        17        18        19        20        21
## 2                                                                       
## 3                                                                       
## 4                                                                       
## 5                                                                       
## 6                                                                       
## 7                                                                       
## 8                                                                       
## 9                                                                       
## 10                                                                      
## 11                                                                      
## 12                                                                      
## 13                                                                      
## 14                                                                      
## 15                                                                      
## 16 0.3331226                                                            
## 17 0.4396364 0.3874899                                                  
## 18 0.3726610 0.3734331 0.4097662                                        
## 19 0.3163280 0.2548186 0.3833155 0.3423403                              
## 20 0.2771546 0.3030370 0.4504638 0.3710666 0.3515085                    
## 21 0.4383993 0.1685375 0.4475477 0.4137627 0.3557884 0.3664020          
## 22 0.4487263 0.4116850 0.1107078 0.4058863 0.4092571 0.4723230 0.4775437
## 23 0.3967190 0.3756606 0.4742327 0.3694880 0.3467303 0.4810694 0.4338520
## 24 0.5567978 0.4631947 0.5233206 0.5104533 0.3802499 0.5319663 0.4539833
## 25 0.2164115 0.3260768 0.4123200 0.3087150 0.3234110 0.2138460 0.3917803
## 26 0.4748642 0.2659604 0.4416526 0.4340696 0.3360983 0.4862326 0.3139020
## 27 0.4796369 0.4851647 0.2128629 0.5235769 0.4783170 0.5282168 0.5323390
## 28 0.5280983 0.3945743 0.4887101 0.3543723 0.3748206 0.4821117 0.3943621
## 29 0.5790974 0.5125993 0.5570425 0.5723983 0.4664549 0.5768524 0.5047400
## 30 0.4259267 0.3727752 0.4016081 0.4743637 0.3851840 0.4438008 0.3616215
## 31 0.3587204 0.2571731 0.2132204 0.4155898 0.3154786 0.2989483 0.3493503
## 32 0.5278800 0.4066525 0.4807257 0.3809276 0.3963642 0.4675343 0.4023382
## 33 0.2596425 0.2925104 0.3571690 0.2405887 0.2694535 0.2980315 0.3645541
## 34 0.3826463 0.2965713 0.3542527 0.2785194 0.2305558 0.3321536 0.3408311
## 35 0.3710594 0.2902764 0.1715031 0.3821390 0.2892228 0.4168881 0.3608564
## 36 0.4448141 0.3575579 0.5075735 0.4306137 0.3743787 0.3341511 0.4231302
## 37 0.4119629 0.4247645 0.5534887 0.5059659 0.5289342 0.3534687 0.4183878
## 38 0.3683383 0.3730109 0.5004068 0.4624773 0.4741146 0.3129969 0.3769867
## 39 0.3553814 0.2103297 0.4004524 0.3424903 0.2582372 0.3405793 0.2513333
## 40 0.2807707 0.3782006 0.5203038 0.4364492 0.4433173 0.2721799 0.4185136
## 41 0.3787909 0.4344709 0.5798843 0.4716205 0.5377075 0.3160299 0.4554124
## 42 0.4081675 0.2182198 0.3738299 0.3260509 0.2576092 0.3977633 0.2097892
## 43 0.3967032 0.2604599 0.4352867 0.4152718 0.3400417 0.3349351 0.3187649
## 44 0.4948104 0.3872582 0.4808290 0.4321139 0.3472984 0.4394845 0.3958125
## 45 0.4374091 0.3459267 0.5364528 0.5499913 0.3807866 0.4016954 0.4153737
## 46 0.4258560 0.4321849 0.5836305 0.5066850 0.5428728 0.3560115 0.4532978
## 47 0.3467915 0.2806783 0.4400803 0.3618890 0.2703679 0.2722802 0.3785530
## 48 0.4512460 0.3595213 0.5708555 0.4641446 0.4116632 0.3776262 0.4260938
## 49 0.3810821 0.3459148 0.4873520 0.4462230 0.4502054 0.2878668 0.3715733
## 50 0.4278585 0.2848899 0.4871858 0.4713511 0.2725540 0.3727954 0.4068899
## 51 0.4138255 0.1812435 0.4239688 0.4126351 0.2792576 0.4192088 0.2807595
## 52 0.3601039 0.1898488 0.3682927 0.3251629 0.2510139 0.3444507 0.2371641
## 53 0.5514856 0.3938519 0.5480696 0.5434966 0.4135634 0.5441570 0.3845540
## 54 0.3661334 0.1450643 0.4134291 0.3614922 0.2364656 0.3444017 0.2415520
## 55 0.4021889 0.3241542 0.4886803 0.4129942 0.4240948 0.2866811 0.3486419
## 56 0.3766656 0.4493292 0.5997175 0.5286308 0.5813830 0.3656551 0.4745516
## 57 0.4588207 0.3367860 0.4981676 0.3730942 0.2745198 0.3669233 0.3630100
## 58 0.3747610 0.1863260 0.4106387 0.3407356 0.2351261 0.3734323 0.2420053
## 59 0.3160113 0.2510352 0.4275528 0.4010455 0.3898981 0.2741360 0.2895066
## 60 0.4135637 0.3516649 0.5174121 0.4427237 0.4378918 0.3543163 0.3670671
## 61 0.4101332 0.2049513 0.3746169 0.3587350 0.3142247 0.3727017 0.2508649
##           22        23        24        25        26        27        28
## 2                                                                       
## 3                                                                       
## 4                                                                       
## 5                                                                       
## 6                                                                       
## 7                                                                       
## 8                                                                       
## 9                                                                       
## 10                                                                      
## 11                                                                      
## 12                                                                      
## 13                                                                      
## 14                                                                      
## 15                                                                      
## 16                                                                      
## 17                                                                      
## 18                                                                      
## 19                                                                      
## 20                                                                      
## 21                                                                      
## 22                                                                      
## 23 0.4636357                                                            
## 24 0.5792417 0.5801240                                                  
## 25 0.4436372 0.4079246 0.5333384                                        
## 26 0.4960984 0.4339920 0.4787075 0.4361596                              
## 27 0.2017060 0.5360392 0.6292590 0.4826774 0.5285455                    
## 28 0.5113143 0.4792790 0.3451645 0.4912437 0.4520395 0.6079326          
## 29 0.5972031 0.6143136 0.2281461 0.5379017 0.5635163 0.6501745 0.4045137
## 30 0.4405837 0.4074938 0.5212815 0.3938419 0.1981456 0.4611343 0.5374153
## 31 0.2178876 0.4560258 0.5313595 0.3588716 0.4127246 0.2876149 0.5062696
## 32 0.4983126 0.4833090 0.3672559 0.4584540 0.4377532 0.5702542 0.1310328
## 33 0.3720972 0.2993776 0.4758136 0.1952921 0.3604698 0.4628730 0.3661480
## 34 0.4122916 0.3499167 0.3896628 0.2946356 0.3365275 0.4622837 0.3322853
## 35 0.1902881 0.4005472 0.4799794 0.3601007 0.4317421 0.2636811 0.4335340
## 36 0.5317043 0.4729141 0.5251514 0.4088299 0.4609900 0.5920090 0.4880205
## 37 0.5344289 0.5956342 0.6181306 0.3993428 0.5967908 0.5375442 0.6498748
## 38 0.4810579 0.5546863 0.5883787 0.3767983 0.5536397 0.5167367 0.5964986
## 39 0.4328277 0.3994957 0.4899857 0.3399095 0.3538334 0.4742939 0.4202567
## 40 0.4900173 0.5667936 0.5873202 0.3282332 0.5738425 0.5449248 0.5655582
## 41 0.5362295 0.5818014 0.6148584 0.3710378 0.6159021 0.5702486 0.6296229
## 42 0.4192066 0.3663713 0.4494323 0.3216285 0.2642671 0.4467859 0.3981688
## 43 0.4589454 0.4821443 0.5006337 0.3914878 0.4066092 0.4770806 0.5039644
## 44 0.4989186 0.4448784 0.2207498 0.4791941 0.4406679 0.5489952 0.3490945
## 45 0.5634732 0.5238410 0.5401407 0.4994940 0.4643227 0.5381599 0.5521338
## 46 0.5422884 0.5976306 0.6625974 0.4153365 0.5700641 0.5414000 0.6287556
## 47 0.4683245 0.4402880 0.4950634 0.3281297 0.3685913 0.4957067 0.4057471
## 48 0.5848549 0.5365123 0.5577194 0.4572346 0.5114148 0.5773541 0.5537823
## 49 0.4746899 0.5373780 0.5520493 0.3732807 0.5257817 0.5433939 0.5651051
## 50 0.5012505 0.3945572 0.4918581 0.4012205 0.3694390 0.5153514 0.4538734
## 51 0.4698557 0.3731271 0.5077613 0.4129541 0.2560914 0.4886396 0.4353379
## 52 0.3964311 0.3631870 0.4923671 0.3186054 0.2882065 0.4408559 0.4464009
## 53 0.5551294 0.4943846 0.3380132 0.5414199 0.4947598 0.5746103 0.4080987
## 54 0.4528283 0.3691282 0.4562663 0.2967909 0.2666491 0.4908530 0.4098353
## 55 0.4784308 0.4951622 0.5451107 0.3603726 0.4895505 0.5438982 0.5344442
## 56 0.5912116 0.6052058 0.6764647 0.4134675 0.6434520 0.5692508 0.6638795
## 57 0.5105233 0.4165197 0.3181720 0.4013701 0.4391813 0.5572236 0.2914835
## 58 0.4567032 0.3485804 0.4502069 0.3010262 0.2913302 0.4816739 0.4071055
## 59 0.4367162 0.4660557 0.5482004 0.3324761 0.4186677 0.4687986 0.4951601
## 60 0.5077807 0.5014853 0.5391195 0.3696419 0.5246236 0.5792473 0.5928168
## 61 0.3916933 0.3651623 0.4795403 0.3408221 0.3266313 0.4483678 0.4299958
##           29        30        31        32        33        34        35
## 2                                                                       
## 3                                                                       
## 4                                                                       
## 5                                                                       
## 6                                                                       
## 7                                                                       
## 8                                                                       
## 9                                                                       
## 10                                                                      
## 11                                                                      
## 12                                                                      
## 13                                                                      
## 14                                                                      
## 15                                                                      
## 16                                                                      
## 17                                                                      
## 18                                                                      
## 19                                                                      
## 20                                                                      
## 21                                                                      
## 22                                                                      
## 23                                                                      
## 24                                                                      
## 25                                                                      
## 26                                                                      
## 27                                                                      
## 28                                                                      
## 29                                                                      
## 30 0.6242478                                                            
## 31 0.5931202 0.3730887                                                  
## 32 0.4009842 0.5192371 0.5037836                                        
## 33 0.5216770 0.3491493 0.3681474 0.3375584                              
## 34 0.4390673 0.3752244 0.3450581 0.2948626 0.2287016                    
## 35 0.5162837 0.4363942 0.1890668 0.4216643 0.3304613 0.3195548          
## 36 0.5604765 0.5120090 0.3986271 0.4572486 0.3660898 0.3610698 0.4621027
## 37 0.6616640 0.5465547 0.4173561 0.6226575 0.5034430 0.5463116 0.4910880
## 38 0.6253640 0.5085731 0.3652169 0.5699954 0.4492501 0.4936344 0.4460953
## 39 0.5431814 0.3813510 0.3435009 0.4371184 0.3117339 0.3133895 0.3380643
## 40 0.6013474 0.5621967 0.3818294 0.5501760 0.4174789 0.4708148 0.4558547
## 41 0.6267732 0.5796911 0.4366133 0.5972715 0.4646156 0.5149554 0.5252457
## 42 0.5106913 0.3175385 0.3468140 0.3852526 0.2903492 0.2500637 0.3350470
## 43 0.5688891 0.4243338 0.3250669 0.5091988 0.3725424 0.3700060 0.4453750
## 44 0.2883919 0.4733460 0.4412364 0.3230291 0.3952107 0.3374097 0.3968135
## 45 0.6189195 0.4847195 0.4005985 0.5457248 0.4689161 0.4614552 0.5264693
## 46 0.6735022 0.5626995 0.4500741 0.5811560 0.4830437 0.5156871 0.5166688
## 47 0.5379806 0.4391290 0.3401896 0.3844272 0.2488841 0.2411194 0.3951075
## 48 0.6268035 0.5240219 0.4131608 0.5497501 0.4400205 0.4243194 0.5357523
## 49 0.6121104 0.5053196 0.3537899 0.5353563 0.4188350 0.4626668 0.4445593
## 50 0.5033746 0.4572192 0.3668020 0.4577318 0.3725867 0.3544857 0.4452167
## 51 0.5421905 0.3927922 0.3678624 0.4317674 0.3247557 0.3195066 0.3684924
## 52 0.5354454 0.3441677 0.3188642 0.4399039 0.2676266 0.2682275 0.3151058
## 53 0.2833635 0.5648438 0.5128309 0.3825494 0.5057421 0.4496473 0.4354057
## 54 0.4868858 0.3726163 0.3379308 0.3989026 0.2871017 0.2461725 0.3524818
## 55 0.6080633 0.4706002 0.3300415 0.5317927 0.3930236 0.4196812 0.4472113
## 56 0.6953486 0.6065032 0.4633954 0.6340787 0.5217045 0.5593361 0.5374718
## 57 0.3566455 0.5113834 0.4438175 0.2948861 0.3214009 0.2760531 0.4004120
## 58 0.4924043 0.3623980 0.3474231 0.3929504 0.2671693 0.2230897 0.3443705
## 59 0.6082898 0.4172441 0.3032716 0.4896666 0.3503478 0.3884503 0.3797221
## 60 0.6065027 0.5196595 0.4087686 0.5702745 0.4236578 0.4887833 0.4522915
## 61 0.5272760 0.3654482 0.3214305 0.4095224 0.3125976 0.2852401 0.3083913
##           36        37        38        39        40        41        42
## 2                                                                       
## 3                                                                       
## 4                                                                       
## 5                                                                       
## 6                                                                       
## 7                                                                       
## 8                                                                       
## 9                                                                       
## 10                                                                      
## 11                                                                      
## 12                                                                      
## 13                                                                      
## 14                                                                      
## 15                                                                      
## 16                                                                      
## 17                                                                      
## 18                                                                      
## 19                                                                      
## 20                                                                      
## 21                                                                      
## 22                                                                      
## 23                                                                      
## 24                                                                      
## 25                                                                      
## 26                                                                      
## 27                                                                      
## 28                                                                      
## 29                                                                      
## 30                                                                      
## 31                                                                      
## 32                                                                      
## 33                                                                      
## 34                                                                      
## 35                                                                      
## 36                                                                      
## 37 0.4954147                                                            
## 38 0.4566716 0.0745567                                                  
## 39 0.4119094 0.3656030 0.3172811                                        
## 40 0.4738148 0.1509652 0.1112663 0.3182933                              
## 41 0.4614941 0.1302084 0.1116566 0.3811803 0.1372781                    
## 42 0.4279146 0.4499147 0.4093040 0.1969113 0.4405262 0.4675960          
## 43 0.2703089 0.3556137 0.3173208 0.2824498 0.3687434 0.3838922 0.3229444
## 44 0.3689411 0.5414992 0.5066286 0.4123164 0.5079609 0.5241504 0.3945939
## 45 0.2491773 0.4239444 0.3886682 0.3834084 0.4527161 0.4381757 0.4404346
## 46 0.4936784 0.2083025 0.1967513 0.3644575 0.1962014 0.2098472 0.4471943
## 47 0.2288101 0.4844215 0.4337298 0.3050883 0.4212946 0.4629232 0.3448764
## 48 0.2187681 0.3989930 0.3703062 0.3588081 0.4253979 0.3767666 0.4141924
## 49 0.4164003 0.1387588 0.1033137 0.2946063 0.1457300 0.1478568 0.3946561
## 50 0.2347456 0.5335637 0.4780669 0.3429322 0.4727845 0.5059203 0.3519817
## 51 0.3557448 0.5396513 0.4905223 0.2726481 0.5061382 0.5502449 0.2654616
## 52 0.4057086 0.3724250 0.3223087 0.1224218 0.3461636 0.3877175 0.1663969
## 53 0.5415915 0.5935519 0.5570530 0.4168394 0.5707239 0.5856253 0.3657748
## 54 0.3375221 0.4798792 0.4289544 0.2201754 0.4129268 0.4591563 0.1733989
## 55 0.3574220 0.1558376 0.1247376 0.2787839 0.1820217 0.1862153 0.3707781
## 56 0.5172904 0.1149265 0.1154891 0.4030179 0.1361488 0.1271731 0.4984379
## 57 0.3327274 0.5465634 0.5057319 0.3310547 0.4879832 0.5204146 0.3087739
## 58 0.3673930 0.4639883 0.4080622 0.2241805 0.4257605 0.4445365 0.1616204
## 59 0.4179115 0.2291935 0.1727165 0.2515302 0.2319145 0.2465649 0.2969988
## 60 0.4341585 0.1641933 0.1731020 0.2845176 0.2056614 0.2038738 0.3867905
## 61 0.4175310 0.3841665 0.3561249 0.1834735 0.3863813 0.4079674 0.1552523
##           43        44        45        46        47        48        49
## 2                                                                       
## 3                                                                       
## 4                                                                       
## 5                                                                       
## 6                                                                       
## 7                                                                       
## 8                                                                       
## 9                                                                       
## 10                                                                      
## 11                                                                      
## 12                                                                      
## 13                                                                      
## 14                                                                      
## 15                                                                      
## 16                                                                      
## 17                                                                      
## 18                                                                      
## 19                                                                      
## 20                                                                      
## 21                                                                      
## 22                                                                      
## 23                                                                      
## 24                                                                      
## 25                                                                      
## 26                                                                      
## 27                                                                      
## 28                                                                      
## 29                                                                      
## 30                                                                      
## 31                                                                      
## 32                                                                      
## 33                                                                      
## 34                                                                      
## 35                                                                      
## 36                                                                      
## 37                                                                      
## 38                                                                      
## 39                                                                      
## 40                                                                      
## 41                                                                      
## 42                                                                      
## 43                                                                      
## 44 0.4525893                                                            
## 45 0.2080075 0.4791206                                                  
## 46 0.4230299 0.5159375 0.4860253                                        
## 47 0.2436340 0.3747761 0.2889459 0.4335141                              
## 48 0.2034456 0.4892817 0.1237571 0.4494833 0.2985274                    
## 49 0.3282880 0.4636478 0.3812284 0.1483017 0.3931560 0.3462852          
## 50 0.2594062 0.4365345 0.2465514 0.5363640 0.2512557 0.2602069 0.4563006
## 51 0.2860597 0.4565448 0.3141461 0.5438966 0.2796132 0.3572206 0.4623324
## 52 0.2923333 0.4108598 0.4122565 0.3683925 0.3139986 0.3730002 0.2984126
## 53 0.5077445 0.2825725 0.5435784 0.5920714 0.4877783 0.5362747 0.5406856
## 54 0.2991761 0.4175627 0.3671087 0.4606063 0.2947624 0.3433304 0.3876924
## 55 0.3006435 0.4416590 0.3684086 0.2434213 0.3632826 0.3136274 0.1247369
## 56 0.4262336 0.5873717 0.4654495 0.2154832 0.5036238 0.4321239 0.1803833
## 57 0.3798815 0.2428572 0.4740024 0.5096173 0.2660610 0.4473422 0.4655848
## 58 0.2930091 0.4161894 0.3620037 0.4583760 0.3044913 0.3181390 0.3775307
## 59 0.2383238 0.4572156 0.3553636 0.2592801 0.3256169 0.3363352 0.1715247
## 60 0.3331409 0.4619237 0.4282349 0.3229583 0.4626172 0.3754964 0.1900838
## 61 0.3341909 0.3723507 0.4500713 0.3718711 0.3518611 0.4167595 0.3313394
##           50        51        52        53        54        55        56
## 2                                                                       
## 3                                                                       
## 4                                                                       
## 5                                                                       
## 6                                                                       
## 7                                                                       
## 8                                                                       
## 9                                                                       
## 10                                                                      
## 11                                                                      
## 12                                                                      
## 13                                                                      
## 14                                                                      
## 15                                                                      
## 16                                                                      
## 17                                                                      
## 18                                                                      
## 19                                                                      
## 20                                                                      
## 21                                                                      
## 22                                                                      
## 23                                                                      
## 24                                                                      
## 25                                                                      
## 26                                                                      
## 27                                                                      
## 28                                                                      
## 29                                                                      
## 30                                                                      
## 31                                                                      
## 32                                                                      
## 33                                                                      
## 34                                                                      
## 35                                                                      
## 36                                                                      
## 37                                                                      
## 38                                                                      
## 39                                                                      
## 40                                                                      
## 41                                                                      
## 42                                                                      
## 43                                                                      
## 44                                                                      
## 45                                                                      
## 46                                                                      
## 47                                                                      
## 48                                                                      
## 49                                                                      
## 50                                                                      
## 51 0.2493608                                                            
## 52 0.3259219 0.2338817                                                  
## 53 0.4113517 0.4177454 0.4101215                                        
## 54 0.2539624 0.1782582 0.1878964 0.3760003                              
## 55 0.4055644 0.4231842 0.2638866 0.5402085 0.3528994                    
## 56 0.5443002 0.5637995 0.4199251 0.6306973 0.4852302 0.1729955          
## 57 0.3065042 0.3814227 0.3366641 0.3017775 0.3085848 0.4337605 0.5866293
## 58 0.2958683 0.1838706 0.1950495 0.3872113 0.1001810 0.3444092 0.4812005
## 59 0.3785355 0.3565878 0.2507256 0.4888102 0.3099514 0.2215218 0.2708601
## 60 0.4324103 0.4542962 0.3028033 0.5288974 0.3868972 0.1493251 0.2173303
## 61 0.3671965 0.3139931 0.1693818 0.4030867 0.2262616 0.3215150 0.4414188
##           57        58        59        60
## 2                                         
## 3                                         
## 4                                         
## 5                                         
## 6                                         
## 7                                         
## 8                                         
## 9                                         
## 10                                        
## 11                                        
## 12                                        
## 13                                        
## 14                                        
## 15                                        
## 16                                        
## 17                                        
## 18                                        
## 19                                        
## 20                                        
## 21                                        
## 22                                        
## 23                                        
## 24                                        
## 25                                        
## 26                                        
## 27                                        
## 28                                        
## 29                                        
## 30                                        
## 31                                        
## 32                                        
## 33                                        
## 34                                        
## 35                                        
## 36                                        
## 37                                        
## 38                                        
## 39                                        
## 40                                        
## 41                                        
## 42                                        
## 43                                        
## 44                                        
## 45                                        
## 46                                        
## 47                                        
## 48                                        
## 49                                        
## 50                                        
## 51                                        
## 52                                        
## 53                                        
## 54                                        
## 55                                        
## 56                                        
## 57                                        
## 58 0.3111593                              
## 59 0.3985009 0.3018027                    
## 60 0.4731577 0.3806264 0.2828127          
## 61 0.2965991 0.2244943 0.2537728 0.3427076
perm<-adonis2(dist~Sample.Year*Sample.Month*Location, data=Field_data_wide, permutations = 999, method="bray")
perm
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
## 
## adonis2(formula = dist ~ Sample.Year * Sample.Month * Location, data = Field_data_wide, permutations = 999, method = "bray")
##                                   Df SumOfSqs      R2      F Pr(>F)    
## Sample.Year                        2   0.8397 0.16219 8.4940  0.001 ***
## Sample.Month                       2   0.4187 0.08088 4.2358  0.001 ***
## Location                           2   0.6961 0.13444 7.0411  0.001 ***
## Sample.Year:Sample.Month           1   0.3461 0.06685 7.0022  0.001 ***
## Sample.Year:Location               4   0.3195 0.06171 1.6160  0.028 *  
## Sample.Month:Location              4   0.2602 0.05025 1.3159  0.120    
## Sample.Year:Sample.Month:Location  2   0.1717 0.03316 1.7365  0.047 *  
## Residual                          43   2.1254 0.41052                  
## Total                             60   5.1774 1.00000                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
adonis.pair(vegdist(RE2),Field_data_wide$Location)
##   combination SumsOfSqs   MeanSqs  F.Model         R2     P.value
## 1   IN <-> OB 0.6848117 0.6848117 8.592155 0.17682185 0.000999001
## 2   IN <-> OS 0.3563299 0.3563299 4.813986 0.09473742 0.000999001
## 3   OB <-> OS 0.2281573 0.2281573 3.390738 0.10154727 0.001998002
##   P.value.corrected
## 1       0.001498501
## 2       0.001498501
## 3       0.001998002

PERMDISPR

check for dispersion

Zoop.bd <- betadisper(dist, Field_data_wide$Location)
Zoop.bd
## 
##  Homogeneity of multivariate dispersions
## 
## Call: betadisper(d = dist, group = Field_data_wide$Location)
## 
## No. of Positive Eigenvalues: 35
## No. of Negative Eigenvalues: 25
## 
## Average distance to median:
##     IN     OB     OS 
## 0.2734 0.2571 0.2356 
## 
## Eigenvalues for PCoA axes:
## (Showing 8 of 60 eigenvalues)
##  PCoA1  PCoA2  PCoA3  PCoA4  PCoA5  PCoA6  PCoA7  PCoA8 
## 1.4920 0.9353 0.6400 0.4271 0.3908 0.2335 0.2269 0.1846
anova(Zoop.bd)
## Analysis of Variance Table
## 
## Response: Distances
##           Df   Sum Sq   Mean Sq F value Pr(>F)
## Groups     2 0.016444 0.0082218  1.8755 0.1625
## Residuals 58 0.254256 0.0043837
permutest(Zoop.bd)
## 
## Permutation test for homogeneity of multivariate dispersions
## Permutation: free
## Number of permutations: 999
## 
## Response: Distances
##           Df   Sum Sq   Mean Sq      F N.Perm Pr(>F)
## Groups     2 0.016444 0.0082218 1.8755    999  0.167
## Residuals 58 0.254256 0.0043837
Zoop.bd <- betadisper(dist, Field_data_wide$Sample.Year)
Zoop.bd
## 
##  Homogeneity of multivariate dispersions
## 
## Call: betadisper(d = dist, group = Field_data_wide$Sample.Year)
## 
## No. of Positive Eigenvalues: 35
## No. of Negative Eigenvalues: 25
## 
## Average distance to median:
##   2019   2020   2021 
## 0.2807 0.1790 0.2627 
## 
## Eigenvalues for PCoA axes:
## (Showing 8 of 60 eigenvalues)
##  PCoA1  PCoA2  PCoA3  PCoA4  PCoA5  PCoA6  PCoA7  PCoA8 
## 1.4920 0.9353 0.6400 0.4271 0.3908 0.2335 0.2269 0.1846
anova(Zoop.bd)
## Analysis of Variance Table
## 
## Response: Distances
##           Df   Sum Sq   Mean Sq F value   Pr(>F)   
## Groups     2 0.053751 0.0268753  6.7754 0.002268 **
## Residuals 58 0.230061 0.0039666                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
permutest(Zoop.bd)
## 
## Permutation test for homogeneity of multivariate dispersions
## Permutation: free
## Number of permutations: 999
## 
## Response: Distances
##           Df   Sum Sq   Mean Sq      F N.Perm Pr(>F)   
## Groups     2 0.053751 0.0268753 6.7754    999  0.003 **
## Residuals 58 0.230061 0.0039666                        
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Zoop.bd <- betadisper(dist, Field_data_wide$Sample.Month)
Zoop.bd
## 
##  Homogeneity of multivariate dispersions
## 
## Call: betadisper(d = dist, group = Field_data_wide$Sample.Month)
## 
## No. of Positive Eigenvalues: 35
## No. of Negative Eigenvalues: 25
## 
## Average distance to median:
##    Aug    Jul    Sep 
## 0.2751 0.2615 0.2196 
## 
## Eigenvalues for PCoA axes:
## (Showing 8 of 60 eigenvalues)
##  PCoA1  PCoA2  PCoA3  PCoA4  PCoA5  PCoA6  PCoA7  PCoA8 
## 1.4920 0.9353 0.6400 0.4271 0.3908 0.2335 0.2269 0.1846
anova(Zoop.bd)
## Analysis of Variance Table
## 
## Response: Distances
##           Df   Sum Sq   Mean Sq F value Pr(>F)
## Groups     2 0.016346 0.0081729  1.5023 0.2312
## Residuals 58 0.315546 0.0054404
permutest(Zoop.bd)
## 
## Permutation test for homogeneity of multivariate dispersions
## Permutation: free
## Number of permutations: 999
## 
## Response: Distances
##           Df   Sum Sq   Mean Sq      F N.Perm Pr(>F)
## Groups     2 0.016346 0.0081729 1.5023    999  0.242
## Residuals 58 0.315546 0.0054404
library(writexl)

write_xlsx(RE2, "NMDS_input.xlsx")

SC and QM NMDS

NMDSmodel <- metaMDS(RE2, distance = "bray",trymax = 200)
## Run 0 stress 0.1837303 
## Run 1 stress 0.1856726 
## Run 2 stress 0.1837677 
## ... Procrustes: rmse 0.004220129  max resid 0.03037131 
## Run 3 stress 0.2336356 
## Run 4 stress 0.1837677 
## ... Procrustes: rmse 0.004198069  max resid 0.03021093 
## Run 5 stress 0.2652839 
## Run 6 stress 0.2424933 
## Run 7 stress 0.1823944 
## ... New best solution
## ... Procrustes: rmse 0.02536141  max resid 0.1873467 
## Run 8 stress 0.1837677 
## Run 9 stress 0.2247584 
## Run 10 stress 0.2064293 
## Run 11 stress 0.1919681 
## Run 12 stress 0.1856686 
## Run 13 stress 0.23196 
## Run 14 stress 0.1823944 
## ... Procrustes: rmse 5.42654e-05  max resid 0.0003668623 
## ... Similar to previous best
## Run 15 stress 0.1837677 
## Run 16 stress 0.1837677 
## Run 17 stress 0.1823944 
## ... Procrustes: rmse 1.927879e-05  max resid 8.423533e-05 
## ... Similar to previous best
## Run 18 stress 0.2039005 
## Run 19 stress 0.1823944 
## ... New best solution
## ... Procrustes: rmse 1.262636e-05  max resid 7.175712e-05 
## ... Similar to previous best
## Run 20 stress 0.1823952 
## ... Procrustes: rmse 0.0006427365  max resid 0.003666832 
## ... Similar to previous best
## *** Best solution repeated 2 times
NMDSmodel
## 
## Call:
## metaMDS(comm = RE2, distance = "bray", trymax = 200) 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     RE2 
## Distance: bray 
## 
## Dimensions: 2 
## Stress:     0.1823944 
## Stress type 1, weak ties
## Best solution was repeated 2 times in 20 tries
## The best solution was from try 19 (random start)
## Scaling: centring, PC rotation, halfchange scaling 
## Species: expanded scores based on 'RE2'

Plot NMDS

plot(NMDSmodel)

get datascores

data.scores<-vegan::scores(NMDSmodel,display="sites")
data.scores<- as.data.frame(data.scores)

add columns back in

colnames(Field_data_wide)
##  [1] "Station_unique"                    "Site"                             
##  [3] "Sample.Year"                       "Location"                         
##  [5] "Sample.Month"                      "jelly_biomass"                    
##  [7] "Smean"                             "Omean"                            
##  [9] "Tmean"                             "pHmean"                           
## [11] "Fmean"                             "PO4"                              
## [13] "SiOH4"                             "NO3"                              
## [15] "NO2"                               "NH4"                              
## [17] "CALANOIDA_Medium"                  "AETIDEUS_Female, Adult"           
## [19] "JELLYFISHES_Ephyra"                "BARNACLES_Cyprid larva"           
## [21] "BARNACLES_Nauplius"                "BIVALVIA_Veliger"                 
## [23] "BRACHYURA_Unknown"                 "BRYOZOA_Cyphonaut"                
## [25] "CALANOIDA_Copepodite"              "CALANOIDA_Large"                  
## [27] "CALANOIDA_Small"                   "CALANUS PACIFICUS"                
## [29] "CALANUS PACIFICUS_Female, Adult"   "CENTROPAGES_Female, Adult"        
## [31] "Chaet/Euphaus Egg_Egg"             "CHAETOGNATHA_Unknown"             
## [33] "CLADOCERA_Unknown"                 "CLYTIA GREGARIA_Medusa"           
## [35] "COPEPODA_Nauplius"                 "CRABS_Megalopa"                   
## [37] "CRABS_Zoea"                        "DITRICHOCORYCAEUS ANGLICUS"       
## [39] "ECHINODERMATA_Pluteus larva"       "EUPHAUSIIDAE_Calyptopis"          
## [41] "EUPHAUSIIDAE_Furcilia"             "EUPHAUSIIDAE_Nauplius"            
## [43] "EUTONINA INDICANS_Medusa"          "FISH_Egg"                         
## [45] "FISH_Larva"                        "GAETANUS_Adult"                   
## [47] "GAMMARIDEA_Unknown"                "GASTROPODA_Veliger"               
## [49] "HARPACTICOIDA_Unknown"             "HYPERIIDEA_Unknown"               
## [51] "Insecta_Unknown"                   "ISOPODA_Unknown"                  
## [53] "JELLYFISHES_Medusa"                "JELLYFISHES_Planula larvae"       
## [55] "LARVACEA_Unknown"                  "LITTORINA_Egg"                    
## [57] "METRIDIA_Female, Adult"            "Nemertea_Pilidium"                
## [59] "NEOTRYPAEA CALIFORNIENSIS_Unknown" "OITHONA_Unknown"                  
## [61] "POLYCHAETA_Unknown"                "SHRIMP_Unknown"                   
## [63] "Siphonophore"                      "UNKNOWN_Larva"
data.scores$Sample.Year = Field_data_wide$Sample.Year
data.scores$Sample.Month = Field_data_wide$Sample.Month
data.scores$Site = Field_data_wide$Site
data.scores$Location = Field_data_wide$Location
data.scores$jelly_biomass = Field_data_wide$jelly_biomass
data.scores$Location = Field_data_wide$Location
data.scores$NO3 = Field_data_wide$NO3
data.scores$PO4 = Field_data_wide$PO4
data.scores$SiOH4 = Field_data_wide$SiOH4
data.scores$NO2 = Field_data_wide$NO2
data.scores$NH4 = Field_data_wide$NH4
data.scores$Tmean = Field_data_wide$Tmean
data.scores$Fmean = Field_data_wide$Fmean
data.scores$Omean = Field_data_wide$Omean
data.scores$pHmean = Field_data_wide$pHmean
data.scores$Smean = Field_data_wide$Smean

plot data scores

xx <- ggplot(data.scores, aes(x = NMDS1, y = NMDS2,colour = Location)) + 
  labs(title="Experiments")+stat_ellipse()+geom_point(aes(colour = Location))+theme_bw()+theme(panel.grid.major = element_blank(),
                                                                                           panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"))
xx

## Species fitting

vf <- envfit(NMDSmodel, RE3, perm = 999)
vf
## 
## ***VECTORS
## 
##                                      NMDS1    NMDS2     r2 Pr(>r)    
## CALANOIDA_Medium                  -0.24882  0.96855 0.2702  0.001 ***
## AETIDEUS_Female, Adult            -0.46371  0.88599 0.0418  0.282    
## JELLYFISHES_Ephyra                 0.17299  0.98492 0.0786  0.076 .  
## BARNACLES_Cyprid larva             0.86766  0.49717 0.5761  0.001 ***
## BARNACLES_Nauplius                 0.87155  0.49031 0.6327  0.001 ***
## BIVALVIA_Veliger                   0.96851 -0.24898 0.4691  0.001 ***
## BRACHYURA_Unknown                 -0.32823 -0.94460 0.0039  0.858    
## BRYOZOA_Cyphonaut                 -0.52688  0.84994 0.0358  0.370    
## CALANOIDA_Copepodite              -0.86867 -0.49539 0.0511  0.234    
## CALANOIDA_Large                   -0.85094  0.52527 0.0239  0.496    
## CALANOIDA_Small                   -0.99577 -0.09190 0.0284  0.429    
## CALANUS PACIFICUS                 -0.89960  0.43671 0.1302  0.019 *  
## CALANUS PACIFICUS_Female, Adult   -0.71641  0.69767 0.1402  0.016 *  
## CENTROPAGES_Female, Adult         -0.32074 -0.94717 0.0021  0.952    
## Chaet/Euphaus Egg_Egg             -0.96529  0.26119 0.2335  0.001 ***
## CHAETOGNATHA_Unknown              -0.85712 -0.51512 0.1323  0.013 *  
## CLADOCERA_Unknown                 -0.05200 -0.99865 0.5543  0.001 ***
## CLYTIA GREGARIA_Medusa             0.75853 -0.65164 0.0594  0.162    
## COPEPODA_Nauplius                 -0.90421 -0.42708 0.1510  0.014 *  
## CRABS_Megalopa                     0.01283 -0.99992 0.0495  0.231    
## CRABS_Zoea                         0.89796  0.44008 0.1215  0.016 *  
## DITRICHOCORYCAEUS ANGLICUS        -0.88340  0.46863 0.6100  0.001 ***
## ECHINODERMATA_Pluteus larva       -0.74308 -0.66920 0.0535  0.202    
## EUPHAUSIIDAE_Calyptopis           -0.99710 -0.07606 0.0342  0.383    
## EUPHAUSIIDAE_Furcilia             -0.89215  0.45174 0.0263  0.466    
## EUPHAUSIIDAE_Nauplius             -0.73389 -0.67927 0.1466  0.008 ** 
## EUTONINA INDICANS_Medusa          -0.10010 -0.99498 0.0129  0.678    
## FISH_Egg                          -0.92406 -0.38224 0.0647  0.128    
## FISH_Larva                        -0.75286 -0.65818 0.0252  0.476    
## GAETANUS_Adult                    -0.81084 -0.58527 0.0022  0.887    
## GAMMARIDEA_Unknown                -0.76090  0.64887 0.1336  0.017 *  
## GASTROPODA_Veliger                 0.96262  0.27086 0.6025  0.001 ***
## HARPACTICOIDA_Unknown              0.30512  0.95231 0.1635  0.004 ** 
## HYPERIIDEA_Unknown                -0.69646  0.71760 0.2574  0.002 ** 
## Insecta_Unknown                    0.21433 -0.97676 0.0010  0.953    
## ISOPODA_Unknown                   -0.79358 -0.60847 0.0225  0.554    
## JELLYFISHES_Medusa                 0.11186  0.99372 0.1334  0.013 *  
## JELLYFISHES_Planula larvae         0.82776 -0.56108 0.0680  0.129    
## LARVACEA_Unknown                  -0.45565 -0.89016 0.5052  0.001 ***
## LITTORINA_Egg                     -0.99392 -0.11013 0.1172  0.028 *  
## METRIDIA_Female, Adult            -0.56383  0.82589 0.0029  0.900    
## Nemertea_Pilidium                 -0.91701 -0.39888 0.0818  0.077 .  
## NEOTRYPAEA CALIFORNIENSIS_Unknown -0.46927 -0.88305 0.0419  0.276    
## OITHONA_Unknown                   -0.82776  0.56108 0.0625  0.154    
## POLYCHAETA_Unknown                 0.95959 -0.28141 0.5878  0.001 ***
## SHRIMP_Unknown                     0.77911  0.62689 0.0818  0.072 .  
## Siphonophore                      -0.38250  0.92396 0.0543  0.193    
## UNKNOWN_Larva                     -0.83954 -0.54329 0.0127  0.674    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation: free
## Number of permutations: 999
spp.scrs <- as.data.frame(vegan::scores(vf, display = "vectors"))
spp.scrs <- cbind(spp.scrs, Species = rownames(spp.scrs))

####for ggplot
arrow_factor <- ordiArrowMul(vf)
spp.scrs <- as.data.frame(vegan::scores(vf, display = "vectors")) * arrow_factor
spp.scrs <- cbind(spp.scrs, Species = rownames(spp.scrs), Pvalues = vf$vectors$pvals, R_squared = vf$vectors$r)

# select significance similarly to `plot(vf, p.max = 0.01)`
spp.scrs <- subset(spp.scrs, Pvalues < 0.01)

Location Plot

Edit species labels

##edit species scores##
spp.scrs$Species <- recode_factor(spp.scrs$Species,

                                  CALANOIDA_Medium ="medium Calanoid",
                                   BIVALVIA_Veliger="bivalve veliger",
                                   "BARNACLES_Cyprid larva"="barnacle cyprid", 
                                   BARNACLES_Nauplius="barnacle nauplius",
                                   "Chaet/Euphaus Egg_Egg"="chaet/euphaus egg",
                                   CLADOCERA_Unknown="cladoceran",
                                   COPEPODA_Nauplius="copepod nauplius",
                                   "DITRICHOCORYCAEUS ANGLICUS"="Ditrichocorycaeus anglicus",
                                   "EUPHAUSIIDAE_Nauplius"="euphausiid nauplius",
                                   GASTROPODA_Veliger="gastropod veliger",
                                   "HARPACTICOIDA_Unknown"="Harpacticoid/Cyclopoid",
                                   HYPERIIDEA_Unknown="hyperiid",
                                   LARVACEA_Unknown="larvacean",
                                  POLYCHAETA_Unknown="polychaete")

extract hulls

Inside <- data.scores[data.scores$Location == "IN", ][chull(data.scores[data.scores$Location == 
                                                                      "IN", c("NMDS1", "NMDS2")]), ]  
Outside <- data.scores[data.scores$Location == "OS", ][chull(data.scores[data.scores$Location == 
                                                                    "OS", c("NMDS1", "NMDS2")]), ]  
Out_Bay <- data.scores[data.scores$Location == "OB", ][chull(data.scores[data.scores$Location == 
                                                                             "OB", c("NMDS1", "NMDS2")]), ]  

get hull data

hull.data <- rbind(Inside, Outside, Out_Bay)  #combine grp.a and grp.b
hull.data
##            NMDS1       NMDS2 Sample.Year Sample.Month Site Location
## 13  0.4720819919 -0.22938630        2019          Jul   QM       IN
## 27 -0.0005177101 -0.61113880        2021          Aug   QM       IN
## 17 -0.1247640055 -0.41842775        2021          Aug   QM       IN
## 9  -0.2857105853 -0.13990688        2019          Aug   QM       IN
## 44 -0.3349278888  0.24685938        2019          Sep   SC       IN
## 36  0.0254855599  0.37557086        2019          Sep   SC       IN
## 45  0.1444396803  0.41399486        2021          Jul   SC       IN
## 56  0.6319928556  0.11132318        2021          Aug   SC       IN
## 15  0.2167196365 -0.16653410        2020          Aug   QM       OS
## 22 -0.0539441655 -0.47708473        2021          Aug   QM       OS
## 23 -0.3951576672 -0.24012240        2019          Jul   QM       OS
## 14 -0.2921276908 -0.02311276        2019          Aug   QM       OS
## 50 -0.0807284239  0.26887336        2019          Sep   SC       OS
## 48  0.2094235323  0.37965795        2021          Jul   SC       OS
## 54 -0.0747759325  0.06106093        2021          Jul   SC       OB
## 61  0.0183841102 -0.05350645        2021          Aug   SC       OB
## 30 -0.2946313726 -0.33593893        2021          Jul   QM       OB
## 28 -0.5389321658  0.10026069        2019          Jul   QM       OB
## 29 -0.6605815643  0.41084683        2019          Aug   QM       OB
## 53 -0.4637868646  0.33948989        2019          Sep   SC       OB
## 57 -0.2499956039  0.21202031        2019          Sep   SC       OB
##    jelly_biomass   NO3  PO4 SiOH4  NO2  NH4    Tmean     Fmean     Omean
## 13       2306.88  <NA> <NA>  <NA> <NA> <NA>       NA        NA        NA
## 27        157.51  0.21 0.45 35.62 0.01 0.00 15.41718  8.036462  8.324053
## 17         52.43  0.54 0.52 33.82 0.06 0.21 14.66838  8.902871  8.576746
## 9        1051.76  <NA> <NA>  <NA> <NA> <NA>       NA        NA        NA
## 44        676.08  <NA> <NA>  <NA> <NA> <NA>       NA        NA        NA
## 36        442.72  <NA> <NA>  <NA> <NA> <NA>       NA        NA        NA
## 45         59.97  <NA> <NA>  <NA> <NA> <NA>       NA        NA        NA
## 56        808.87  <NA> <NA>  <NA> <NA> <NA>       NA        NA        NA
## 15          1.00  0.05 0.57 31.11 0.02 0.09 15.24269 10.432785 10.927995
## 22          1.00  3.23 0.89 35.57 0.17 0.19 14.11153  7.023422  7.243498
## 23         97.76  <NA> <NA>  <NA> <NA> <NA>       NA        NA        NA
## 14          1.00  <NA> <NA>  <NA> <NA> <NA>       NA        NA        NA
## 50          1.00  <NA> <NA>  <NA> <NA> <NA>       NA        NA        NA
## 48          1.00  <NA> <NA>  <NA> <NA> <NA>       NA        NA        NA
## 54          1.00  <NA> <NA>  <NA> <NA> <NA>       NA        NA        NA
## 61          1.00 10.51 1.67 32.74 0.36 1.17 14.45317  1.979085  7.252958
## 30          1.00  <NA> <NA>  <NA> <NA> <NA>       NA        NA        NA
## 28          1.00  <NA> <NA>  <NA> <NA> <NA>       NA        NA        NA
## 29          1.00  <NA> <NA>  <NA> <NA> <NA>       NA        NA        NA
## 53          1.00  <NA> <NA>  <NA> <NA> <NA>       NA        NA        NA
## 57          1.00  <NA> <NA>  <NA> <NA> <NA>       NA        NA        NA
##      pHmean    Smean
## 13       NA       NA
## 27 8.787757 29.67637
## 17 8.710802 29.77035
## 9        NA       NA
## 44       NA       NA
## 36       NA       NA
## 45       NA       NA
## 56       NA       NA
## 15 8.686565 29.69010
## 22 8.637989 29.82665
## 23       NA       NA
## 14       NA       NA
## 50       NA       NA
## 48       NA       NA
## 54       NA       NA
## 61 8.604166 29.93015
## 30       NA       NA
## 28       NA       NA
## 29       NA       NA
## 53       NA       NA
## 57       NA       NA

make plot

hull.data$Location <- factor(hull.data$Location,
                         c("IN", "OS", "OB"))
data.scores$Location <- factor(data.scores$Location,
                         c("IN", "OS", "OB"))

zoop_location<-ggplot() + 
  geom_polygon(data=hull.data,aes(x=NMDS1,y=NMDS2,fill=Location,group=Location),alpha=0.20, size=0.1, linetype=1, colour="black") + # add the convex hulls
  geom_point(data=data.scores,aes(x=NMDS1,y=NMDS2,shape=Location,colour=Location),size=1) + # add the point markers
  scale_colour_manual(labels = c("Inside Aggregation","Outside Aggregation", "Outside Bay"),values=c("#619CFF",  "#F8766D","#00BA38")) +
  scale_fill_manual(labels = c("Inside Aggregation","Outside Aggregation", "Outside Bay"),values=c("#619CFF", "#F8766D","#00BA38"))+
  scale_shape_manual(labels = c("Inside Aggregation","Outside Aggregation", "Outside Bay"),values=c(16, 18,17))+
  coord_equal() +
  theme_bw() +
  theme(legend.key.size = unit(2, 'mm'))+
  ylim(-0.8,0.8)+
  xlim(-0.8,0.8)+
  theme(
    axis.title.x = element_text(size=9), 
    axis.title.y = element_text(size=9),
    # remove y-axis labels
    panel.background = element_blank(), 
    panel.grid.major = element_blank(),
    axis.text=element_text(size=7),
    panel.grid.minor = element_blank(),  
    plot.background = element_blank(),
    legend.text = element_text(size=5),
    legend.title = element_text(size=7),legend.position=c(0.8, 0.11))+
  geom_segment(data = spp.scrs,size=0.2,
               aes(x = 0, xend = NMDS1, y = 0, yend = NMDS2),
               arrow = arrow(length = unit(0.08, "cm")), colour = "black")+
  geom_label_repel(data = spp.scrs, aes(x = NMDS1, y = NMDS2, label = Species),
                  size = 1.5, fontface="bold", fill="white", label.padding = unit(0.15, "lines"), box.padding = unit(0.16, "lines"), label.size = 0.05)+
  annotate("text", label = "2D Stress: 0.18", x = 0.6, y = 0.8, size = 2, colour = "black")+
  theme(panel.background = element_rect(fill="white"),plot.background = element_rect(fill = "white",linewidth = 0))

zoop_location

save plot

setwd("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/output")
ggsave(filename = "Field_zoop_NMDS.png", plot = zoop_location, width = 80, height = 80, units="mm", device='png', dpi=600)
ggsave(filename = "Field_zoop_NMDS.tif", plot = zoop_location, width = 80, height = 80, units="mm", device='tiff', dpi=600)

Sample Year

extract hulls

Y2019 <- data.scores[data.scores$Sample.Year == "2019", ][chull(data.scores[data.scores$Sample.Year == 
                                                                      "2019", c("NMDS1", "NMDS2")]), ]  
Y2020 <- data.scores[data.scores$Sample.Year == "2020", ][chull(data.scores[data.scores$Sample.Year == 
                                                                    "2020", c("NMDS1", "NMDS2")]), ]  
Y2021 <- data.scores[data.scores$Sample.Year == "2021", ][chull(data.scores[data.scores$Sample.Year == 
                                                                             "2021", c("NMDS1", "NMDS2")]), ]  

get hull data

hull.data <- rbind(Y2019, Y2020, Y2021)  #combine grp.a and grp.b
zoop_year<-ggplot() + 
  geom_polygon(data=hull.data,aes(x=NMDS1,y=NMDS2,fill=Sample.Year,group=Sample.Year),alpha=0.20, size=0.1, linetype=1, colour="black") + # add the convex hulls
  geom_point(data=data.scores,aes(x=NMDS1,y=NMDS2,shape=Sample.Year,colour=Sample.Year),size=1) + # add the point markers
  scale_colour_manual(name="Year",labels = c("2019","2020","2021"),values=c("#619CFF",  "#F8766D","#00BA38")) +
  scale_fill_manual(name="Year",labels = c("2019","2020","2021"),values=c("#619CFF", "#F8766D","#00BA38"))+
  scale_shape_manual(name="Year",labels = c("2019","2020","2021"),values=c(16, 18,17))+
  coord_equal() +
  theme_bw() +
  theme(legend.key.size = unit(2, 'mm'))+
  ylim(-0.8,0.8)+
  xlim(-0.8,0.8)+
  theme(
    axis.title.x = element_text(size=9), 
    axis.title.y = element_text(size=9),
    panel.background = element_blank(), 
    panel.grid.major = element_blank(),
    axis.text=element_text(size=7),
    panel.grid.minor = element_blank(),  
    plot.background = element_blank(),
    legend.text = element_text(size=8),
    legend.title = element_text(size=8),legend.position=c(0.85, 0.15))+
  annotate("text", label = "2D Stress: 0.18", x = 0.5, y = 0.8, size = 3, colour = "black")+
  theme(panel.background = element_rect(fill="white"),plot.background = element_rect(fill = "white",linewidth = 0))+
  annotate("text",x=-0.75, y=0.75, label= "a",size=8)

zoop_year

Sample month

extract hulls

Jul <- data.scores[data.scores$Sample.Month == "Jul", ][chull(data.scores[data.scores$Sample.Month == 
                                                                      "Jul", c("NMDS1", "NMDS2")]), ]  
Aug <- data.scores[data.scores$Sample.Month == "Aug", ][chull(data.scores[data.scores$Sample.Month == 
                                                                    "Aug", c("NMDS1", "NMDS2")]), ]  
Sep <- data.scores[data.scores$Sample.Month == "Sep", ][chull(data.scores[data.scores$Sample.Month == 
                                                                             "Sep", c("NMDS1", "NMDS2")]), ]  

get hull data

hull.data <- rbind(Jul, Aug, Sep)
zoop_Month<-ggplot() + 
  geom_polygon(data=hull.data,aes(x=NMDS1,y=NMDS2,fill=Sample.Month,group=Sample.Month),alpha=0.20, size=0.1, linetype=1, colour="black") + # add the convex hulls
  geom_point(data=data.scores,aes(x=NMDS1,y=NMDS2,shape=Sample.Month,colour=Sample.Month),size=1) + # add the point markers
  scale_colour_manual(name="Month",labels = c("July","August","September"),values=c("#619CFF",  "#F8766D","#00BA38")) +
  scale_fill_manual(name="Month",labels = c("July","August","September"),values=c("#619CFF", "#F8766D","#00BA38"))+
  scale_shape_manual(name="Month",labels = c("July","August","September"),values=c(16, 18,17))+
  coord_equal() +
  theme_bw() +
  theme(legend.key.size = unit(2, 'mm'))+
  ylim(-0.8,0.8)+
  xlim(-0.8,0.8)+
  theme(
    axis.title.x = element_text(size=9), 
    axis.title.y = element_text(size=9),
    panel.background = element_blank(), 
    panel.grid.major = element_blank(),
    axis.text=element_text(size=7),
    panel.grid.minor = element_blank(),  
    plot.background = element_blank(),
    legend.text = element_text(size=8),
    legend.title = element_text(size=8),legend.position=c(0.8, 0.15))+
  annotate("text", label = "2D Stress: 0.18", x = 0.5, y = 0.8, size = 3, colour = "black")+
  theme(panel.background = element_rect(fill="white"),plot.background = element_rect(fill = "white",linewidth = 0))+
  annotate("text",x=-0.75, y=0.75, label= "b",size=8)

zoop_Month

Combine year and month plots

Month_year<-ggarrange(zoop_year,zoop_Month,
          ncol = 2, nrow = 1)
Month_year

save plot

setwd("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/output")
ggsave(filename = "Field_month_year.png", plot = Month_year, height = 80, width = 164, units="mm", device='png', dpi=600)
ggsave(filename = "Field_month_year.tif", plot = Month_year, height = 80, width = 164, units="mm", device='tiff', dpi=600)

All Inlets/Env Fit

Zooplankton

remove rows without environmental data

Field_data_env<-Field_data_merged[complete.cases(Field_data_merged), ]

Convert from long to wide format

colnames(Field_data_env)
##  [1] "Station_unique"             "Site"                      
##  [3] "Sample.Year"                "Location"                  
##  [5] "Sample.Month"               "Species_lifestage_combined"
##  [7] "copepod_density"            "jelly_biomass"             
##  [9] "Station"                    "Smean"                     
## [11] "Smin"                       "Smax"                      
## [13] "Ssd"                        "Omean"                     
## [15] "Omin"                       "Omax"                      
## [17] "Osd"                        "Tmean"                     
## [19] "Tmin"                       "Tmax"                      
## [21] "Tsd"                        "pHmean"                    
## [23] "pHmin"                      "pHmax"                     
## [25] "pHsd"                       "Fmean"                     
## [27] "Fmin"                       "Fmax"                      
## [29] "Fsd"                        "PO4"                       
## [31] "SiOH4"                      "NO3"                       
## [33] "NO2"                        "NH4"
Field_data_wide<-dcast(Field_data_env, Station_unique+Site+Sample.Year+Location+Sample.Month+jelly_biomass+Smean+Omean+Tmean+pHmean+Fmean+PO4+SiOH4+NO3+NO2+NH4~ Species_lifestage_combined,value.var = "copepod_density")

remove non-data columns, convert to proportionas, and arcsine sqrt transformation

Field_data_wide$Site=as.factor(Field_data_wide$Site)
RE2<- Field_data_wide[,17:ncol(Field_data_wide)]
#replace N/A with 0
RE2[is.na(RE2)] <- 0
#convert to proportions
RE2<-RE2/rowSums(RE2)
#arcsine sqrt transformation
RE2<-asin(sqrt(RE2))
RE3<-as.matrix(RE2)

PERMANOVA

dist<-vegdist(RE2, method='bray')
dist
##             1          2          3          4          5          6          7
## 2  0.23455740                                                                  
## 3  0.19153915 0.30073927                                                       
## 4  0.32856215 0.30730834 0.32896795                                            
## 5  0.19836156 0.23843238 0.25803949 0.35435193                                 
## 6  0.35504049 0.22009820 0.38290986 0.30219730 0.32638066                      
## 7  0.29526780 0.41598763 0.38120255 0.52834751 0.27472912 0.46896755           
## 8  0.37383967 0.25205489 0.31090200 0.15423359 0.33535366 0.21380392 0.56174400
## 9  0.23337801 0.11495294 0.31332155 0.29019081 0.27629915 0.23576180 0.41024920
## 10 0.27210978 0.14274463 0.35593962 0.32361187 0.28810869 0.19608903 0.41259645
## 11 0.24061700 0.34923833 0.35784724 0.51467736 0.24406147 0.44345138 0.23084384
## 12 0.21968449 0.11984453 0.31372090 0.28698537 0.28029921 0.23742811 0.42519814
## 13 0.25465182 0.31051139 0.34709639 0.49621640 0.23529957 0.40281097 0.18077278
## 14 0.17232869 0.26626743 0.26977370 0.40157676 0.15879314 0.35601749 0.19422951
## 15 0.25095693 0.16821986 0.25895721 0.18759952 0.27816173 0.22075125 0.41930698
## 16 0.23138637 0.33483407 0.33521617 0.42910136 0.27612907 0.39053724 0.26846499
## 17 0.38028445 0.39921618 0.39481587 0.48675471 0.37983946 0.40972393 0.44406449
## 18 0.33824784 0.36603404 0.41815771 0.50481819 0.30673735 0.37781377 0.38199366
## 19 0.26345921 0.28940369 0.38564111 0.50125784 0.32373149 0.38017357 0.32237833
## 20 0.52915740 0.52764385 0.58171180 0.72076341 0.48021835 0.54040062 0.51326407
## 21 0.42657607 0.44684073 0.43910529 0.49537918 0.40765769 0.45072329 0.47187894
## 22 0.29167856 0.32045318 0.41755912 0.51989734 0.37955621 0.38544601 0.41063716
## 23 0.38580103 0.40828361 0.42756032 0.45472550 0.40799596 0.45053713 0.43398253
## 24 0.40351534 0.34309612 0.49206242 0.49084284 0.47147560 0.36950163 0.50287908
## 25 0.41360543 0.43117435 0.44246743 0.50218884 0.41126431 0.45233297 0.42372184
## 26 0.50522548 0.50173125 0.56514300 0.69033416 0.47429180 0.51188536 0.55296512
## 27 0.41591092 0.44122318 0.43338630 0.50423918 0.42531909 0.45019277 0.43814774
## 28 0.39758419 0.40025674 0.48302434 0.58121619 0.50823315 0.44595020 0.51053968
## 29 0.45514084 0.46256615 0.45075965 0.49500863 0.47398187 0.47176241 0.51744014
## 30 0.41171936 0.43172128 0.44134054 0.51585676 0.34166029 0.41335979 0.40825933
## 31 0.32601797 0.35245518 0.42431219 0.52600965 0.38112515 0.43810938 0.41634585
## 32 0.35767276 0.38936821 0.45339014 0.61585236 0.35510276 0.47976909 0.34653260
## 33 0.34050017 0.33857548 0.37795565 0.50189310 0.34049110 0.36642456 0.38387832
## 34 0.56102488 0.47331280 0.58059948 0.65003208 0.54480272 0.52918928 0.59162484
## 35 0.38593761 0.31029896 0.44702763 0.57427390 0.33510549 0.38271294 0.43895209
## 36 0.31602412 0.30212664 0.41688720 0.53475934 0.34736067 0.39481951 0.35736673
## 37 0.54195952 0.45236451 0.56354960 0.64417781 0.53430585 0.53267936 0.61186771
## 38 0.51611332 0.45917120 0.56062823 0.65620789 0.48503818 0.52047772 0.54420779
## 39 0.36555310 0.31753264 0.41795249 0.56511246 0.35090979 0.39182045 0.37698859
## 40 0.50881434 0.47037105 0.56514557 0.67678744 0.46515843 0.53283258 0.49298204
## 41 0.45300162 0.37031198 0.49823220 0.54125303 0.40243260 0.42474810 0.44084435
## 42 0.53082645 0.46065000 0.56112610 0.67239876 0.49564727 0.48866999 0.53084934
## 43 0.34254518 0.32491365 0.42278573 0.56747241 0.33391232 0.39704800 0.40218713
##             8          9         10         11         12         13         14
## 2                                                                              
## 3                                                                              
## 4                                                                              
## 5                                                                              
## 6                                                                              
## 7                                                                              
## 8                                                                              
## 9  0.26922117                                                                  
## 10 0.28732799 0.13059941                                                       
## 11 0.52006096 0.36351268 0.31480075                                            
## 12 0.26209684 0.09525197 0.16157976 0.35381783                                 
## 13 0.47331339 0.32143562 0.30296876 0.11073097 0.31265554                      
## 14 0.43235682 0.29565793 0.24617498 0.13308592 0.27282632 0.14111938           
## 15 0.18232105 0.16086489 0.19412376 0.41446876 0.17034971 0.37614282 0.31079122
## 16 0.43786809 0.30342970 0.32651269 0.24603084 0.29513905 0.22113536 0.18036710
## 17 0.42106205 0.43329816 0.43619337 0.36756703 0.40538649 0.33958020 0.36559521
## 18 0.44363817 0.42768532 0.38749227 0.28712208 0.37940089 0.26961641 0.28948589
## 19 0.48537769 0.34571430 0.31777939 0.25699226 0.30874224 0.25939774 0.23472123
## 20 0.58801814 0.55465720 0.53584598 0.41484706 0.53658674 0.38690471 0.47915100
## 21 0.43583535 0.46885413 0.48148116 0.39865454 0.43364779 0.37796100 0.39616119
## 22 0.47535495 0.32485157 0.31129541 0.32607059 0.29749829 0.31946031 0.30683931
## 23 0.44474052 0.44760140 0.45444397 0.39225673 0.41925706 0.37886629 0.37800182
## 24 0.44226931 0.34836615 0.32800002 0.42970602 0.35736437 0.40795153 0.43737230
## 25 0.47485744 0.46827054 0.46450150 0.37961961 0.44525983 0.35216886 0.38179345
## 26 0.56446839 0.52347383 0.50496742 0.43274730 0.50833727 0.43586532 0.48211526
## 27 0.46582153 0.47784522 0.48948108 0.40342116 0.44948771 0.37717970 0.39656383
## 28 0.53193807 0.39131863 0.38975526 0.42238791 0.37598043 0.40869036 0.44370455
## 29 0.46013307 0.50159822 0.49733599 0.47056474 0.46778474 0.43508896 0.44938077
## 30 0.43176275 0.45609449 0.45617328 0.33737717 0.43301957 0.28891146 0.35084549
## 31 0.50069135 0.34800077 0.36143841 0.31760004 0.33378322 0.31835708 0.31518271
## 32 0.56683855 0.42128543 0.37414955 0.24623681 0.39755701 0.23439307 0.28995396
## 33 0.41090287 0.39237719 0.37897335 0.33443177 0.36342045 0.28376873 0.32230806
## 34 0.55810415 0.46118166 0.48912264 0.56495431 0.46083842 0.53815418 0.57068170
## 35 0.48006639 0.32396585 0.33888978 0.32185697 0.33571873 0.32199028 0.36318358
## 36 0.49976485 0.31187386 0.30267709 0.26144450 0.29900099 0.24497515 0.27257900
## 37 0.58122105 0.47398718 0.48955244 0.54545119 0.47828538 0.54504495 0.56347950
## 38 0.57374329 0.46037039 0.48202859 0.49045561 0.46169652 0.46867936 0.50838954
## 39 0.51001635 0.31868684 0.36054373 0.28165997 0.31811896 0.26837487 0.31022623
## 40 0.57985937 0.46391983 0.49791543 0.45195764 0.46966614 0.43815195 0.47517748
## 41 0.45609647 0.35980882 0.38442135 0.40895795 0.36429985 0.38757164 0.42371421
## 42 0.54357496 0.44433356 0.47825897 0.50387326 0.45922764 0.47881347 0.50312167
## 43 0.50659166 0.34760599 0.35574232 0.30827577 0.33359672 0.29652830 0.31714294
##            15         16         17         18         19         20         21
## 2                                                                              
## 3                                                                              
## 4                                                                              
## 5                                                                              
## 6                                                                              
## 7                                                                              
## 8                                                                              
## 9                                                                              
## 10                                                                             
## 11                                                                             
## 12                                                                             
## 13                                                                             
## 14                                                                             
## 15                                                                             
## 16 0.31288146                                                                  
## 17 0.44546117 0.38330967                                                       
## 18 0.43247260 0.35977090 0.21685203                                            
## 19 0.41186252 0.32076275 0.24676907 0.20496785                                 
## 20 0.60733323 0.45321545 0.45668393 0.39420679 0.45639364                      
## 21 0.48342076 0.39918219 0.10962493 0.28265906 0.30030550 0.46582241           
## 22 0.39601661 0.27431777 0.32280425 0.29135971 0.26825433 0.34696386 0.40467170
## 23 0.45246459 0.37631034 0.15031878 0.30118899 0.26075814 0.49325371 0.12958950
## 24 0.36850334 0.37006254 0.41402916 0.42579387 0.38382918 0.35186211 0.46574385
## 25 0.48978197 0.40203751 0.11239137 0.26717034 0.24269409 0.46763630 0.14453447
## 26 0.55951383 0.43542552 0.43645247 0.37332717 0.43747324 0.16285740 0.45110253
## 27 0.48755751 0.40941056 0.14589940 0.29166804 0.27381241 0.47515819 0.14536627
## 28 0.43836110 0.37163508 0.37638657 0.37783209 0.36508664 0.29248434 0.44735537
## 29 0.49310407 0.44785837 0.19713909 0.37303788 0.36336065 0.54501450 0.13262434
## 30 0.47660338 0.35947777 0.18852719 0.20206977 0.26491000 0.30310204 0.19038118
## 31 0.40870506 0.26912882 0.35199703 0.33244555 0.31717586 0.33706818 0.40562048
## 32 0.46351383 0.33936762 0.35122518 0.21943101 0.28834742 0.37215847 0.42737194
## 33 0.42881775 0.37631484 0.14359760 0.20866549 0.21450976 0.42865368 0.20159535
## 34 0.51578749 0.50725910 0.50679285 0.48877737 0.52097383 0.39664085 0.49617130
## 35 0.42649231 0.35380319 0.35690293 0.30337148 0.32634950 0.38300618 0.40695696
## 36 0.39244825 0.27944039 0.33819168 0.25232249 0.24305767 0.43261004 0.38092819
## 37 0.50510211 0.51977766 0.53656207 0.47615087 0.52286008 0.44451089 0.53160328
## 38 0.51762122 0.46931244 0.46203733 0.42651477 0.45605134 0.34018043 0.45473522
## 39 0.40126471 0.28852824 0.33675419 0.29479166 0.29080387 0.38857527 0.37376335
## 40 0.52764011 0.42159387 0.46204537 0.39490327 0.44128905 0.29061937 0.45898285
## 41 0.40500981 0.35602039 0.38938035 0.34657380 0.40345743 0.36873189 0.38831067
## 42 0.52568349 0.46281497 0.46216651 0.42765444 0.45361605 0.34812704 0.48794620
## 43 0.42311488 0.34029517 0.32423187 0.23320326 0.28708951 0.41307523 0.37698200
##            22         23         24         25         26         27         28
## 2                                                                              
## 3                                                                              
## 4                                                                              
## 5                                                                              
## 6                                                                              
## 7                                                                              
## 8                                                                              
## 9                                                                              
## 10                                                                             
## 11                                                                             
## 12                                                                             
## 13                                                                             
## 14                                                                             
## 15                                                                             
## 16                                                                             
## 17                                                                             
## 18                                                                             
## 19                                                                             
## 20                                                                             
## 21                                                                             
## 22                                                                             
## 23 0.39001924                                                                  
## 24 0.24866015 0.43137397                                                       
## 25 0.34851585 0.13625349 0.43963643                                            
## 26 0.31868219 0.48959807 0.27715458 0.45046383                                 
## 27 0.39975552 0.13428187 0.44872632 0.11070777 0.47232301                      
## 28 0.20173597 0.42373550 0.21641150 0.41231996 0.21384597 0.44363717           
## 29 0.47471193 0.14850788 0.47963691 0.21286288 0.52821680 0.20170603 0.48267739
## 30 0.36898149 0.25179384 0.35872045 0.21322036 0.29894831 0.21788757 0.35887165
## 31 0.16607621 0.37383237 0.25964251 0.35716896 0.29803154 0.37209716 0.19529210
## 32 0.25067957 0.38636134 0.38264630 0.35425269 0.33215365 0.41229162 0.29463563
## 33 0.32158914 0.20430264 0.37105944 0.17150311 0.41688810 0.19028809 0.36010074
## 34 0.47294362 0.51742156 0.41196287 0.55348873 0.35346874 0.53442892 0.39934279
## 35 0.28144491 0.43144194 0.35538145 0.40045237 0.34057927 0.43282773 0.33990955
## 36 0.26216538 0.37347295 0.40816755 0.37382986 0.39776333 0.41920658 0.32162849
## 37 0.47032612 0.53011134 0.42585604 0.58363054 0.35601147 0.54228836 0.41533647
## 38 0.40695314 0.50338591 0.38108214 0.48735196 0.28786677 0.47468990 0.37328066
## 39 0.27623786 0.38981613 0.36010393 0.36829273 0.34445068 0.39643108 0.31860536
## 40 0.39888599 0.47704925 0.40218890 0.48868029 0.28668111 0.47843083 0.36037259
## 41 0.36260776 0.41636044 0.31601130 0.42755280 0.27413597 0.43671622 0.33247606
## 42 0.38940906 0.51957575 0.41356367 0.51741215 0.35431630 0.50778073 0.36964195
## 43 0.30612948 0.37868059 0.41013315 0.37461688 0.37270170 0.39169327 0.34082211
##            29         30         31         32         33         34         35
## 2                                                                              
## 3                                                                              
## 4                                                                              
## 5                                                                              
## 6                                                                              
## 7                                                                              
## 8                                                                              
## 9                                                                              
## 10                                                                             
## 11                                                                             
## 12                                                                             
## 13                                                                             
## 14                                                                             
## 15                                                                             
## 16                                                                             
## 17                                                                             
## 18                                                                             
## 19                                                                             
## 20                                                                             
## 21                                                                             
## 22                                                                             
## 23                                                                             
## 24                                                                             
## 25                                                                             
## 26                                                                             
## 27                                                                             
## 28                                                                             
## 29                                                                             
## 30 0.28761489                                                                  
## 31 0.46287302 0.36814740                                                       
## 32 0.46228374 0.34505810 0.22870155                                            
## 33 0.26368108 0.18906677 0.33046135 0.31955476                                 
## 34 0.53754417 0.41735613 0.50344295 0.54631163 0.49108800                      
## 35 0.47429391 0.34350089 0.31173390 0.31338954 0.33806433 0.36560303           
## 36 0.44678586 0.34681402 0.29034917 0.25006371 0.33504701 0.44991474 0.19691133
## 37 0.54140001 0.45007415 0.48304369 0.51568707 0.51666880 0.20830245 0.36445746
## 38 0.54339388 0.35378985 0.41883500 0.46266682 0.44455929 0.13875877 0.29460628
## 39 0.44085590 0.31886421 0.26762662 0.26822751 0.31510577 0.37242502 0.12242180
## 40 0.54389824 0.33004147 0.39302365 0.41968122 0.44721129 0.15583764 0.27878390
## 41 0.46879858 0.30327165 0.35034777 0.38845027 0.37972212 0.22919350 0.25153016
## 42 0.57924733 0.40876863 0.42365777 0.48878333 0.45229150 0.16419333 0.28451759
## 43 0.44836785 0.32143047 0.31259758 0.28524008 0.30839131 0.38416655 0.18347349
##            36         37         38         39         40         41         42
## 2                                                                              
## 3                                                                              
## 4                                                                              
## 5                                                                              
## 6                                                                              
## 7                                                                              
## 8                                                                              
## 9                                                                              
## 10                                                                             
## 11                                                                             
## 12                                                                             
## 13                                                                             
## 14                                                                             
## 15                                                                             
## 16                                                                             
## 17                                                                             
## 18                                                                             
## 19                                                                             
## 20                                                                             
## 21                                                                             
## 22                                                                             
## 23                                                                             
## 24                                                                             
## 25                                                                             
## 26                                                                             
## 27                                                                             
## 28                                                                             
## 29                                                                             
## 30                                                                             
## 31                                                                             
## 32                                                                             
## 33                                                                             
## 34                                                                             
## 35                                                                             
## 36                                                                             
## 37 0.44719426                                                                  
## 38 0.39465605 0.14830168                                                       
## 39 0.16639685 0.36839255 0.29841264                                            
## 40 0.37077815 0.24342127 0.12473690 0.26388658                                 
## 41 0.29699884 0.25928006 0.17152470 0.25072558 0.22152182                      
## 42 0.38679054 0.32295829 0.19008376 0.30280331 0.14932514 0.28281267           
## 43 0.15525227 0.37187109 0.33133935 0.16938179 0.32151504 0.25377276 0.34270760
perm<-adonis2(dist~Sample.Year*Site, data=Field_data_wide, permutations = 999, method="bray")
perm
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
## 
## adonis2(formula = dist ~ Sample.Year * Site, data = Field_data_wide, permutations = 999, method = "bray")
##                  Df SumOfSqs      R2      F Pr(>F)    
## Sample.Year       1   0.4548 0.13768 12.182  0.001 ***
## Site              3   1.3938 0.42195 12.445  0.001 ***
## Sample.Year:Site  1   0.0734 0.02221  1.965  0.062 .  
## Residual         37   1.3813 0.41817                  
## Total            42   3.3032 1.00000                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

check pairwise differences

adonis.pair(vegdist(RE2),Field_data_wide$Site)
##    combination  SumsOfSqs    MeanSqs   F.Model        R2     P.value
## 1 BUDD <-> ELD 0.08080964 0.08080964  1.794509 0.1136160 0.130869131
## 2  BUDD <-> QM 0.59581231 0.59581231 10.923091 0.3127756 0.000999001
## 3  BUDD <-> SC 0.71255094 0.71255094 15.714627 0.4803548 0.000999001
## 4   ELD <-> QM 0.37176558 0.37176558  7.320602 0.2496743 0.000999001
## 5   ELD <-> SC 0.47454411 0.47454411 12.294672 0.4504422 0.000999001
## 6    QM <-> SC 0.50150137 0.50150137  9.969194 0.2850850 0.000999001
##   P.value.corrected
## 1       0.130869131
## 2       0.001198801
## 3       0.001198801
## 4       0.001198801
## 5       0.001198801
## 6       0.001198801

BUDD and ELD are similar, but all else are different

check for dispersion

Zoop.bd <- betadisper(dist, Field_data_wide$Site)
Zoop.bd
## 
##  Homogeneity of multivariate dispersions
## 
## Call: betadisper(d = dist, group = Field_data_wide$Site)
## 
## No. of Positive Eigenvalues: 25
## No. of Negative Eigenvalues: 17
## 
## Average distance to median:
##   BUDD    ELD     QM     SC 
## 0.2047 0.1720 0.2223 0.1852 
## 
## Eigenvalues for PCoA axes:
## (Showing 8 of 42 eigenvalues)
##   PCoA1   PCoA2   PCoA3   PCoA4   PCoA5   PCoA6   PCoA7   PCoA8 
## 1.13037 0.73541 0.51736 0.28349 0.18825 0.14021 0.09795 0.08789
anova(Zoop.bd)
## Analysis of Variance Table
## 
## Response: Distances
##           Df   Sum Sq   Mean Sq F value Pr(>F)
## Groups     3 0.016178 0.0053928  1.3977  0.258
## Residuals 39 0.150476 0.0038584
permutest(Zoop.bd)
## 
## Permutation test for homogeneity of multivariate dispersions
## Permutation: free
## Number of permutations: 999
## 
## Response: Distances
##           Df   Sum Sq   Mean Sq      F N.Perm Pr(>F)
## Groups     3 0.016178 0.0053928 1.3977    999  0.264
## Residuals 39 0.150476 0.0038584

dispersion is not significant

run NMDS

NMDSmodel <- metaMDS(RE2, distance = "bray",trymax = 200)
## Run 0 stress 0.1559725 
## Run 1 stress 0.1559725 
## ... Procrustes: rmse 7.902993e-06  max resid 3.160344e-05 
## ... Similar to previous best
## Run 2 stress 0.1573886 
## Run 3 stress 0.1559726 
## ... Procrustes: rmse 3.088073e-05  max resid 0.0001437199 
## ... Similar to previous best
## Run 4 stress 0.1573886 
## Run 5 stress 0.1573887 
## Run 6 stress 0.2176344 
## Run 7 stress 0.2130864 
## Run 8 stress 0.2296615 
## Run 9 stress 0.1559725 
## ... New best solution
## ... Procrustes: rmse 1.307477e-06  max resid 3.929889e-06 
## ... Similar to previous best
## Run 10 stress 0.2180867 
## Run 11 stress 0.1559725 
## ... Procrustes: rmse 1.672387e-06  max resid 5.177526e-06 
## ... Similar to previous best
## Run 12 stress 0.1730959 
## Run 13 stress 0.1573886 
## Run 14 stress 0.1786679 
## Run 15 stress 0.1743372 
## Run 16 stress 0.1559725 
## ... Procrustes: rmse 2.800454e-06  max resid 8.588841e-06 
## ... Similar to previous best
## Run 17 stress 0.1573888 
## Run 18 stress 0.1786678 
## Run 19 stress 0.2245603 
## Run 20 stress 0.1559725 
## ... Procrustes: rmse 1.840165e-06  max resid 8.698617e-06 
## ... Similar to previous best
## *** Best solution repeated 4 times
NMDSmodel
## 
## Call:
## metaMDS(comm = RE2, distance = "bray", trymax = 200) 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     RE2 
## Distance: bray 
## 
## Dimensions: 2 
## Stress:     0.1559725 
## Stress type 1, weak ties
## Best solution was repeated 4 times in 20 tries
## The best solution was from try 9 (random start)
## Scaling: centring, PC rotation, halfchange scaling 
## Species: expanded scores based on 'RE2'

Plot NMDS

plot(NMDSmodel)

get datascores

data.scores<-vegan::scores(NMDSmodel,display="sites")
data.scores<- as.data.frame(data.scores)

add columns back in

colnames(Field_data_wide)
##  [1] "Station_unique"              "Site"                       
##  [3] "Sample.Year"                 "Location"                   
##  [5] "Sample.Month"                "jelly_biomass"              
##  [7] "Smean"                       "Omean"                      
##  [9] "Tmean"                       "pHmean"                     
## [11] "Fmean"                       "PO4"                        
## [13] "SiOH4"                       "NO3"                        
## [15] "NO2"                         "NH4"                        
## [17] "CALANOIDA_Medium"            "AETIDEUS_Female, Adult"     
## [19] "JELLYFISHES_Ephyra"          "BARNACLES_Cyprid larva"     
## [21] "BARNACLES_Nauplius"          "BIVALVIA_Veliger"           
## [23] "BRACHYURA_Unknown"           "BRYOZOA_Cyphonaut"          
## [25] "CALANOIDA_Copepodite"        "CALANOIDA_Large"            
## [27] "CALANOIDA_Small"             "CALANUS PACIFICUS"          
## [29] "CENTROPAGES_Female, Adult"   "Chaet/Euphaus Egg_Egg"      
## [31] "CHAETOGNATHA_Unknown"        "CLADOCERA_Unknown"          
## [33] "COPEPODA_Nauplius"           "CRABS_Megalopa"             
## [35] "CRABS_Zoea"                  "DITRICHOCORYCAEUS ANGLICUS" 
## [37] "ECHINODERMATA_Pluteus larva" "EUPHAUSIIDAE_Calyptopis"    
## [39] "EUPHAUSIIDAE_Furcilia"       "EUPHAUSIIDAE_Nauplius"      
## [41] "FISH_Egg"                    "FISH_Larva"                 
## [43] "GAETANUS_Adult"              "GAMMARIDEA_Unknown"         
## [45] "GASTROPODA_Veliger"          "HARPACTICOIDA_Unknown"      
## [47] "HYPERIIDEA_Unknown"          "Insecta_Unknown"            
## [49] "JELLYFISHES_Medusa"          "LARVACEA_Unknown"           
## [51] "LITTORINA_Egg"               "METRIDIA_Female, Adult"     
## [53] "OITHONA_Unknown"             "POLYCHAETA_Unknown"         
## [55] "SHRIMP_Unknown"              "Siphonophore"               
## [57] "TORTANUS DISCAUDATUS_Adult"  "UNKNOWN_Larva"
data.scores$Sample.Year = Field_data_wide$Sample.Year
data.scores$Sample.Month = Field_data_wide$Sample.Month
data.scores$Site = Field_data_wide$Site
data.scores$Location = Field_data_wide$Location
data.scores$jelly_biomass = Field_data_wide$jelly_biomass
data.scores$Location = Field_data_wide$Location
data.scores$NO3 = Field_data_wide$NO3
data.scores$PO4 = Field_data_wide$PO4
data.scores$SiOH4 = Field_data_wide$SiOH4
data.scores$NO2 = Field_data_wide$NO2
data.scores$NH4 = Field_data_wide$NH4
data.scores$Tmean = Field_data_wide$Tmean
data.scores$Fmean = Field_data_wide$Fmean
data.scores$Omean = Field_data_wide$Omean
data.scores$pHmean = Field_data_wide$pHmean
data.scores$Smean = Field_data_wide$Smean

plot data scores

site <- ggplot(data.scores, aes(x = NMDS1, y = NMDS2,colour = Site)) + 
  labs(title="Experiments")+stat_ellipse()+geom_point(aes(colour = Site))+theme_bw()+theme(panel.grid.major = element_blank(),
                                                                                           panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"))
site

create environmetal fit table

colnames(Field_data_wide)
##  [1] "Station_unique"              "Site"                       
##  [3] "Sample.Year"                 "Location"                   
##  [5] "Sample.Month"                "jelly_biomass"              
##  [7] "Smean"                       "Omean"                      
##  [9] "Tmean"                       "pHmean"                     
## [11] "Fmean"                       "PO4"                        
## [13] "SiOH4"                       "NO3"                        
## [15] "NO2"                         "NH4"                        
## [17] "CALANOIDA_Medium"            "AETIDEUS_Female, Adult"     
## [19] "JELLYFISHES_Ephyra"          "BARNACLES_Cyprid larva"     
## [21] "BARNACLES_Nauplius"          "BIVALVIA_Veliger"           
## [23] "BRACHYURA_Unknown"           "BRYOZOA_Cyphonaut"          
## [25] "CALANOIDA_Copepodite"        "CALANOIDA_Large"            
## [27] "CALANOIDA_Small"             "CALANUS PACIFICUS"          
## [29] "CENTROPAGES_Female, Adult"   "Chaet/Euphaus Egg_Egg"      
## [31] "CHAETOGNATHA_Unknown"        "CLADOCERA_Unknown"          
## [33] "COPEPODA_Nauplius"           "CRABS_Megalopa"             
## [35] "CRABS_Zoea"                  "DITRICHOCORYCAEUS ANGLICUS" 
## [37] "ECHINODERMATA_Pluteus larva" "EUPHAUSIIDAE_Calyptopis"    
## [39] "EUPHAUSIIDAE_Furcilia"       "EUPHAUSIIDAE_Nauplius"      
## [41] "FISH_Egg"                    "FISH_Larva"                 
## [43] "GAETANUS_Adult"              "GAMMARIDEA_Unknown"         
## [45] "GASTROPODA_Veliger"          "HARPACTICOIDA_Unknown"      
## [47] "HYPERIIDEA_Unknown"          "Insecta_Unknown"            
## [49] "JELLYFISHES_Medusa"          "LARVACEA_Unknown"           
## [51] "LITTORINA_Egg"               "METRIDIA_Female, Adult"     
## [53] "OITHONA_Unknown"             "POLYCHAETA_Unknown"         
## [55] "SHRIMP_Unknown"              "Siphonophore"               
## [57] "TORTANUS DISCAUDATUS_Adult"  "UNKNOWN_Larva"
Zoo.env <- data.frame(matrix(ncol = 0, nrow=43))
Zoo.env$PO4<-as.numeric(data.scores$PO4)
Zoo.env$SiOH4<-as.numeric(data.scores$SiOH4)
Zoo.env$NO3<-as.numeric(data.scores$NO3)
Zoo.env$NO2<-as.numeric(data.scores$NO2)
Zoo.env$NH4<-as.numeric(data.scores$NH4)
Zoo.env$Temp<-data.scores$Tmean
Zoo.env$pH<-data.scores$pHmean
Zoo.env$Chla<-data.scores$Fmean
Zoo.env$DO<-data.scores$Omean
Zoo.env$Salinity<-data.scores$Smean

env <- envfit(NMDSmodel, Zoo.env, na.rm = TRUE,perm = 999)
env
## 
## ***VECTORS
## 
##             NMDS1    NMDS2     r2 Pr(>r)    
## PO4      -0.44398 -0.89604 0.3729  0.001 ***
## SiOH4    -0.76676 -0.64194 0.5566  0.001 ***
## NO3       0.96481  0.26295 0.0757  0.222    
## NO2       0.98821 -0.15311 0.0378  0.504    
## NH4       0.64489 -0.76427 0.3379  0.001 ***
## Temp     -0.72772 -0.68588 0.4650  0.001 ***
## pH       -0.61640  0.78744 0.1014  0.110    
## Chla     -0.42908 -0.90327 0.0883  0.151    
## DO       -0.37501  0.92702 0.0035  0.933    
## Salinity  0.92168  0.38795 0.4324  0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation: free
## Number of permutations: 999
arrow_factor <- ordiArrowMul(env)
env.scrs <- as.data.frame(vegan::scores(env, display = "vectors")) * arrow_factor
env.scrs <- cbind(env.scrs, Species = rownames(env.scrs), Pvalues = env$vectors$pvals, R_squared = env$vectors$r)
env.scrs <- subset(env.scrs, Pvalues < 0.05)
env.scrs
##               NMDS1      NMDS2  Species Pvalues R_squared
## PO4      -0.3355157 -0.6771293      PO4   0.001 0.3729146
## SiOH4    -0.7078935 -0.5926545    SiOH4   0.001 0.5565902
## NH4       0.4638809 -0.5497550      NH4   0.001 0.3378751
## Temp     -0.6141024 -0.5787971     Temp   0.001 0.4650228
## Salinity  0.7500000  0.3156856 Salinity   0.001 0.4323919

extract hulls

BUDD <- data.scores[data.scores$Site == "BUDD", ][chull(data.scores[data.scores$Site == 
                                                                      "BUDD", c("NMDS1", "NMDS2")]), ]  
ELD <- data.scores[data.scores$Site == "ELD", ][chull(data.scores[data.scores$Site == 
                                                                    "ELD", c("NMDS1", "NMDS2")]), ]  
QM <- data.scores[data.scores$Site == "QM", ][chull(data.scores[data.scores$Site == 
                                                                             "QM", c("NMDS1", "NMDS2")]), ]
SC <- data.scores[data.scores$Site == "SC", ][chull(data.scores[data.scores$Site == 
                                                                             "SC", c("NMDS1", "NMDS2")]), ]

get hull data

hull.data <- rbind(BUDD, ELD, QM,SC)  #combine grp.a and grp.b
hull.data
##          NMDS1        NMDS2 Sample.Year Sample.Month Site Location
## 9  -0.17400779 -0.273598675        2020          Aug BUDD       OB
## 6  -0.24452433 -0.345284175        2020          Aug BUDD       OS
## 8  -0.43885781 -0.369995917        2020          Aug BUDD       OS
## 4  -0.59844925 -0.333457290        2021          Aug BUDD       OS
## 7  -0.41589361  0.174444634        2020          Aug BUDD       OS
## 2  -0.17591681 -0.215335337        2020          Aug BUDD       OS
## 10 -0.19023528 -0.262585290        2020          Aug  ELD       OB
## 15 -0.30529169 -0.307374493        2020          Aug  ELD       OS
## 14 -0.24889129  0.024054925        2020          Aug  ELD       OS
## 11 -0.19857227  0.096906158        2020          Aug  ELD       OS
## 13 -0.16263327  0.074507217        2020          Aug  ELD       OS
## 16 -0.14791343 -0.033051784        2020          Aug  ELD       OS
## 26  0.46728980  0.074965303        2020          Aug   QM       IN
## 24  0.16079304 -0.271423114        2020          Aug   QM       OS
## 19 -0.10182866  0.149197354        2021          Aug   QM       OB
## 29 -0.12875981  0.546351703        2021          Aug   QM       IN
## 20  0.52091223  0.169899719        2020          Aug   QM       IN
## 34  0.57037399 -0.245648153        2021          Aug   SC       IN
## 37  0.54417077 -0.341982643        2021          Aug   SC       IN
## 35  0.16666202 -0.099170145        2021          Aug   SC       OS
## 36  0.02310567 -0.001606152        2021          Aug   SC       OS
## 43  0.12938352 -0.006267564        2021          Aug   SC       OB
## 40  0.47995655 -0.094050052        2021          Aug   SC       IN
##    jelly_biomass   NO3  PO4 SiOH4  NO2  NH4    Tmean     Fmean     Omean
## 9           1.00  4.05 1.59 41.77 0.23 0.88 15.83885  4.749887  8.552275
## 6           1.00  0.39 1.49 47.29 0.04 0.27 16.56028  2.737618  5.469788
## 8           1.00  0.11 1.44 46.81 0.02 0.77 16.52514  4.755962  5.304376
## 4           1.00  0.06 1.47 46.39 0.01 0.21 16.04135 14.829841  7.300433
## 7           1.00  0.07 1.48 41.13 0.02 0.17 17.64788 12.125550 12.115514
## 2           1.00  0.44 1.20 39.95 0.05 0.22 15.53064  9.571747  8.389519
## 10          1.00  0.43 1.35 45.96 0.05 0.17 16.80637 10.387434  9.303687
## 15          1.00  0.09 1.84 55.11 0.01 1.28 17.75457 32.129292  9.130868
## 14          1.00  0.04 1.49 50.95 0.02 0.07 17.06234  9.416085  8.569962
## 11          1.00  0.12 1.31 47.42 0.02 0.18 17.41564  8.784905 11.467702
## 13          1.00  0.12 1.49 44.43 0.03 0.11 16.58672 15.144218  9.412461
## 16          1.00  0.10 2.05 44.88 0.04 0.14 17.39969  9.509445  6.261818
## 26        750.91  0.12 0.58 31.48 0.03 0.34 14.64915 12.076774  9.704596
## 24          1.00  0.05 0.57 31.11 0.02 0.09 15.24269 10.432785 10.927995
## 19          1.00  1.30 0.83 31.12 0.17 0.00 14.00923  6.493828  7.992795
## 29        157.51  0.21 0.45 35.62 0.01 0.00 15.41718  8.036462  8.324053
## 20        585.74  0.68 0.79 35.04 0.11 0.17 14.89302  9.547998  9.608995
## 34        535.71  3.03 1.30 23.89 0.20 1.13 14.74759  7.658819  5.678630
## 37         49.03  3.53 1.21 44.94 0.24 2.81 15.04160 13.435548  7.115272
## 35          1.00  8.79 1.62 32.88 0.35 1.32 14.62790  1.789107  7.250949
## 36          1.00 13.40 1.86 34.06 0.41 1.29 14.17569  1.450932  6.755145
## 43          1.00 10.51 1.67 32.74 0.36 1.17 14.45317  1.979085  7.252958
## 40       1383.86  4.09 1.33 33.65 0.27 1.15 15.36779  9.509776  9.398083
##      pHmean    Smean
## 9  8.405864 29.44947
## 6  8.623171 29.23359
## 8  8.529213 29.20804
## 4  8.234621 29.36213
## 7  9.359744 28.41428
## 2  8.337510 29.46414
## 10 8.557729 29.37036
## 15 8.457278 29.22018
## 14 9.068842 29.26878
## 11 9.088341 28.59893
## 13 9.102089 29.33763
## 16 8.854672 28.56580
## 26 8.572626 29.71244
## 24 8.686565 29.69010
## 19 8.672591 29.87442
## 29 8.787757 29.67637
## 20 8.511859 29.71562
## 34 8.490383 29.81246
## 37 8.630169 29.78088
## 35 8.624405 29.90188
## 36 8.585192 29.96481
## 43 8.604166 29.93015
## 40 8.751158 29.75891

make plot

zoop_inlet<-ggplot() + 
  geom_polygon(data=hull.data,aes(x=NMDS1,y=NMDS2,fill=Site,group=Site),alpha=0.20, size=0.1, linetype=1, colour="black") + # add the convex hulls
  geom_point(data=data.scores,aes(x=NMDS1,y=NMDS2,shape=Site,colour=Site),size=1) + # add the point markers
  scale_colour_manual(labels = c("Budd Inlet","Eld Inlet", "Quartermaster Harbor","Sinclair Inlet"),values=c("#619CFF",  "#F8766D","#00BA38","#C77CFF")) +
  scale_fill_manual(labels = c("Budd Inlet","Eld Inlet", "Quartermaster Harbor","Sinclair Inlet"),values=c("#619CFF", "#F8766D","#00BA38","#C77CFF"))+
  scale_shape_manual(labels = c("Budd Inlet","Eld Inlet", "Quartermaster Harbor","Sinclair Inlet"),values=c(16, 18,17,15))+
  coord_equal() +
  theme_bw() +
  ylim(-1,1)+
  xlim(-1,1)+
  theme(legend.key.size = unit(2, 'mm'))+
  theme(
    axis.title.x = element_text(size=9), 
    axis.title.y = element_text(size=9),
    # remove y-axis labels
    panel.background = element_blank(), 
    panel.grid.major = element_blank(),
    axis.text=element_text(size=7),
    panel.grid.minor = element_blank(),  
    plot.background = element_blank(),
    legend.text = element_text(size=5),
    legend.title = element_text(size=7),legend.position=c(0.81, 0.82))+
  geom_segment(data = env.scrs,size=0.2,
               aes(x = 0, xend = NMDS1, y = 0, yend = NMDS2),
               arrow = arrow(length = unit(0.08, "cm")), colour = "black")+
  geom_label_repel(data = env.scrs, aes(x = NMDS1, y = NMDS2, label = Species),
                  size = 1.8, fontface="bold", fill="white", label.padding = unit(0.15, "lines"), box.padding = unit(0.16, "lines"), label.size = 0.05)+
  annotate("text", label = "2D Stress: 0.16", x = 0.62, y = 1, size = 2.5, colour = "black")+
  annotate("text",x=-0.95, y=0.95, label= "a",size=6)+
  theme(panel.background = element_rect(fill="white"),plot.background = element_rect(fill = "white",linewidth = 0))

zoop_inlet

Microplankton Inlets

Load data

load raw biovolume data - make sure to read without headers for easier wrangling in the future

data_2019 <- read.csv("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/data/current_data/Microplankton/Microplankton_biovolume_2019.csv", header=FALSE)

data_2020 <- read.csv("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/data/current_data/Microplankton/Microplankton_biovolume_2020.csv", header=FALSE)

data_Jul_2021 <- read.csv("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/data/current_data/Microplankton/Microplankton_biovolume_July_2021.csv", header=FALSE)

data_Aug_2021 <- read.csv("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/data/current_data/Microplankton/Microplankton_biovolume_August_2021.csv", header=FALSE)

reformat dataframe

#remove first row
data_2019_reformat <- data_2019[-(1),]

#make first row column names
data_2019_reformat<-data_2019_reformat %>%
  row_to_names(row_number = 1)

#wide to long format
data_2019_reformat<-data_2019_reformat %>%
  melt(id.vars=c(1:9))

subset

data_2019_reformat<-subset(data_2019_reformat,Type=="Field")

#remove unnecessary columns
data_2019_reformat <- data_2019_reformat[, -c(2,4,6:8)]

reformat

#split date and time into two columns
data_2019_reformat[c('Date', 'Time')] <- str_split_fixed(data_2019_reformat$COLLECTDATE, ' ', 2)
data_2019_reformat <- data_2019_reformat[, -c(4)]

#add month
data_2019_reformat<-data_2019_reformat %>%
  mutate(Month = case_when(
    startsWith(Date, "9") ~ "Sep",
    startsWith(Date, "8") ~ "Aug"
    ))
#rename columns
colnames(data_2019_reformat)[1] ="Station"
colnames(data_2019_reformat)[2] ="Inlet"
colnames(data_2019_reformat)[3] ="Location"
colnames(data_2019_reformat)[4] ="taxa"
colnames(data_2019_reformat)[5] ="biovolume"

#add year
data_2019_reformat$Year="2019"

#reorder columns
data_2019_reformat <- data_2019_reformat[, c(1,2, 3,9, 7,8,6, 4,5)]

#recode location
data_2019_reformat$Location <- gsub("Out of smack", "OS", data_2019_reformat$Location)
data_2019_reformat$Location <- gsub("In smack", "IN", data_2019_reformat$Location)
data_2019_reformat$Location <- gsub("Outside bay", "OB", data_2019_reformat$Location)

#recode inlets
data_2019_reformat$Inlet <- gsub("Quartermaster", "QM", data_2019_reformat$Inlet)
data_2019_reformat$Inlet <- gsub("Sinclair", "SC", data_2019_reformat$Inlet)

rename stations *I matched the code names to station numbers using recorded times and

data_2019_reformat$Station <-recode(data_2019_reformat$Station, 
                                 'L73161-1'='QM1',
                                 'L73161-2'='QM3',
                                 'L73161-3'='QM5',
                                 'L73161-4'='QM2',
                                 'L73263-1'='SC1',
                                 'L73263-2'='SC3',
                                 'L73263-3'='SC5')

remove incomplete rows

data_2019_reformat <- data_2019_reformat[-which(data_2019_reformat$biovolume == ""), ]

reformat dataframe

#remove excess rows at bottom of dataframe
data_2020_reformat <- data_2020[-(27:1000),]

#remove first row
data_2020_reformat <- data_2020_reformat[-(1),]

#make first row column names
data_2020_reformat<-data_2020_reformat %>%
  row_to_names(row_number = 1)

#wide to long format
data_2020_reformat<-data_2020_reformat %>%
  melt(id.vars=c(1:4))

remove unnecessary columns

data_2020_reformat <- data_2020_reformat[, -c(1,2)]

rename stations

data_2020_reformat$Station <-recode(data_2020_reformat$Station, 
                                 'Budd 1S'='BUDD1s',
                                 'Budd 2C'='BUDD2a',
                                 'Budd 2S'='BUDD2s',
                                 'Budd 3C'='BUDD3',
                                 'Budd 3S'='BUDD3s',
                                 'Budd 4C'='BUDD4',
                                 'Budd 4S'='BUDD4s',
                                 'Budd 5C'='BUDD5',
                                 'Budd 7C'='BUDD7',
                                 'Eld 1C'='Eld1',
                                 'Eld 1S'='Eld1s',
                                 'Eld 2C'='Eld2',
                                 'Eld 2S'='Eld2s',
                                 'Eld 3C'='Eld3',
                                 'Eld 3S'='Eld3s',
                                 'Eld 4C'='Eld4',
                                 'Eld 4S'='Eld4s',
                                 'Eld 5C'='Eld5',
                                 'Qmaster 3C'='QM3a',
                                 'Qmaster 4C'='QM4a',
                                 'Qmaster 5C'='QM5a',
                                 'Qmaster 7C'='QM7a',
                                 'Qmaster 8C'='QM8a',
                                 'Totten 1S'='Totten'
                                )

list of station names from database

#subset
FieldData<-subset(Database, Trial.Type=="Field")
#remove commas from jelly density
FieldData$Jelly.Density <- as.numeric(gsub(",","",FieldData$Jelly.Density..g.m3.))


Stations<-FieldData %>%
  group_by(Site,Location,Station,Sample.Date,Sample.Time,Sample.Year,Latitude, Longitude)%>%
  summarise(jelly_biomass=mean(Jelly.Density))

add inlet and location

#Inlet
data_2020_reformat$Inlet <- Stations$Site[match(data_2020_reformat$Station, Stations$Station)]
data_2020_reformat$Location <- Stations$Location[match(data_2020_reformat$Station, Stations$Station)]

reformat

#split date and time into two columns
data_2020_reformat[c('Date', 'Time')] <- str_split_fixed(data_2020_reformat$COLLECTDATE, ' ', 2)
data_2020_reformat <- data_2020_reformat[, -c(2)]

#add month
data_2020_reformat<-data_2020_reformat %>%
  mutate(Month = case_when(
    startsWith(Date, "9") ~ "Sep",
    startsWith(Date, "8") ~ "Aug",
    startsWith(Date,"7") ~ "Jul"
    ))

#add year
data_2020_reformat$Year="2020"

#remove station
data_2020_reformat <- data_2020_reformat[, -c(1)]

#rename columns
colnames(data_2020_reformat)[1] ="taxa"
colnames(data_2020_reformat)[2] ="biovolume"

#reorder columns
data_2020_reformat <- data_2020_reformat[, c(3,4,5,9,7,8,6,1,2)]

remove incomplete rows

data_2020_reformat <- data_2020_reformat[-which(data_2020_reformat$biovolume == ""), ]

data_2020_reformat<-data_2020_reformat[complete.cases(data_2020_reformat),]

2021 data July

#remove first row
data_2021_Jul_reformat <- data_Jul_2021[-(1),]

#make first row column names
data_2021_Jul_reformat<-data_2021_Jul_reformat %>%
  row_to_names(row_number = 1)

#wide to long format
data_2021_Jul_reformat<-data_2021_Jul_reformat %>%
  melt(id.vars=c(1:2))

Aug

#remove first row
data_2021_Aug_reformat <- data_Aug_2021[-(1),]

#make first row column names
data_2021_Aug_reformat<-data_2021_Aug_reformat %>%
  row_to_names(row_number = 1)

#wide to long format
data_2021_Aug_reformat<-data_2021_Aug_reformat %>%
  melt(id.vars=c(1:2))

I decided only to use August samples (because of poor-quality samples in July)

data_2021_reformat<-rbind(data_2021_Aug_reformat,data_2021_Jul_reformat)

match with stations

#import data
Stations_2021 <- read.csv("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/data/current_data/Microplankton/Microplankton_2021_Stations.csv")

data_2021_reformat$Station <- Stations_2021$Station[match(data_2021_reformat$LABSAMPLENUM, Stations_2021$Sample_num)]

rename stations

data_2021_reformat$Station <-recode(data_2021_reformat$Station, 
                                 'QM 10'='QM10',
                                 'QM 5'='QM5c',
                                 'QM 6'='QM6c',
                                 'QM 8'='QM8c',
                                 'QM 9'='QM9',
                                 'QMH 1'='QM1',
                                 'QMH 3'='QM3',
                                 'QMH 5'='QM5',
                                 'SC 4'='SC4c',
                                 'SC 5'='SC5d',
                                 'SC 6'='SC6c',
                                 'SC 7'='SC7',
                                 'SC 8'='SC8',
                                 'Sinclair 1'='SC1a',
                                 'Sinclair 3'='SC3a',
                                 'Sinclair 6'='SC6a'
                                )

remove old station column

data_2021_reformat <- data_2021_reformat[, -c(1)]

add inlet and location

#Inlet
data_2021_reformat$Inlet <- Stations$Site[match(data_2021_reformat$Station, Stations$Station)]
data_2021_reformat$Location <- Stations$Location[match(data_2021_reformat$Station, Stations$Station)]

reformat

#split date and time into two columns
data_2021_reformat[c('Date', 'Time')] <- str_split_fixed(data_2021_reformat$COLLECTDATE, ' ', 2)
data_2021_reformat <- data_2021_reformat[, -c(1)]

#add month
data_2021_reformat<-data_2021_reformat %>%
  mutate(Month = case_when(
    startsWith(Date, "9") ~ "Sep",
    startsWith(Date, "8") ~ "Aug",
    startsWith(Date,"7") ~ "Jul"
    ))

#add year
data_2021_reformat$Year="2021"

#rename columns
colnames(data_2021_reformat)[1] ="taxa"
colnames(data_2021_reformat)[2] ="biovolume"

#reorder columns
data_2021_reformat <- data_2021_reformat[, c(3,4,5,9,7,8,6,1,2)]

remove incomplete rows

data_2021_reformat <- data_2021_reformat[-which(data_2021_reformat$biovolume == ""), ]
data_2021_reformat <- data_2021_reformat[complete.cases(data_2021_reformat), ]

Add years together

Microplankton<-rbind(data_2019_reformat,data_2020_reformat,data_2021_reformat)

merge microplankton with database

Field_data_merged <- merge(Microplankton,CTD_Nutrients_full,by.x = "Station",by.y="Station_unique", all.x = TRUE)

remove rows without environmental data

Field_data_env<-Field_data_merged[complete.cases(Field_data_merged), ]

Convert from long to wide format

colnames(Field_data_env)
##  [1] "Station"   "Inlet"     "Location"  "Year"      "Time"      "Month"    
##  [7] "Date"      "taxa"      "biovolume" "Station.y" "Smean"     "Smin"     
## [13] "Smax"      "Ssd"       "Omean"     "Omin"      "Omax"      "Osd"      
## [19] "Tmean"     "Tmin"      "Tmax"      "Tsd"       "pHmean"    "pHmin"    
## [25] "pHmax"     "pHsd"      "Fmean"     "Fmin"      "Fmax"      "Fsd"      
## [31] "PO4"       "SiOH4"     "NO3"       "NO2"       "NH4"
Field_data_wide<-dcast(Field_data_env, Station+Inlet+Year+Location+Month+Smean+Omean+Tmean+pHmean+Fmean+PO4+SiOH4+NO3+NO2+NH4~ taxa,value.var = "biovolume")

remove non-data columns, convert to proportions, and arcsine sqrt transformation

Field_data_wide$Inlet=as.factor(Field_data_wide$Inlet)
RE2<- Field_data_wide[,16:ncol(Field_data_wide)]
#replace N/A with 0
RE2[is.na(RE2)] <- 0
#convert to numeric
RE2 <- RE2 %>% mutate_at(1:53, as.numeric)
#convert to proportions
RE2<-RE2/rowSums(RE2)
#arcsine sqrt transformation
RE2<-asin(sqrt(RE2))
RE3<-as.matrix(RE2)

PERMANOVA

dist<-vegdist(RE2, method='bray')
dist
##            1         2         3         4         5         6         7
## 2  0.2835093                                                            
## 3  0.4022661 0.2536224                                                  
## 4  0.4433241 0.5251578 0.4137488                                        
## 5  0.4628355 0.4881481 0.4148274 0.3123996                              
## 6  0.2792134 0.2826859 0.3183279 0.3959428 0.4374215                    
## 7  0.5471741 0.6665270 0.6449242 0.4476980 0.3451584 0.5668680          
## 8  0.5802150 0.5429246 0.4522873 0.3453668 0.4934362 0.5161665 0.6418739
## 9  0.3722543 0.3084771 0.3544986 0.4974420 0.4845630 0.3715986 0.6347333
## 10 0.4319293 0.4796643 0.3801526 0.4292610 0.3953649 0.4489907 0.5907500
## 11 0.2960793 0.3168393 0.3360163 0.4106901 0.4394444 0.3025671 0.5688022
## 12 0.2673996 0.2765162 0.2699544 0.4406026 0.4456738 0.3054857 0.6001599
## 13 0.3678063 0.2608733 0.2213643 0.4483110 0.4307482 0.3046521 0.6173860
## 14 0.3128380 0.1812783 0.3733253 0.5617776 0.6116463 0.2999837 0.6969105
## 15 0.3421551 0.2861322 0.2655608 0.4638314 0.4476535 0.3340602 0.6363579
## 16 0.7328427 0.8302501 0.8126487 0.7433998 0.7237487 0.8263733 0.7807591
## 17 0.6437090 0.6564408 0.5837285 0.4383463 0.5760430 0.6200226 0.7081169
## 18 0.6516186 0.6191240 0.6361413 0.5729103 0.5825978 0.6453632 0.6847633
## 19 0.6471093 0.6319474 0.5663056 0.5029863 0.5455918 0.6120172 0.6882223
## 20 0.7163929 0.8468520 0.8151784 0.7317724 0.7108231 0.8198320 0.7420621
## 21 0.7280469 0.8478319 0.8075338 0.7367995 0.7557482 0.8343586 0.7323272
## 22 0.5679799 0.5507830 0.5540738 0.4982471 0.4808312 0.5658028 0.6499347
## 23 0.6568460 0.6258438 0.5243446 0.5625907 0.5471532 0.6619162 0.6796746
## 24 0.7507916 0.8340036 0.8020014 0.7276576 0.7299394 0.8010940 0.7350500
## 25 0.7101690 0.7383110 0.6932979 0.7314379 0.6379466 0.7906359 0.7371772
## 26 0.5687431 0.5635009 0.5026260 0.5538449 0.5108737 0.5777808 0.6732385
## 27 0.5919732 0.5698930 0.5602448 0.5892107 0.5339290 0.6256560 0.7310100
## 28 0.6917583 0.6593027 0.5840605 0.6623454 0.5842569 0.7142276 0.7115555
##            8         9        10        11        12        13        14
## 2                                                                       
## 3                                                                       
## 4                                                                       
## 5                                                                       
## 6                                                                       
## 7                                                                       
## 8                                                                       
## 9  0.3517135                                                            
## 10 0.3655783 0.4237822                                                  
## 11 0.4182331 0.2419642 0.4014312                                        
## 12 0.4528588 0.3115909 0.3893857 0.3028477                              
## 13 0.4187520 0.2770470 0.3218632 0.2773330 0.2330670                    
## 14 0.5421401 0.3284278 0.5494317 0.3248171 0.3046764 0.3184443          
## 15 0.4557511 0.2974480 0.3423567 0.3230771 0.2919002 0.1612898 0.3966616
## 16 0.6346867 0.6994928 0.6388191 0.7086950 0.7268541 0.7472742 0.8477561
## 17 0.3413255 0.5490683 0.4541654 0.5239749 0.5978644 0.5207562 0.7126546
## 18 0.4481092 0.4936505 0.5357774 0.4713578 0.6027040 0.5992461 0.6594413
## 19 0.3938958 0.5126521 0.4425126 0.4418894 0.5497372 0.5463053 0.6706367
## 20 0.6753500 0.6942321 0.6158245 0.7357465 0.7335589 0.7616957 0.8897452
## 21 0.6344484 0.7176901 0.6476329 0.7232073 0.7063881 0.7646246 0.8578169
## 22 0.4128565 0.4174665 0.4967956 0.4179520 0.5072772 0.5206158 0.6174019
## 23 0.4181977 0.5324818 0.5034694 0.5063635 0.5151309 0.5318538 0.6726349
## 24 0.6668907 0.7002962 0.6173817 0.7588942 0.7535184 0.7624517 0.8575730
## 25 0.6948938 0.6752698 0.6082165 0.6838646 0.7366737 0.6374762 0.8174478
## 26 0.5416611 0.5631356 0.4405792 0.5138768 0.5607210 0.4649592 0.6369335
## 27 0.5725848 0.5576540 0.5312727 0.5295620 0.5770912 0.5547784 0.6189791
## 28 0.6137689 0.6272247 0.5902281 0.6256446 0.6351674 0.5802760 0.7668549
##           15        16        17        18        19        20        21
## 2                                                                       
## 3                                                                       
## 4                                                                       
## 5                                                                       
## 6                                                                       
## 7                                                                       
## 8                                                                       
## 9                                                                       
## 10                                                                      
## 11                                                                      
## 12                                                                      
## 13                                                                      
## 14                                                                      
## 15                                                                      
## 16 0.7230106                                                            
## 17 0.5260922 0.5680286                                                  
## 18 0.5680171 0.6024476 0.3038750                                        
## 19 0.5586005 0.5922184 0.2266748 0.2181010                              
## 20 0.7281707 0.3677178 0.6511100 0.6841237 0.6517752                    
## 21 0.7537381 0.3099743 0.5851897 0.5799960 0.5967391 0.4203620          
## 22 0.4752896 0.6186037 0.3210259 0.2298007 0.2518810 0.6926990 0.6556961
## 23 0.5670722 0.6961606 0.3457832 0.2623563 0.2764905 0.7521812 0.6700302
## 24 0.7417337 0.3100925 0.6152549 0.6448093 0.6254478 0.3333600 0.3406361
## 25 0.6017609 0.6865585 0.5315697 0.4848176 0.5246755 0.7122829 0.7628314
## 26 0.4158992 0.7236132 0.5454236 0.4945140 0.5541100 0.7731128 0.7191876
## 27 0.5382618 0.7453462 0.5911548 0.4770680 0.5678338 0.7936614 0.7389165
## 28 0.5622309 0.6955483 0.4436715 0.4177974 0.4588373 0.7526371 0.6964428
##           22        23        24        25        26        27
## 2                                                             
## 3                                                             
## 4                                                             
## 5                                                             
## 6                                                             
## 7                                                             
## 8                                                             
## 9                                                             
## 10                                                            
## 11                                                            
## 12                                                            
## 13                                                            
## 14                                                            
## 15                                                            
## 16                                                            
## 17                                                            
## 18                                                            
## 19                                                            
## 20                                                            
## 21                                                            
## 22                                                            
## 23 0.2741336                                                  
## 24 0.6573938 0.7209077                                        
## 25 0.4610717 0.5267577 0.7351678                              
## 26 0.4714846 0.5322208 0.7407831 0.3507045                    
## 27 0.4628805 0.5682944 0.8018350 0.3573524 0.2028592          
## 28 0.4030441 0.4497730 0.7256330 0.2665378 0.3185171 0.3520307
perm<-adonis2(dist~Inlet, data=Field_data_wide, permutations = 999, method="bray")
perm
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
## 
## adonis2(formula = dist ~ Inlet, data = Field_data_wide, permutations = 999, method = "bray")
##          Df SumOfSqs      R2      F Pr(>F)    
## Inlet     3   2.0872 0.47416 7.2138  0.001 ***
## Residual 24   2.3147 0.52584                  
## Total    27   4.4019 1.00000                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

check pairwise differences

adonis.pair(vegdist(RE2),Field_data_wide$Inlet)
##    combination SumsOfSqs   MeanSqs   F.Model        R2     P.value
## 1 BUDD <-> ELD 0.1505280 0.1505280  1.813845 0.1224426 0.091908092
## 2  BUDD <-> QM 0.9757881 0.9757881  7.983252 0.3473509 0.000999001
## 3  BUDD <-> SC 0.7343968 0.7343968  8.235777 0.4516274 0.003996004
## 4   ELD <-> QM 0.9350049 0.9350049  9.198973 0.3965250 0.000999001
## 5   ELD <-> SC 0.7051046 0.7051046 13.185910 0.5943371 0.003996004
## 6    QM <-> SC 0.6205231 0.6205231  5.523083 0.3342647 0.000999001
##   P.value.corrected
## 1       0.091908092
## 2       0.001998002
## 3       0.004795205
## 4       0.001998002
## 5       0.004795205
## 6       0.001998002

BUDD and ELD are the same, all others are different

check for dispersion

Micro.bd <- betadisper(dist, Field_data_wide$Inlet)
Micro.bd
## 
##  Homogeneity of multivariate dispersions
## 
## Call: betadisper(d = dist, group = Field_data_wide$Inlet)
## 
## No. of Positive Eigenvalues: 20
## No. of Negative Eigenvalues: 7
## 
## Average distance to median:
##   BUDD    ELD     QM     SC 
## 0.2971 0.2088 0.3397 0.1902 
## 
## Eigenvalues for PCoA axes:
## (Showing 8 of 27 eigenvalues)
##  PCoA1  PCoA2  PCoA3  PCoA4  PCoA5  PCoA6  PCoA7  PCoA8 
## 1.6419 0.9194 0.4855 0.4320 0.2309 0.1604 0.1361 0.1074
anova(Micro.bd)
## Analysis of Variance Table
## 
## Response: Distances
##           Df  Sum Sq  Mean Sq F value  Pr(>F)  
## Groups     3 0.10091 0.033636  4.5917 0.01119 *
## Residuals 24 0.17581 0.007325                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
permutest(Micro.bd)
## 
## Permutation test for homogeneity of multivariate dispersions
## Permutation: free
## Number of permutations: 999
## 
## Response: Distances
##           Df  Sum Sq  Mean Sq      F N.Perm Pr(>F)   
## Groups     3 0.10091 0.033636 4.5917    999   0.01 **
## Residuals 24 0.17581 0.007325                        
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

p is significant, meaning that there are differences in dispersion

run NMDS

NMDSmodel <- metaMDS(RE2, distance = "bray",trymax = 200)
## Run 0 stress 0.1087171 
## Run 1 stress 0.1087171 
## ... Procrustes: rmse 5.17028e-07  max resid 1.134089e-06 
## ... Similar to previous best
## Run 2 stress 0.1087171 
## ... Procrustes: rmse 2.105742e-06  max resid 4.198858e-06 
## ... Similar to previous best
## Run 3 stress 0.1086786 
## ... New best solution
## ... Procrustes: rmse 0.006118965  max resid 0.02300832 
## Run 4 stress 0.1344413 
## Run 5 stress 0.1087171 
## ... Procrustes: rmse 0.006118654  max resid 0.02297508 
## Run 6 stress 0.1087171 
## ... Procrustes: rmse 0.006119202  max resid 0.02297295 
## Run 7 stress 0.1087171 
## ... Procrustes: rmse 0.006119125  max resid 0.0229738 
## Run 8 stress 0.172659 
## Run 9 stress 0.1086786 
## ... Procrustes: rmse 2.182551e-06  max resid 8.068815e-06 
## ... Similar to previous best
## Run 10 stress 0.1087171 
## ... Procrustes: rmse 0.006118702  max resid 0.02298904 
## Run 11 stress 0.1745059 
## Run 12 stress 0.1087171 
## ... Procrustes: rmse 0.006118755  max resid 0.02298736 
## Run 13 stress 0.1344413 
## Run 14 stress 0.1086786 
## ... Procrustes: rmse 2.803838e-06  max resid 8.507427e-06 
## ... Similar to previous best
## Run 15 stress 0.1087171 
## ... Procrustes: rmse 0.006118481  max resid 0.02298035 
## Run 16 stress 0.1087171 
## ... Procrustes: rmse 0.006118809  max resid 0.02298234 
## Run 17 stress 0.1087171 
## ... Procrustes: rmse 0.006119007  max resid 0.02297975 
## Run 18 stress 0.172659 
## Run 19 stress 0.1086786 
## ... Procrustes: rmse 3.142183e-06  max resid 8.703352e-06 
## ... Similar to previous best
## Run 20 stress 0.1087171 
## ... Procrustes: rmse 0.006119594  max resid 0.02298677 
## *** Best solution repeated 3 times
NMDSmodel
## 
## Call:
## metaMDS(comm = RE2, distance = "bray", trymax = 200) 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     RE2 
## Distance: bray 
## 
## Dimensions: 2 
## Stress:     0.1086786 
## Stress type 1, weak ties
## Best solution was repeated 3 times in 20 tries
## The best solution was from try 3 (random start)
## Scaling: centring, PC rotation, halfchange scaling 
## Species: expanded scores based on 'RE2'

Plot NMDS

plot(NMDSmodel)

get datascores

data.scores<-vegan::scores(NMDSmodel,display="sites")
data.scores<- as.data.frame(data.scores)

add columns back in

colnames(Field_data_wide)
##  [1] "Station"              "Inlet"                "Year"                
##  [4] "Location"             "Month"                "Smean"               
##  [7] "Omean"                "Tmean"                "pHmean"              
## [10] "Fmean"                "PO4"                  "SiOH4"               
## [13] "NO3"                  "NO2"                  "NH4"                 
## [16] "Actinoptychus"        "Akashiwo"             "Asteromphalus"       
## [19] "Cerataulina"          "Ceratium"             "Chaetoceros"         
## [22] "Coscinodiscus"        "Cylindrotheca"        "Dictyocha"           
## [25] "Dinophysis"           "Ditylum"              "Eucampia"            
## [28] "Guinardia et al"      "gymnodinioids"        "Hemiaulus"           
## [31] "Heterocapsa"          "Heterosigma"          "Katodinium"          
## [34] "Lauderia/Detonula"    "Mesodinium"           "misc 10-25 um"       
## [37] "misc 25-100 um"       "misc >100 um"         "misc ciliates"       
## [40] "misc diatoms"         "misc med/large dinos" "misc small dinos"    
## [43] "misc zoo"             "Nitzschia"            "Noctiluca"           
## [46] "Oxyphysis"            "Pleurosigma"          "Prorocentrum"        
## [49] "Protoperidinium"      "Pseudo-nitzschia"     "Rhizosolenia"        
## [52] "Scrippsiella"         "Skeletonema"          "Thalassionema"       
## [55] "Thalassiosira"        "Ebria"                "Protoceratium"       
## [58] "Torodinium"           "copepods"             "Helicostomella"      
## [61] "misc cn ciliates"     "misc larvae"          "misc rd ciliates"    
## [64] "nauplii"              "Oikopleura"           "small ciliates"      
## [67] "Strombidium"          "Tiarina"
data.scores$Year = Field_data_wide$Year
data.scores$Month = Field_data_wide$Month
data.scores$Inlet = Field_data_wide$Inlet
data.scores$Location = Field_data_wide$Location
data.scores$NO3 = Field_data_wide$NO3
data.scores$PO4 = Field_data_wide$PO4
data.scores$SiOH4 = Field_data_wide$SiOH4
data.scores$NO2 = Field_data_wide$NO2
data.scores$NH4 = Field_data_wide$NH4
data.scores$Tmean = Field_data_wide$Tmean
data.scores$Fmean = Field_data_wide$Fmean
data.scores$Omean = Field_data_wide$Omean
data.scores$pHmean = Field_data_wide$pHmean
data.scores$Smean = Field_data_wide$Smean

plot data scores

site <- ggplot(data.scores, aes(x = NMDS1, y = NMDS2,colour = Inlet)) + 
  labs(title="Experiments")+stat_ellipse()+geom_point(aes(colour = Inlet))+theme_bw()+theme(panel.grid.major = element_blank(),
                                                                                           panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"))
site

create environmetal fit table

colnames(Field_data_wide)
##  [1] "Station"              "Inlet"                "Year"                
##  [4] "Location"             "Month"                "Smean"               
##  [7] "Omean"                "Tmean"                "pHmean"              
## [10] "Fmean"                "PO4"                  "SiOH4"               
## [13] "NO3"                  "NO2"                  "NH4"                 
## [16] "Actinoptychus"        "Akashiwo"             "Asteromphalus"       
## [19] "Cerataulina"          "Ceratium"             "Chaetoceros"         
## [22] "Coscinodiscus"        "Cylindrotheca"        "Dictyocha"           
## [25] "Dinophysis"           "Ditylum"              "Eucampia"            
## [28] "Guinardia et al"      "gymnodinioids"        "Hemiaulus"           
## [31] "Heterocapsa"          "Heterosigma"          "Katodinium"          
## [34] "Lauderia/Detonula"    "Mesodinium"           "misc 10-25 um"       
## [37] "misc 25-100 um"       "misc >100 um"         "misc ciliates"       
## [40] "misc diatoms"         "misc med/large dinos" "misc small dinos"    
## [43] "misc zoo"             "Nitzschia"            "Noctiluca"           
## [46] "Oxyphysis"            "Pleurosigma"          "Prorocentrum"        
## [49] "Protoperidinium"      "Pseudo-nitzschia"     "Rhizosolenia"        
## [52] "Scrippsiella"         "Skeletonema"          "Thalassionema"       
## [55] "Thalassiosira"        "Ebria"                "Protoceratium"       
## [58] "Torodinium"           "copepods"             "Helicostomella"      
## [61] "misc cn ciliates"     "misc larvae"          "misc rd ciliates"    
## [64] "nauplii"              "Oikopleura"           "small ciliates"      
## [67] "Strombidium"          "Tiarina"
Zoo.env <- data.frame(matrix(ncol = 0, nrow=28))
Zoo.env$PO4<-as.numeric(data.scores$PO4)
Zoo.env$SiOH4<-as.numeric(data.scores$SiOH4)
Zoo.env$NO3<-as.numeric(data.scores$NO3)
Zoo.env$NO2<-as.numeric(data.scores$NO2)
Zoo.env$NH4<-as.numeric(data.scores$NH4)
Zoo.env$Temp<-data.scores$Tmean
Zoo.env$pH<-data.scores$pHmean
Zoo.env$Chla<-data.scores$Fmean
Zoo.env$DO<-data.scores$Omean
Zoo.env$Salinity<-data.scores$Smean

env <- envfit(NMDSmodel, Zoo.env, na.rm = TRUE,perm = 999)
env
## 
## ***VECTORS
## 
##             NMDS1    NMDS2     r2 Pr(>r)    
## PO4      -0.99955  0.03013 0.4590  0.003 ** 
## SiOH4    -0.74445  0.66768 0.6722  0.001 ***
## NO3       0.38325 -0.92365 0.4131  0.002 ** 
## NO2       0.35075 -0.93647 0.4429  0.002 ** 
## NH4      -0.03932 -0.99923 0.2414  0.026 *  
## Temp     -0.77580  0.63098 0.6763  0.001 ***
## pH       -0.51197  0.85901 0.0535  0.486    
## Chla     -0.96801  0.25093 0.2503  0.028 *  
## DO       -0.97610 -0.21733 0.0254  0.727    
## Salinity  0.67432 -0.73844 0.5679  0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation: free
## Number of permutations: 999
arrow_factor <- ordiArrowMul(env)
env.scrs <- as.data.frame(vegan::scores(env, display = "vectors")) * arrow_factor
env.scrs <- cbind(env.scrs, Species = rownames(env.scrs), Pvalues = env$vectors$pvals, R_squared = env$vectors$r)
env.scrs <- subset(env.scrs, Pvalues < 0.05)
env.scrs
##                NMDS1       NMDS2  Species Pvalues R_squared
## PO4      -0.92781694  0.02796467      PO4   0.003 0.4590297
## SiOH4    -0.83622687  0.75000000    SiOH4   0.001 0.6722084
## NO3       0.33748405 -0.81335595      NO3   0.002 0.4131160
## NO2       0.31981951 -0.85388381      NO2   0.002 0.4429278
## NH4      -0.02647142 -0.67267370      NH4   0.026 0.2414364
## Temp     -0.87411401  0.71093749     Temp   0.001 0.6763276
## Chla     -0.66347899  0.17198936     Chla   0.028 0.2502769
## Salinity  0.69622696 -0.76243638 Salinity   0.001 0.5679314

extract hulls

BUDD <- data.scores[data.scores$Inlet == "BUDD", ][chull(data.scores[data.scores$Inlet == 
                                                                      "BUDD", c("NMDS1", "NMDS2")]), ]  
ELD <- data.scores[data.scores$Inlet == "ELD", ][chull(data.scores[data.scores$Inlet == 
                                                                    "ELD", c("NMDS1", "NMDS2")]), ]  
QM <- data.scores[data.scores$Inlet == "QM", ][chull(data.scores[data.scores$Inlet == 
                                                                             "QM", c("NMDS1", "NMDS2")]), ]
SC <- data.scores[data.scores$Inlet == "SC", ][chull(data.scores[data.scores$Inlet == 
                                                                             "SC", c("NMDS1", "NMDS2")]), ]

get hull data

hull.data <- rbind(BUDD, ELD, QM,SC)  #combine grp.a and grp.b
hull.data
##          NMDS1       NMDS2 Year Month Inlet Location   NO3  PO4 SiOH4  NO2  NH4
## 8   0.07839382  0.10283878 2020   Aug  BUDD       OB  4.05 1.59 41.77 0.23 0.88
## 3  -0.49662082 -0.03662211 2020   Aug  BUDD       OS  0.06 1.47 46.39 0.01 0.21
## 2  -0.61678044  0.04293955 2020   Aug  BUDD       OS  0.44 1.20 39.95 0.05 0.22
## 6  -0.55818514  0.24560209 2020   Aug  BUDD       OS  0.07 1.48 41.13 0.02 0.17
## 7  -0.16805681  0.82853700 2020   Aug  BUDD       OS  0.11 1.44 46.81 0.02 0.77
## 15 -0.36600896 -0.08439978 2020   Aug   ELD       OS  0.10 2.05 44.88 0.04 0.14
## 14 -0.77283303  0.11611974 2020   Aug   ELD       OS  0.09 1.84 55.11 0.01 1.28
## 12 -0.43565185  0.11283528 2020   Aug   ELD       OS  0.12 1.49 44.43 0.03 0.11
## 10 -0.05454650  0.10092634 2020   Aug   ELD       OS  0.12 1.31 47.42 0.02 0.18
## 18  0.26610521 -0.27932890 2020   Aug    QM       IN  0.12 0.58 31.48 0.03 0.34
## 23  0.16171090 -0.31795534 2020   Aug    QM       OB  9.13 1.54 35.93 0.41 1.12
## 22  0.10445835 -0.19442973 2020   Aug    QM       OS  0.32 0.47 31.07 0.04 0.39
## 20  0.96551592  0.50224680 2021   Aug    QM       IN  0.21 0.45 35.62 0.01 0.00
## 24  1.02329189  0.33012066 2021   Aug    QM       OS  2.83 0.69 34.09 0.13 0.10
## 21  1.03698158  0.07262016 2021   Aug    QM       IN  1.83 0.65 34.40 0.10 0.11
## 28  0.17532342 -0.63120052 2021   Aug    SC       OB 10.51 1.67 32.74 0.36 1.17
## 25  0.26650178 -0.78880827 2021   Aug    SC       OS  7.62 1.52 33.91 0.35 1.70
## 27 -0.19117900 -0.58517325 2021   Aug    SC       IN  3.05 1.13 36.28 0.19 0.88
## 26 -0.17718039 -0.46906771 2021   Aug    SC       IN  0.45 0.81 40.94 0.08 0.24
##       Tmean     Fmean     Omean   pHmean    Smean
## 8  15.83885  4.749887  8.552275 8.405864 29.44947
## 3  16.04135 14.829841  7.300433 8.234621 29.36213
## 2  15.53064  9.571747  8.389519 8.337510 29.46414
## 6  17.64788 12.125550 12.115514 9.359744 28.41428
## 7  16.52514  4.755962  5.304376 8.529213 29.20804
## 15 17.39969  9.509445  6.261818 8.854672 28.56580
## 14 17.75457 32.129292  9.130868 8.457278 29.22018
## 12 16.58672 15.144218  9.412461 9.102089 29.33763
## 10 17.41564  8.784905 11.467702 9.088341 28.59893
## 18 14.64915 12.076774  9.704596 8.572626 29.71244
## 23 13.51247  3.180970  8.394605 8.403655 29.88051
## 22 15.09538 12.958875  3.536741 8.660025 29.69050
## 20 15.41718  8.036462  8.324053 8.787757 29.67637
## 24 13.70516  3.047317  6.832690 8.544974 29.89671
## 21 14.71093  7.029254  8.245302 8.726635 29.75984
## 28 14.45317  1.979085  7.252958 8.604166 29.93015
## 25 14.96545  2.038832  7.672591 8.685609 29.78388
## 27 15.41405  8.159419  9.247991 8.749234 29.74256
## 26 15.48635 14.097918 10.069238 8.814218 29.74709

make plot

Micro_inlet<-ggplot() + 
  geom_polygon(data=hull.data,aes(x=NMDS1,y=NMDS2,fill=Inlet,group=Inlet),alpha=0.20, size=0.1, linetype=1, colour="black") + # add the convex hulls
  geom_point(data=data.scores,aes(x=NMDS1,y=NMDS2,shape=Inlet,colour=Inlet),size=1) + # add the point markers
  scale_colour_manual(values=c("#619CFF",  "#F8766D","#00BA38","#C77CFF")) +
  scale_fill_manual(values=c("#619CFF", "#F8766D","#00BA38","#C77CFF"))+
  scale_shape_manual(values=c(16, 18,17,15))+
  coord_equal() +
  ylim(-1.2,1.2)+
  xlim(-1.2,1.2)+
  theme_bw() +
  theme(
    axis.title.x = element_text(size=9), 
    axis.title.y = element_text(size=9),
    panel.background = element_blank(), 
    panel.grid.major = element_blank(),
    axis.text=element_text(size=7),
    panel.grid.minor = element_blank(),  
    plot.background = element_blank(),
    legend.position="none")+
  geom_segment(data = env.scrs,size=0.2,
               aes(x = 0, xend = NMDS1, y = 0, yend = NMDS2),
               arrow = arrow(length = unit(0.08, "cm")), colour = "black")+
  geom_label_repel(data = env.scrs, aes(x = NMDS1, y = NMDS2, label = Species),
                  size = 1.8, fontface="bold", fill="white", label.padding = unit(0.15, "lines"), box.padding = unit(0.16, "lines"), label.size = 0.05)+
  annotate("text", label = "2D Stress: 0.11", x = 0.9, y = 1.2, size = 2.5, colour = "black")+
  theme(panel.background = element_rect(fill="white"),plot.background = element_rect(fill = "white",linewidth = 0))+
  annotate("text",x=-1.1, y=1.1, label= "b",size=6)

Micro_inlet

Combine year and month plots

Inlet_plot<-ggarrange(zoop_inlet,Micro_inlet,
          ncol = 2, nrow = 1)
Inlet_plot

save plot

setwd("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/output")
ggsave(filename = "Field_inlet_plot.png", plot = Inlet_plot, height = 80, width = 164, units="mm", device='png', dpi=600)
ggsave(filename = "Field_inlet_plot.tif", plot = Inlet_plot, height = 80, width = 164, units="mm", device='tiff', dpi=600)

Microplankton Location, Month, Year

subset to QM and SC

Field_data_merged_SCQM<-subset(Field_data_merged, Inlet!="BUDD")
Field_data_merged_SCQM<-subset(Field_data_merged_SCQM, Inlet!="ELD")

change from long to wide format

colnames(Field_data_merged)
##  [1] "Station"   "Inlet"     "Location"  "Year"      "Time"      "Month"    
##  [7] "Date"      "taxa"      "biovolume" "Station.y" "Smean"     "Smin"     
## [13] "Smax"      "Ssd"       "Omean"     "Omin"      "Omax"      "Osd"      
## [19] "Tmean"     "Tmin"      "Tmax"      "Tsd"       "pHmean"    "pHmin"    
## [25] "pHmax"     "pHsd"      "Fmean"     "Fmin"      "Fmax"      "Fsd"      
## [31] "PO4"       "SiOH4"     "NO3"       "NO2"       "NH4"
Field_data_wide<-dcast(Field_data_merged_SCQM, Station+Inlet+Year+Location+Month+Smean+Omean+Tmean+pHmean+Fmean+PO4+SiOH4+NO3+NO2+NH4~ taxa,value.var = "biovolume")

remove non-data columns, convert to proportionas, and arcsine sqrt transformation

Field_data_wide$Location=as.factor(Field_data_wide$Location)
Field_data_wide$Year=as.factor(Field_data_wide$Year)
RE2<- Field_data_wide[,16:ncol(Field_data_wide)]
#replace N/A with 0
RE2[is.na(RE2)] <- 0
#convert to numeric
RE2 <- RE2 %>% mutate_at(1:59, as.numeric)
#convert to proportions
RE2<-RE2/rowSums(RE2)
#arcsine sqrt transformation
RE2<-asin(sqrt(RE2))
RE3<-as.matrix(RE2)

PERMANOVA

dist<-vegdist(RE2, method='bray')
dist
##            1         2         3         4         5         6         7
## 2  0.5624630                                                            
## 3  0.6279567 0.7008114                                                  
## 4  0.2003914 0.5577805 0.6791177                                        
## 5  0.2068918 0.6522329 0.6970677 0.2286539                              
## 6  0.5014975 0.3157105 0.7408855 0.5177956 0.5853435                    
## 7  0.4221873 0.6123646 0.5680286 0.4395992 0.4523769 0.6775159          
## 8  0.3778380 0.5523606 0.6024476 0.3344926 0.4220893 0.5804725 0.3038750
## 9  0.4692646 0.6646229 0.6894526 0.4956399 0.4643606 0.7166816 0.5037969
## 10 0.4677645 0.5043463 0.7546806 0.4056796 0.4665518 0.4766665 0.5962827
## 11 0.4233289 0.5638050 0.5922184 0.3673863 0.4557751 0.6123842 0.2266748
## 12 0.7372554 0.8346373 0.3677178 0.7318063 0.7616828 0.8729008 0.6511100
## 13 0.5883064 0.6849569 0.3099743 0.6570477 0.6660402 0.6796101 0.5851897
## 14 0.4537103 0.5625102 0.6186037 0.4379917 0.4639910 0.5973763 0.3210259
## 15 0.5048221 0.5938635 0.6961606 0.4729277 0.4914912 0.6445813 0.3457832
## 16 0.6915017 0.7195060 0.3100925 0.7148126 0.7345627 0.8040251 0.6152549
## 17 0.4909096 0.6109848 0.6962478 0.4454083 0.5407096 0.6372424 0.5135796
## 18 0.5634290 0.3643848 0.7642417 0.5269914 0.5936841 0.4749469 0.6878308
## 19 0.5082854 0.6991932 0.6872772 0.4171394 0.5429764 0.6931276 0.5900717
## 20 0.6223867 0.3327838 0.7695828 0.5831032 0.6520090 0.5003418 0.6992084
## 21 0.5217837 0.6999323 0.6865585 0.5021628 0.5431327 0.7188802 0.5315697
## 22 0.5389501 0.5924843 0.7045907 0.4447220 0.5320181 0.6150550 0.4739458
## 23 0.5262514 0.5747678 0.7105643 0.4788394 0.5633891 0.5941002 0.5766688
## 24 0.5595213 0.5557512 0.6956493 0.4390506 0.5297939 0.6868996 0.6207367
## 25 0.4955040 0.5620918 0.7236132 0.4615352 0.4865827 0.5871936 0.5454236
## 26 0.5247094 0.5256529 0.7453462 0.4577514 0.5483319 0.5812160 0.5911548
## 27 0.4110424 0.6266882 0.6955483 0.3908131 0.4237483 0.6135090 0.4436715
##            8         9        10        11        12        13        14
## 2                                                                       
## 3                                                                       
## 4                                                                       
## 5                                                                       
## 6                                                                       
## 7                                                                       
## 8                                                                       
## 9  0.5290587                                                            
## 10 0.4995778 0.6491858                                                  
## 11 0.2181010 0.5750675 0.5174599                                        
## 12 0.6841237 0.7870553 0.7880720 0.6517752                              
## 13 0.5799960 0.7324037 0.6913964 0.5967391 0.4203620                    
## 14 0.2298007 0.5640068 0.5494140 0.2518810 0.6926990 0.6556961          
## 15 0.2623563 0.5846214 0.5329016 0.2764905 0.7521812 0.6700302 0.2741336
## 16 0.6448093 0.7623844 0.7310446 0.6254478 0.3333600 0.3406361 0.6573938
## 17 0.4433857 0.6109592 0.4763017 0.4383927 0.7856840 0.6404363 0.4223597
## 18 0.6138423 0.7502519 0.4346042 0.6072716 0.7719664 0.7600221 0.5713421
## 19 0.4813254 0.6296863 0.5438731 0.4403262 0.7922777 0.6704480 0.4914193
## 20 0.6188063 0.7869022 0.5120879 0.6352274 0.8203350 0.7705757 0.5675143
## 21 0.4848176 0.6386249 0.6020958 0.5246755 0.7122829 0.7628314 0.4610717
## 22 0.4681392 0.5567598 0.4652126 0.3789916 0.7620744 0.6714821 0.4009902
## 23 0.4266915 0.6665413 0.5212345 0.5245613 0.7500119 0.6612248 0.4865297
## 24 0.4920337 0.6206201 0.4627159 0.4685356 0.7039920 0.7037444 0.5344399
## 25 0.4945140 0.6253471 0.4680970 0.5541100 0.7731128 0.7191876 0.4714846
## 26 0.4770680 0.6758541 0.4707543 0.5678338 0.7936614 0.7389165 0.4628805
## 27 0.4177974 0.6016954 0.4591235 0.4588373 0.7526371 0.6964428 0.4030441
##           15        16        17        18        19        20        21
## 2                                                                       
## 3                                                                       
## 4                                                                       
## 5                                                                       
## 6                                                                       
## 7                                                                       
## 8                                                                       
## 9                                                                       
## 10                                                                      
## 11                                                                      
## 12                                                                      
## 13                                                                      
## 14                                                                      
## 15                                                                      
## 16 0.7209077                                                            
## 17 0.4881950 0.7204101                                                  
## 18 0.6306777 0.8209435 0.6279486                                        
## 19 0.5969439 0.7642801 0.2663797 0.6680650                              
## 20 0.6413095 0.8659479 0.6355123 0.2405542 0.6706153                    
## 21 0.5267577 0.7351678 0.6387455 0.6218239 0.5777926 0.6918702          
## 22 0.4620655 0.7464804 0.3161935 0.5874183 0.3374292 0.6019904 0.6622775
## 23 0.5439392 0.7613022 0.5773118 0.5806192 0.5330638 0.5791336 0.4529206
## 24 0.5214439 0.7215693 0.5582715 0.4554440 0.4820167 0.5172252 0.5471659
## 25 0.5322208 0.7407831 0.5393615 0.4940495 0.5251897 0.5738595 0.3507045
## 26 0.5682944 0.8018350 0.5166938 0.4246503 0.4649824 0.4813276 0.3573524
## 27 0.4497730 0.7256330 0.5381398 0.5731977 0.5699191 0.6743982 0.2665378
##           22        23        24        25        26
## 2                                                   
## 3                                                   
## 4                                                   
## 5                                                   
## 6                                                   
## 7                                                   
## 8                                                   
## 9                                                   
## 10                                                  
## 11                                                  
## 12                                                  
## 13                                                  
## 14                                                  
## 15                                                  
## 16                                                  
## 17                                                  
## 18                                                  
## 19                                                  
## 20                                                  
## 21                                                  
## 22                                                  
## 23 0.5501428                                        
## 24 0.4633472 0.5047919                              
## 25 0.5260440 0.3753894 0.5778906                    
## 26 0.5054534 0.2795352 0.5135598 0.2028592          
## 27 0.5659158 0.4540905 0.5371401 0.3185171 0.3520307
perm<-adonis2(dist~Year*Month*Location, data=Field_data_wide, permutations = 999, method="bray")
perm
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
## 
## adonis2(formula = dist ~ Year * Month * Location, data = Field_data_wide, permutations = 999, method = "bray")
##                Df SumOfSqs      R2      F Pr(>F)    
## Year            2   0.9075 0.20956 3.6086  0.002 ** 
## Month           2   1.0094 0.23310 4.0140  0.001 ***
## Location        2   0.2581 0.05961 1.0264  0.414    
## Year:Location   4   0.3067 0.07081 0.6097  0.968    
## Month:Location  4   0.3399 0.07848 0.6757  0.920    
## Residual       12   1.5088 0.34843                  
## Total          26   4.3303 1.00000                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

PERMDISPR

check for dispersion

Zoop.bd <- betadisper(dist, Field_data_wide$Location)
Zoop.bd
## 
##  Homogeneity of multivariate dispersions
## 
## Call: betadisper(d = dist, group = Field_data_wide$Location)
## 
## No. of Positive Eigenvalues: 20
## No. of Negative Eigenvalues: 6
## 
## Average distance to median:
##     IN     OB     OS 
## 0.3704 0.3407 0.4125 
## 
## Eigenvalues for PCoA axes:
## (Showing 8 of 26 eigenvalues)
##  PCoA1  PCoA2  PCoA3  PCoA4  PCoA5  PCoA6  PCoA7  PCoA8 
## 1.2398 0.7670 0.5079 0.4090 0.3357 0.2700 0.2009 0.1550
anova(Zoop.bd)
## Analysis of Variance Table
## 
## Response: Distances
##           Df   Sum Sq   Mean Sq F value Pr(>F)
## Groups     2 0.019774 0.0098870  1.0463 0.3667
## Residuals 24 0.226789 0.0094496
permutest(Zoop.bd)
## 
## Permutation test for homogeneity of multivariate dispersions
## Permutation: free
## Number of permutations: 999
## 
## Response: Distances
##           Df   Sum Sq   Mean Sq      F N.Perm Pr(>F)
## Groups     2 0.019774 0.0098870 1.0463    999  0.382
## Residuals 24 0.226789 0.0094496

check for dispersion

Zoop.bd <- betadisper(dist, Field_data_wide$Year)
Zoop.bd
## 
##  Homogeneity of multivariate dispersions
## 
## Call: betadisper(d = dist, group = Field_data_wide$Year)
## 
## No. of Positive Eigenvalues: 20
## No. of Negative Eigenvalues: 6
## 
## Average distance to median:
##   2019   2020   2021 
## 0.2922 0.1694 0.4122 
## 
## Eigenvalues for PCoA axes:
## (Showing 8 of 26 eigenvalues)
##  PCoA1  PCoA2  PCoA3  PCoA4  PCoA5  PCoA6  PCoA7  PCoA8 
## 1.2398 0.7670 0.5079 0.4090 0.3357 0.2700 0.2009 0.1550
anova(Zoop.bd)
## Analysis of Variance Table
## 
## Response: Distances
##           Df  Sum Sq  Mean Sq F value    Pr(>F)    
## Groups     2 0.23927 0.119636  15.438 4.897e-05 ***
## Residuals 24 0.18598 0.007749                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
permutest(Zoop.bd)
## 
## Permutation test for homogeneity of multivariate dispersions
## Permutation: free
## Number of permutations: 999
## 
## Response: Distances
##           Df  Sum Sq  Mean Sq      F N.Perm Pr(>F)    
## Groups     2 0.23927 0.119636 15.438    999  0.001 ***
## Residuals 24 0.18598 0.007749                         
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

check for dispersion

Zoop.bd <- betadisper(dist, Field_data_wide$Month)
Zoop.bd
## 
##  Homogeneity of multivariate dispersions
## 
## Call: betadisper(d = dist, group = Field_data_wide$Month)
## 
## No. of Positive Eigenvalues: 20
## No. of Negative Eigenvalues: 6
## 
## Average distance to median:
##    Aug    Jul    Sep 
## 0.3679 0.2925 0.1749 
## 
## Eigenvalues for PCoA axes:
## (Showing 8 of 26 eigenvalues)
##  PCoA1  PCoA2  PCoA3  PCoA4  PCoA5  PCoA6  PCoA7  PCoA8 
## 1.2398 0.7670 0.5079 0.4090 0.3357 0.2700 0.2009 0.1550
anova(Zoop.bd)
## Analysis of Variance Table
## 
## Response: Distances
##           Df  Sum Sq  Mean Sq F value  Pr(>F)  
## Groups     2 0.10651 0.053257  4.8487 0.01704 *
## Residuals 24 0.26361 0.010984                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
permutest(Zoop.bd)
## 
## Permutation test for homogeneity of multivariate dispersions
## Permutation: free
## Number of permutations: 999
## 
## Response: Distances
##           Df  Sum Sq  Mean Sq      F N.Perm Pr(>F)  
## Groups     2 0.10651 0.053257 4.8487    999  0.013 *
## Residuals 24 0.26361 0.010984                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

SC and QM NMDS

NMDSmodel <- metaMDS(RE2, distance = "bray",trymax = 200)
## Run 0 stress 0.1666272 
## Run 1 stress 0.1666272 
## ... Procrustes: rmse 9.438067e-05  max resid 0.0003555542 
## ... Similar to previous best
## Run 2 stress 0.1667159 
## ... Procrustes: rmse 0.0399118  max resid 0.1448578 
## Run 3 stress 0.1753478 
## Run 4 stress 0.1664801 
## ... New best solution
## ... Procrustes: rmse 0.08358463  max resid 0.2628654 
## Run 5 stress 0.1722585 
## Run 6 stress 0.1666562 
## ... Procrustes: rmse 0.06302691  max resid 0.2449473 
## Run 7 stress 0.1729478 
## Run 8 stress 0.1684843 
## Run 9 stress 0.171032 
## Run 10 stress 0.1678285 
## Run 11 stress 0.1682472 
## Run 12 stress 0.1666272 
## ... Procrustes: rmse 0.08359501  max resid 0.2531656 
## Run 13 stress 0.1667159 
## ... Procrustes: rmse 0.08644728  max resid 0.2536199 
## Run 14 stress 0.1667877 
## ... Procrustes: rmse 0.05622892  max resid 0.2387299 
## Run 15 stress 0.1664007 
## ... New best solution
## ... Procrustes: rmse 0.05613129  max resid 0.2472998 
## Run 16 stress 0.1740543 
## Run 17 stress 0.1678285 
## Run 18 stress 0.1691889 
## Run 19 stress 0.1753196 
## Run 20 stress 0.1721772 
## Run 21 stress 0.1688176 
## Run 22 stress 0.1669044 
## Run 23 stress 0.1684494 
## Run 24 stress 0.1674343 
## Run 25 stress 0.1672491 
## Run 26 stress 0.1684622 
## Run 27 stress 0.1682842 
## Run 28 stress 0.1665494 
## ... Procrustes: rmse 0.0213463  max resid 0.09464548 
## Run 29 stress 0.1666272 
## ... Procrustes: rmse 0.05166816  max resid 0.1685616 
## Run 30 stress 0.1666274 
## ... Procrustes: rmse 0.05171106  max resid 0.16862 
## Run 31 stress 0.1687938 
## Run 32 stress 0.1691778 
## Run 33 stress 0.1691892 
## Run 34 stress 0.1753197 
## Run 35 stress 0.1729479 
## Run 36 stress 0.168816 
## Run 37 stress 0.172948 
## Run 38 stress 0.1753479 
## Run 39 stress 0.1694155 
## Run 40 stress 0.1803813 
## Run 41 stress 0.1678285 
## Run 42 stress 0.1687948 
## Run 43 stress 0.1691888 
## Run 44 stress 0.1740543 
## Run 45 stress 0.1758659 
## Run 46 stress 0.1681142 
## Run 47 stress 0.1682472 
## Run 48 stress 0.1798157 
## Run 49 stress 0.1803812 
## Run 50 stress 0.1706551 
## Run 51 stress 0.1734134 
## Run 52 stress 0.1729478 
## Run 53 stress 0.1667159 
## ... Procrustes: rmse 0.0582659  max resid 0.1716958 
## Run 54 stress 0.1730947 
## Run 55 stress 0.1664428 
## ... Procrustes: rmse 0.05646242  max resid 0.2517908 
## Run 56 stress 0.1684493 
## Run 57 stress 0.1678285 
## Run 58 stress 0.1678285 
## Run 59 stress 0.1761593 
## Run 60 stress 0.1683558 
## Run 61 stress 0.1666272 
## ... Procrustes: rmse 0.05164678  max resid 0.1685305 
## Run 62 stress 0.1792663 
## Run 63 stress 0.1692217 
## Run 64 stress 0.1666272 
## ... Procrustes: rmse 0.05166942  max resid 0.1685641 
## Run 65 stress 0.1665977 
## ... Procrustes: rmse 0.0203809  max resid 0.09437621 
## Run 66 stress 0.1695347 
## Run 67 stress 0.1684494 
## Run 68 stress 0.1667159 
## ... Procrustes: rmse 0.05826365  max resid 0.1716929 
## Run 69 stress 0.1678285 
## Run 70 stress 0.1683558 
## Run 71 stress 0.16845 
## Run 72 stress 0.1667508 
## ... Procrustes: rmse 0.02291686  max resid 0.09544604 
## Run 73 stress 0.1666272 
## ... Procrustes: rmse 0.05166945  max resid 0.1685631 
## Run 74 stress 0.1798158 
## Run 75 stress 0.1694967 
## Run 76 stress 0.166405 
## ... Procrustes: rmse 0.0120277  max resid 0.04434374 
## Run 77 stress 0.1682841 
## Run 78 stress 0.170655 
## Run 79 stress 0.1696294 
## Run 80 stress 0.1757135 
## Run 81 stress 0.1691774 
## Run 82 stress 0.1694154 
## Run 83 stress 0.1678285 
## Run 84 stress 0.1684624 
## Run 85 stress 0.1667159 
## ... Procrustes: rmse 0.05824747  max resid 0.1716686 
## Run 86 stress 0.1666277 
## ... Procrustes: rmse 0.02330303  max resid 0.09352136 
## Run 87 stress 0.1678288 
## Run 88 stress 0.1678285 
## Run 89 stress 0.1668479 
## ... Procrustes: rmse 0.05564563  max resid 0.1676401 
## Run 90 stress 0.1684624 
## Run 91 stress 0.166656 
## ... Procrustes: rmse 0.02407592  max resid 0.0938802 
## Run 92 stress 0.1691776 
## Run 93 stress 0.1666277 
## ... Procrustes: rmse 0.02329955  max resid 0.09356327 
## Run 94 stress 0.1682841 
## Run 95 stress 0.1759871 
## Run 96 stress 0.1667508 
## ... Procrustes: rmse 0.02291756  max resid 0.09544468 
## Run 97 stress 0.1666272 
## ... Procrustes: rmse 0.05166108  max resid 0.1685503 
## Run 98 stress 0.1667159 
## ... Procrustes: rmse 0.05826093  max resid 0.1716886 
## Run 99 stress 0.1722565 
## Run 100 stress 0.175714 
## Run 101 stress 0.1760353 
## Run 102 stress 0.1685222 
## Run 103 stress 0.1668482 
## ... Procrustes: rmse 0.05574051  max resid 0.1677593 
## Run 104 stress 0.1672842 
## Run 105 stress 0.1665876 
## ... Procrustes: rmse 0.02214889  max resid 0.09200472 
## Run 106 stress 0.1678285 
## Run 107 stress 0.1774637 
## Run 108 stress 0.1682466 
## Run 109 stress 0.1734258 
## Run 110 stress 0.1678287 
## Run 111 stress 0.1729478 
## Run 112 stress 0.1681705 
## Run 113 stress 0.1672493 
## Run 114 stress 0.1667159 
## ... Procrustes: rmse 0.05827557  max resid 0.1717056 
## Run 115 stress 0.1722591 
## Run 116 stress 0.1729479 
## Run 117 stress 0.1803813 
## Run 118 stress 0.1684625 
## Run 119 stress 0.1684236 
## Run 120 stress 0.1667159 
## ... Procrustes: rmse 0.05825933  max resid 0.1716868 
## Run 121 stress 0.1681709 
## Run 122 stress 0.1740543 
## Run 123 stress 0.1663772 
## ... New best solution
## ... Procrustes: rmse 0.01122191  max resid 0.04437587 
## Run 124 stress 0.1691888 
## Run 125 stress 0.1678287 
## Run 126 stress 0.1668479 
## ... Procrustes: rmse 0.05433058  max resid 0.1653491 
## Run 127 stress 0.1666273 
## ... Procrustes: rmse 0.04976729  max resid 0.1663226 
## Run 128 stress 0.1666272 
## ... Procrustes: rmse 0.0497725  max resid 0.1663321 
## Run 129 stress 0.1668479 
## ... Procrustes: rmse 0.05433193  max resid 0.1653447 
## Run 130 stress 0.1743736 
## Run 131 stress 0.1684494 
## Run 132 stress 0.1678286 
## Run 133 stress 0.1666273 
## ... Procrustes: rmse 0.04979554  max resid 0.1663652 
## Run 134 stress 0.1692204 
## Run 135 stress 0.1684492 
## Run 136 stress 0.1667159 
## ... Procrustes: rmse 0.05633441  max resid 0.1691261 
## Run 137 stress 0.1668281 
## ... Procrustes: rmse 0.01672  max resid 0.04984263 
## Run 138 stress 0.1667159 
## ... Procrustes: rmse 0.05633577  max resid 0.1691273 
## Run 139 stress 0.1668479 
## ... Procrustes: rmse 0.05432735  max resid 0.1653501 
## Run 140 stress 0.1663771 
## ... New best solution
## ... Procrustes: rmse 7.820137e-05  max resid 0.0002459463 
## ... Similar to previous best
## *** Best solution repeated 1 times
NMDSmodel
## 
## Call:
## metaMDS(comm = RE2, distance = "bray", trymax = 200) 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     RE2 
## Distance: bray 
## 
## Dimensions: 2 
## Stress:     0.1663771 
## Stress type 1, weak ties
## Best solution was repeated 1 time in 140 tries
## The best solution was from try 140 (random start)
## Scaling: centring, PC rotation, halfchange scaling 
## Species: expanded scores based on 'RE2'

get datascores

data.scores<-vegan::scores(NMDSmodel,display="sites")
data.scores<- as.data.frame(data.scores)

add columns back in

colnames(Field_data_wide)
##  [1] "Station"              "Inlet"                "Year"                
##  [4] "Location"             "Month"                "Smean"               
##  [7] "Omean"                "Tmean"                "pHmean"              
## [10] "Fmean"                "PO4"                  "SiOH4"               
## [13] "NO3"                  "NO2"                  "NH4"                 
## [16] "Actinoptychus"        "Akashiwo"             "Asteromphalus"       
## [19] "Cerataulina"          "Ceratium"             "Chaetoceros"         
## [22] "Coscinodiscus"        "Cylindrotheca"        "Dictyocha"           
## [25] "Dinophysis"           "Ditylum"              "Eucampia"            
## [28] "Guinardia et al"      "gymnodinioids"        "Hemiaulus"           
## [31] "Heterocapsa"          "Heterosigma"          "Katodinium"          
## [34] "Lauderia/Detonula"    "Mesodinium"           "misc 10-25 um"       
## [37] "misc 25-100 um"       "misc >100 um"         "misc ciliates"       
## [40] "misc diatoms"         "misc med/large dinos" "misc small dinos"    
## [43] "misc zoo"             "Nitzschia"            "Noctiluca"           
## [46] "Oxyphysis"            "Paralia"              "Phaeocystis"         
## [49] "Pleurosigma"          "Prorocentrum"         "Protoperidinium"     
## [52] "Pseudo-nitzschia"     "Rhizosolenia"         "Scrippsiella"        
## [55] "Skeletonema"          "Stephanopyxis"        "Thalassionema"       
## [58] "Thalassiosira"        "Protoceratium"        "copepods"            
## [61] "Helicostomella"       "misc cn ciliates"     "misc larvae"         
## [64] "misc rd ciliates"     "misc tintinnids"      "nauplii"             
## [67] "Oikopleura"           "small ciliates"       "Strombidium"         
## [70] "Tiarina"              "Amylax"               "Karlodinium"         
## [73] "Nematodinium"         "rotifers"
data.scores$Year = Field_data_wide$Year
data.scores$Month = Field_data_wide$Month
data.scores$Inlet = Field_data_wide$Inlet
data.scores$Location = Field_data_wide$Location
data.scores$Location = Field_data_wide$Location
data.scores$NO3 = Field_data_wide$NO3
data.scores$PO4 = Field_data_wide$PO4
data.scores$SiOH4 = Field_data_wide$SiOH4
data.scores$NO2 = Field_data_wide$NO2
data.scores$NH4 = Field_data_wide$NH4
data.scores$Tmean = Field_data_wide$Tmean
data.scores$Fmean = Field_data_wide$Fmean
data.scores$Omean = Field_data_wide$Omean
data.scores$pHmean = Field_data_wide$pHmean
data.scores$Smean = Field_data_wide$Smean

extract hulls

Inside <- data.scores[data.scores$Location == "IN", ][chull(data.scores[data.scores$Location == 
                                                                      "IN", c("NMDS1", "NMDS2")]), ]  
Outside <- data.scores[data.scores$Location == "OS", ][chull(data.scores[data.scores$Location == 
                                                                    "OS", c("NMDS1", "NMDS2")]), ]  
Out_Bay <- data.scores[data.scores$Location == "OB", ][chull(data.scores[data.scores$Location == 
                                                                             "OB", c("NMDS1", "NMDS2")]), ]  

get hull data

hull.data <- rbind(Inside, Outside, Out_Bay)  #combine grp.a and grp.b
hull.data
##          NMDS1       NMDS2 Year Month Inlet Location   NO3  PO4 SiOH4  NO2  NH4
## 12  1.04251146 -0.24781736 2021   Aug    QM       IN  0.21 0.45 35.62 0.01 0.00
## 2  -0.28509811 -0.45673594 2021   Jul    QM       IN  <NA> <NA>  <NA> <NA> <NA>
## 18 -0.50690807 -0.31057283 2021   Jul    SC       IN  <NA> <NA>  <NA> <NA> <NA>
## 26 -0.43102418  0.04517588 2021   Aug    SC       IN  3.05 1.13 36.28 0.19 0.88
## 25 -0.37547147  0.11719999 2021   Aug    SC       IN  0.45 0.81 40.94 0.08 0.24
## 23 -0.33701043  0.15788783 2021   Aug    SC       IN  <NA> <NA>  <NA> <NA> <NA>
## 8   0.06179011  0.09203928 2020   Aug    QM       IN  0.12 0.58 31.48 0.03 0.34
## 16  0.99118681 -0.12734098 2021   Aug    QM       OS  2.83 0.69 34.09 0.13 0.10
## 6  -0.26615287 -0.59295794 2021   Jul    QM       OS  <NA> <NA>  <NA> <NA> <NA>
## 20 -0.53578790 -0.44404939 2021   Jul    SC       OS  <NA> <NA>  <NA> <NA> <NA>
## 19 -0.29606010  0.33708633 2019   Sep    SC       OS  <NA> <NA>  <NA> <NA> <NA>
## 21 -0.19181451  0.46198209 2021   Aug    SC       OS  7.62 1.52 33.91 0.35 1.70
## 3   0.82403331 -0.01146069 2021   Aug    QM       OS  4.03 0.84 34.76 0.19 0.46
## 22 -0.08298997 -0.11408115 2019   Sep    SC       OB  <NA> <NA>  <NA> <NA> <NA>
## 10 -0.27719947 -0.19122699 2021   Jul    QM       OB  <NA> <NA>  <NA> <NA> <NA>
## 24 -0.31988110 -0.05434430 2021   Jul    SC       OB  <NA> <NA>  <NA> <NA> <NA>
## 27 -0.15342824  0.21337708 2021   Aug    SC       OB 10.51 1.67 32.74 0.36 1.17
## 9   0.18163667  0.60393481 2019   Aug    QM       OB  <NA> <NA>  <NA> <NA> <NA>
## 15  0.05970720  0.21248552 2020   Aug    QM       OB  9.13 1.54 35.93 0.41 1.12
##       Tmean     Fmean     Omean   pHmean    Smean
## 12 15.41718  8.036462  8.324053 8.787757 29.67637
## 2        NA        NA        NA       NA       NA
## 18       NA        NA        NA       NA       NA
## 26 15.41405  8.159419  9.247991 8.749234 29.74256
## 25 15.48635 14.097918 10.069238 8.814218 29.74709
## 23       NA        NA        NA       NA       NA
## 8  14.64915 12.076774  9.704596 8.572626 29.71244
## 16 13.70516  3.047317  6.832690 8.544974 29.89671
## 6        NA        NA        NA       NA       NA
## 20       NA        NA        NA       NA       NA
## 19       NA        NA        NA       NA       NA
## 21 14.96545  2.038832  7.672591 8.685609 29.78388
## 3  14.29776  6.733365  8.164190 8.677723 29.83183
## 22       NA        NA        NA       NA       NA
## 10       NA        NA        NA       NA       NA
## 24       NA        NA        NA       NA       NA
## 27 14.45317  1.979085  7.252958 8.604166 29.93015
## 9        NA        NA        NA       NA       NA
## 15 13.51247  3.180970  8.394605 8.403655 29.88051
hull.data$Location <- factor(hull.data$Location,
                         c("IN", "OS", "OB"))
data.scores$Location <- factor(data.scores$Location,
                         c("IN", "OS", "OB"))
Micro_location<-ggplot() + 
  geom_polygon(data=hull.data,aes(x=NMDS1,y=NMDS2,fill=Location,group=Location),alpha=0.20, size=0.1, linetype=1, colour="black") + # add the convex hulls
  geom_point(data=data.scores,aes(x=NMDS1,y=NMDS2,shape=Location,colour=Location),size=1) + # add the point markers
  scale_colour_manual(name="Location",labels = c("Inside Aggregation","Outside Aggregation","Outside Bay"),values=c("#619CFF",  "#F8766D","#00BA38")) +
  scale_fill_manual(name="Location",labels = c("Inside Aggregation","Outside Aggregation","Outside Bay"),values=c("#619CFF", "#F8766D","#00BA38"))+
  scale_shape_manual(name="Location",labels = c("Inside Aggregation","Outside Aggregation","Outside Bay"),values=c(16, 18,17))+
  coord_equal() +
  theme_bw() +
  theme(legend.key.size = unit(2, 'mm'))+
  ylim(-1.2,1.2)+
  xlim(-1.2,1.2)+
  theme(
    axis.title.x = element_text(size=9), 
    axis.title.y = element_text(size=9),
    panel.background = element_blank(), 
    panel.grid.major = element_blank(),
    axis.text=element_text(size=7),
    panel.grid.minor = element_blank(),  
    plot.background = element_blank(),
    legend.text = element_text(size=8),
    legend.title = element_text(size=8),legend.position=c(0.28, 0.15))+
  annotate("text", label = "2D Stress: 0.17", x = 0.8, y = 1.15, size = 3, colour = "black")+
  theme(panel.background = element_rect(fill="white"),plot.background = element_rect(fill = "white",linewidth = 0))+
  annotate("text",x=-1.1, y=1.1, label= "a",size=8)

Micro_location

Year

extract hulls

Y2019 <- data.scores[data.scores$Year == "2019", ][chull(data.scores[data.scores$Year == 
                                                                      "2019", c("NMDS1", "NMDS2")]), ]  
Y2020 <- data.scores[data.scores$Year == "2020", ][chull(data.scores[data.scores$Year == 
                                                                    "2020", c("NMDS1", "NMDS2")]), ]  
Y2021 <- data.scores[data.scores$Year == "2021", ][chull(data.scores[data.scores$Year == 
                                                                             "2021", c("NMDS1", "NMDS2")]), ]  

get hull data

hull.data <- rbind(Y2019, Y2020, Y2021)  #combine grp.a and grp.b
hull.data
##          NMDS1       NMDS2 Year Month Inlet Location  NO3  PO4 SiOH4  NO2  NH4
## 17  0.01059797 -0.10861022 2019   Sep    SC       IN <NA> <NA>  <NA> <NA> <NA>
## 22 -0.08298997 -0.11408115 2019   Sep    SC       OB <NA> <NA>  <NA> <NA> <NA>
## 19 -0.29606010  0.33708633 2019   Sep    SC       OS <NA> <NA>  <NA> <NA> <NA>
## 9   0.18163667  0.60393481 2019   Aug    QM       OB <NA> <NA>  <NA> <NA> <NA>
## 11  0.11694023  0.03801991 2020   Aug    QM       IN 0.48 0.71 30.83 0.05 0.71
## 14  0.01671390  0.02471005 2020   Aug    QM       OS 0.32 0.47 31.07 0.04 0.39
## 15  0.05970720  0.21248552 2020   Aug    QM       OB 9.13 1.54 35.93 0.41 1.12
## 7   0.23348915  0.17401738 2020   Aug    QM       OS 0.05 0.57 31.11 0.02 0.09
## 12  1.04251146 -0.24781736 2021   Aug    QM       IN 0.21 0.45 35.62 0.01 0.00
## 6  -0.26615287 -0.59295794 2021   Jul    QM       OS <NA> <NA>  <NA> <NA> <NA>
## 20 -0.53578790 -0.44404939 2021   Jul    SC       OS <NA> <NA>  <NA> <NA> <NA>
## 26 -0.43102418  0.04517588 2021   Aug    SC       IN 3.05 1.13 36.28 0.19 0.88
## 21 -0.19181451  0.46198209 2021   Aug    SC       OS 7.62 1.52 33.91 0.35 1.70
## 3   0.82403331 -0.01146069 2021   Aug    QM       OS 4.03 0.84 34.76 0.19 0.46
## 16  0.99118681 -0.12734098 2021   Aug    QM       OS 2.83 0.69 34.09 0.13 0.10
##       Tmean     Fmean     Omean   pHmean    Smean
## 17       NA        NA        NA       NA       NA
## 22       NA        NA        NA       NA       NA
## 19       NA        NA        NA       NA       NA
## 9        NA        NA        NA       NA       NA
## 11 14.20596  9.993436  9.530405 8.542714 29.77753
## 14 15.09538 12.958875  3.536741 8.660025 29.69050
## 15 13.51247  3.180970  8.394605 8.403655 29.88051
## 7  15.24269 10.432785 10.927995 8.686565 29.69010
## 12 15.41718  8.036462  8.324053 8.787757 29.67637
## 6        NA        NA        NA       NA       NA
## 20       NA        NA        NA       NA       NA
## 26 15.41405  8.159419  9.247991 8.749234 29.74256
## 21 14.96545  2.038832  7.672591 8.685609 29.78388
## 3  14.29776  6.733365  8.164190 8.677723 29.83183
## 16 13.70516  3.047317  6.832690 8.544974 29.89671
Micro_Year<-ggplot() + 
  geom_polygon(data=hull.data,aes(x=NMDS1,y=NMDS2,fill=Year,group=Year),alpha=0.20, size=0.1, linetype=1, colour="black") + # add the convex hulls
  geom_point(data=data.scores,aes(x=NMDS1,y=NMDS2,shape=Year,colour=Year),size=1) + # add the point markers
  scale_colour_manual(name="Year",values=c("#619CFF",  "#F8766D","#00BA38")) +
  scale_fill_manual(name="Year",values=c("#619CFF", "#F8766D","#00BA38"))+
  scale_shape_manual(name="Year",values=c(16, 18,17))+
  coord_equal() +
  theme_bw() +
  theme(legend.key.size = unit(2, 'mm'))+
  ylim(-1.2,1.2)+
  xlim(-1.2,1.2)+
  theme(
    axis.title.x = element_text(size=9), 
    axis.title.y = element_text(size=9),
    panel.background = element_blank(), 
    panel.grid.major = element_blank(),
    axis.text=element_text(size=7),
    panel.grid.minor = element_blank(),  
    plot.background = element_blank(),
    legend.text = element_text(size=8),
    legend.title = element_text(size=8),legend.position=c(0.12, 0.15))+
  annotate("text", label = "2D Stress: 0.17", x = 0.8, y = 1.15, size = 3, colour = "black")+
  theme(panel.background = element_rect(fill="white"),plot.background = element_rect(fill = "white",linewidth = 0))+
  annotate("text",x=-1.1, y=1.1, label= "b",size=8)

Micro_Year

Month

Species fitting

vf <- envfit(NMDSmodel, RE3, perm = 999)
vf
## 
## ***VECTORS
## 
##                         NMDS1    NMDS2     r2 Pr(>r)    
## Actinoptychus        -0.25969  0.96569 0.1615  0.148    
## Akashiwo             -0.97775 -0.20978 0.1649  0.111    
## Asteromphalus        -0.03835  0.99926 0.2515  0.026 *  
## Cerataulina           0.94218 -0.33510 0.8970  0.001 ***
## Ceratium             -0.70654 -0.70767 0.7780  0.001 ***
## Chaetoceros          -0.44851  0.89378 0.3999  0.006 ** 
## Coscinodiscus         0.29728  0.95479 0.3129  0.009 ** 
## Cylindrotheca        -0.41710  0.90886 0.0652  0.457    
## Dictyocha             0.79292 -0.60932 0.1684  0.093 .  
## Dinophysis           -0.59004  0.80737 0.0740  0.384    
## Ditylum              -0.54382  0.83920 0.3567  0.005 ** 
## Eucampia              0.98893  0.14841 0.0752  0.369    
## Guinardia et al       0.99583 -0.09125 0.2051  0.064 .  
## gymnodinioids         0.14021  0.99012 0.1099  0.236    
## Hemiaulus             0.14377  0.98961 0.0994  0.253    
## Heterocapsa           0.92883  0.37052 0.0879  0.324    
## Heterosigma           0.81014 -0.58624 0.4745  0.004 ** 
## Katodinium            0.99239  0.12317 0.3250  0.007 ** 
## Lauderia/Detonula    -0.93984  0.34162 0.0414  0.631    
## Mesodinium            0.18102  0.98348 0.2042  0.092 .  
## misc 10-25 um         0.28917 -0.95728 0.0965  0.295    
## misc 25-100 um       -0.55090 -0.83457 0.5974  0.001 ***
## misc >100 um          0.83466 -0.55076 0.2711  0.026 *  
## misc ciliates         0.08763  0.99615 0.2308  0.040 *  
## misc diatoms          0.99976  0.02182 0.5679  0.001 ***
## misc med/large dinos -0.54226 -0.84021 0.1263  0.183    
## misc small dinos      0.97745 -0.21119 0.0136  0.870    
## misc zoo              0.19272  0.98125 0.0707  0.423    
## Nitzschia             0.92770 -0.37332 0.5731  0.001 ***
## Noctiluca            -0.95721 -0.28939 0.1658  0.113    
## Oxyphysis             0.48399  0.87507 0.0338  0.655    
## Paralia              -0.28749 -0.95778 0.0082  0.786    
## Phaeocystis          -0.72057  0.69338 0.0055  0.857    
## Pleurosigma          -0.77015  0.63786 0.0025  0.983    
## Prorocentrum         -0.49529 -0.86873 0.0337  0.666    
## Protoperidinium      -0.66599 -0.74596 0.2053  0.045 *  
## Pseudo-nitzschia     -0.07149  0.99744 0.3130  0.015 *  
## Rhizosolenia         -0.41627  0.90924 0.0424  0.587    
## Scrippsiella         -0.74366  0.66856 0.0837  0.355    
## Skeletonema          -0.29400  0.95580 0.1691  0.113    
## Stephanopyxis        -0.56822  0.82287 0.0274  0.736    
## Thalassionema        -0.12073  0.99268 0.2961  0.018 *  
## Thalassiosira         0.00845  0.99996 0.3236  0.010 ** 
## Protoceratium        -0.93522 -0.35406 0.1418  0.128    
## copepods              0.64484 -0.76432 0.1723  0.112    
## Helicostomella       -0.96922  0.24620 0.0406  0.440    
## misc cn ciliates     -0.58383 -0.81188 0.2910  0.014 *  
## misc larvae          -0.99375 -0.11159 0.0116  0.808    
## misc rd ciliates      0.91085 -0.41275 0.1860  0.104    
## misc tintinnids      -0.29675 -0.95496 0.4045  0.003 ** 
## nauplii               0.53707 -0.84354 0.0921  0.319    
## Oikopleura            0.29550 -0.95534 0.0271  0.750    
## small ciliates        0.19115 -0.98156 0.0336  0.703    
## Strombidium          -0.32284 -0.94645 0.2154  0.065 .  
## Tiarina               0.71343 -0.70073 0.3844  0.007 ** 
## Amylax               -0.24941 -0.96840 0.1249  0.277    
## Karlodinium          -0.20085 -0.97962 0.3154  0.008 ** 
## Nematodinium         -0.18210 -0.98328 0.1965  0.124    
## rotifers             -0.51330 -0.85821 0.0352  0.580    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation: free
## Number of permutations: 999
spp.scrs <- as.data.frame(vegan::scores(vf, display = "vectors"))
spp.scrs <- cbind(spp.scrs, Species = rownames(spp.scrs))

####for ggplot
arrow_factor <- ordiArrowMul(vf)
spp.scrs <- as.data.frame(vegan::scores(vf, display = "vectors")) * arrow_factor
spp.scrs <- cbind(spp.scrs, Species = rownames(spp.scrs), Pvalues = vf$vectors$pvals, R_squared = vf$vectors$r)

# select significance similarly to `plot(vf, p.max = 0.01)`
spp.scrs <- subset(spp.scrs, Pvalues < 0.01)

extract hulls

Aug<- data.scores[data.scores$Month == "Aug", ][chull(data.scores[data.scores$Month == 
                                                                      "Aug", c("NMDS1", "NMDS2")]), ]  
Jul <- data.scores[data.scores$Month == "Jul", ][chull(data.scores[data.scores$Month == 
                                                                    "Jul", c("NMDS1", "NMDS2")]), ]  
Sep <- data.scores[data.scores$Month == "Sep", ][chull(data.scores[data.scores$Month == 
                                                                             "Sep", c("NMDS1", "NMDS2")]), ]  

get hull data

hull.data <- rbind(Aug, Jul, Sep)  #combine grp.a and grp.b
hull.data
##          NMDS1       NMDS2 Year Month Inlet Location  NO3  PO4 SiOH4  NO2  NH4
## 16  0.99118681 -0.12734098 2021   Aug    QM       OS 2.83 0.69 34.09 0.13 0.10
## 12  1.04251146 -0.24781736 2021   Aug    QM       IN 0.21 0.45 35.62 0.01 0.00
## 13  0.72721068 -0.25068257 2021   Aug    QM       IN 1.83 0.65 34.40 0.10 0.11
## 26 -0.43102418  0.04517588 2021   Aug    SC       IN 3.05 1.13 36.28 0.19 0.88
## 21 -0.19181451  0.46198209 2021   Aug    SC       OS 7.62 1.52 33.91 0.35 1.70
## 9   0.18163667  0.60393481 2019   Aug    QM       OB <NA> <NA>  <NA> <NA> <NA>
## 6  -0.26615287 -0.59295794 2021   Jul    QM       OS <NA> <NA>  <NA> <NA> <NA>
## 20 -0.53578790 -0.44404939 2021   Jul    SC       OS <NA> <NA>  <NA> <NA> <NA>
## 18 -0.50690807 -0.31057283 2021   Jul    SC       IN <NA> <NA>  <NA> <NA> <NA>
## 24 -0.31988110 -0.05434430 2021   Jul    SC       OB <NA> <NA>  <NA> <NA> <NA>
## 10 -0.27719947 -0.19122699 2021   Jul    QM       OB <NA> <NA>  <NA> <NA> <NA>
## 17  0.01059797 -0.10861022 2019   Sep    SC       IN <NA> <NA>  <NA> <NA> <NA>
## 22 -0.08298997 -0.11408115 2019   Sep    SC       OB <NA> <NA>  <NA> <NA> <NA>
## 19 -0.29606010  0.33708633 2019   Sep    SC       OS <NA> <NA>  <NA> <NA> <NA>
##       Tmean    Fmean    Omean   pHmean    Smean
## 16 13.70516 3.047317 6.832690 8.544974 29.89671
## 12 15.41718 8.036462 8.324053 8.787757 29.67637
## 13 14.71093 7.029254 8.245302 8.726635 29.75984
## 26 15.41405 8.159419 9.247991 8.749234 29.74256
## 21 14.96545 2.038832 7.672591 8.685609 29.78388
## 9        NA       NA       NA       NA       NA
## 6        NA       NA       NA       NA       NA
## 20       NA       NA       NA       NA       NA
## 18       NA       NA       NA       NA       NA
## 24       NA       NA       NA       NA       NA
## 10       NA       NA       NA       NA       NA
## 17       NA       NA       NA       NA       NA
## 22       NA       NA       NA       NA       NA
## 19       NA       NA       NA       NA       NA
Micro_Month<-ggplot() + 
  geom_polygon(data=hull.data,aes(x=NMDS1,y=NMDS2,fill=Month,group=Month),alpha=0.20, size=0.1, linetype=1, colour="black") + # add the convex hulls
  geom_point(data=data.scores,aes(x=NMDS1,y=NMDS2,shape=Month,colour=Month),size=1) + # add the point markers
  scale_colour_manual(labels = c("August","July","September"),values=c("#619CFF",  "#F8766D","#00BA38")) +
  scale_fill_manual(labels = c("August","July","September"),values=c("#619CFF", "#F8766D","#00BA38"))+
  scale_shape_manual(labels = c("August","July","September"),values=c(16, 18,17))+
  coord_equal() +
  theme_bw() +
  theme(legend.key.size = unit(2, 'mm'))+
  ylim(-1.2,1.2)+
  xlim(-1.2,1.2)+
  theme(
    axis.title.x = element_text(size=9), 
    axis.title.y = element_text(size=9),
    panel.background = element_blank(), 
    panel.grid.major = element_blank(),
    axis.text=element_text(size=7),
    panel.grid.minor = element_blank(),  
    plot.background = element_blank(),
    legend.text = element_text(size=8),
    legend.title = element_text(size=8),legend.position=c(0.18, 0.15))+
  annotate("text", label = "2D Stress: 0.17", x = 0.8, y = 1.15, size = 3, colour = "black")+
  theme(panel.background = element_rect(fill="white"),plot.background = element_rect(fill = "white",linewidth = 0))+
  annotate("text",x=-1.1, y=1.1, label= "c",size=8)

Micro_Month

Combine location, year and month plots

Micro_plot<-ggarrange(Micro_location, Micro_Year, Micro_Month,
          ncol = 3, nrow = 1)
Micro_plot

save plot

setwd("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/output")
ggsave(filename = "Micro_plot.png", plot = Micro_plot, height = 80, width = 252, units="mm", device='png', dpi=600)
ggsave(filename = "Micro_plot.tif", plot = Micro_plot, height = 80, width = 252, units="mm", device='tiff', dpi=600)