Problem 1:
Scientific modeling is a scientific activity, the aim of which is to make a particular part or feature of the world easier to understand, define, quantify, visualize or simulate by referencing it to existing and usually commonly accepted knowledge. It requires selecting and identifying relevant aspects of a situation in the real world and then using different types of models for different aims, such as conceptual models to better understand, operational models to operationalize, mathematical models to quantify, and graphical models to visualize the subject.

Problem 2:

Problem 3:
Do a research for interesting, unexpected, and useful relationships in a dataset. These findings may be interesting mainly because either they are unusual patterns or because they are very common in the sense of being considered key characteristics of the phenomena.

Problem 4:

Problem 5:
Exploratory data analysis includes a series of techniques that have as the main goal to provide useful summaries of a dataset that highlight some characteristics of the data that the users may find useful.

Problem 6:
TRUE

Problem 7:
Data summaries try to provide overviews of key properties of the data. More specifically, they try to describe important properties of the distribution of the values across the observations in a dataset.

Problem 8:
package dplyr

Problem 9:
(a)

    library(DMwR2)
    library(dplyr)
    data(algae)
    algae
## # A tibble: 200 × 18
##    season size  speed   mxPH  mnO2    Cl    NO3   NH4  oPO4   PO4  Chla    a1
##    <fct>  <fct> <fct>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1 winter small medium  8      9.8  60.8  6.24  578   105   170   50      0  
##  2 spring small medium  8.35   8    57.8  1.29  370   429.  559.   1.3    1.4
##  3 autumn small medium  8.1   11.4  40.0  5.33  347.  126.  187.  15.6    3.3
##  4 spring small medium  8.07   4.8  77.4  2.30   98.2  61.2 139.   1.4    3.1
##  5 autumn small medium  8.06   9    55.4 10.4   234.   58.2  97.6 10.5    9.2
##  6 winter small high    8.25  13.1  65.8  9.25  430    18.2  56.7 28.4   15.1
##  7 summer small high    8.15  10.3  73.2  1.54  110    61.2 112.   3.2    2.4
##  8 autumn small high    8.05  10.6  59.1  4.99  206.   44.7  77.4  6.9   18.2
##  9 winter small medium  8.7    3.4  22.0  0.886 103.   36.3  71    5.54  25.4
## 10 winter small high    7.93   9.9   8    1.39    5.8  27.2  46.6  0.8   17  
## # ℹ 190 more rows
## # ℹ 6 more variables: a2 <dbl>, a3 <dbl>, a4 <dbl>, a5 <dbl>, a6 <dbl>,
## #   a7 <dbl>
    data(iris)
    iris
##     Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 1            5.1         3.5          1.4         0.2     setosa
## 2            4.9         3.0          1.4         0.2     setosa
## 3            4.7         3.2          1.3         0.2     setosa
## 4            4.6         3.1          1.5         0.2     setosa
## 5            5.0         3.6          1.4         0.2     setosa
## 6            5.4         3.9          1.7         0.4     setosa
## 7            4.6         3.4          1.4         0.3     setosa
## 8            5.0         3.4          1.5         0.2     setosa
## 9            4.4         2.9          1.4         0.2     setosa
## 10           4.9         3.1          1.5         0.1     setosa
## 11           5.4         3.7          1.5         0.2     setosa
## 12           4.8         3.4          1.6         0.2     setosa
## 13           4.8         3.0          1.4         0.1     setosa
## 14           4.3         3.0          1.1         0.1     setosa
## 15           5.8         4.0          1.2         0.2     setosa
## 16           5.7         4.4          1.5         0.4     setosa
## 17           5.4         3.9          1.3         0.4     setosa
## 18           5.1         3.5          1.4         0.3     setosa
## 19           5.7         3.8          1.7         0.3     setosa
## 20           5.1         3.8          1.5         0.3     setosa
## 21           5.4         3.4          1.7         0.2     setosa
## 22           5.1         3.7          1.5         0.4     setosa
## 23           4.6         3.6          1.0         0.2     setosa
## 24           5.1         3.3          1.7         0.5     setosa
## 25           4.8         3.4          1.9         0.2     setosa
## 26           5.0         3.0          1.6         0.2     setosa
## 27           5.0         3.4          1.6         0.4     setosa
## 28           5.2         3.5          1.5         0.2     setosa
## 29           5.2         3.4          1.4         0.2     setosa
## 30           4.7         3.2          1.6         0.2     setosa
## 31           4.8         3.1          1.6         0.2     setosa
## 32           5.4         3.4          1.5         0.4     setosa
## 33           5.2         4.1          1.5         0.1     setosa
## 34           5.5         4.2          1.4         0.2     setosa
## 35           4.9         3.1          1.5         0.2     setosa
## 36           5.0         3.2          1.2         0.2     setosa
## 37           5.5         3.5          1.3         0.2     setosa
## 38           4.9         3.6          1.4         0.1     setosa
## 39           4.4         3.0          1.3         0.2     setosa
## 40           5.1         3.4          1.5         0.2     setosa
## 41           5.0         3.5          1.3         0.3     setosa
## 42           4.5         2.3          1.3         0.3     setosa
## 43           4.4         3.2          1.3         0.2     setosa
## 44           5.0         3.5          1.6         0.6     setosa
## 45           5.1         3.8          1.9         0.4     setosa
## 46           4.8         3.0          1.4         0.3     setosa
## 47           5.1         3.8          1.6         0.2     setosa
## 48           4.6         3.2          1.4         0.2     setosa
## 49           5.3         3.7          1.5         0.2     setosa
## 50           5.0         3.3          1.4         0.2     setosa
## 51           7.0         3.2          4.7         1.4 versicolor
## 52           6.4         3.2          4.5         1.5 versicolor
## 53           6.9         3.1          4.9         1.5 versicolor
## 54           5.5         2.3          4.0         1.3 versicolor
## 55           6.5         2.8          4.6         1.5 versicolor
## 56           5.7         2.8          4.5         1.3 versicolor
## 57           6.3         3.3          4.7         1.6 versicolor
## 58           4.9         2.4          3.3         1.0 versicolor
## 59           6.6         2.9          4.6         1.3 versicolor
## 60           5.2         2.7          3.9         1.4 versicolor
## 61           5.0         2.0          3.5         1.0 versicolor
## 62           5.9         3.0          4.2         1.5 versicolor
## 63           6.0         2.2          4.0         1.0 versicolor
## 64           6.1         2.9          4.7         1.4 versicolor
## 65           5.6         2.9          3.6         1.3 versicolor
## 66           6.7         3.1          4.4         1.4 versicolor
## 67           5.6         3.0          4.5         1.5 versicolor
## 68           5.8         2.7          4.1         1.0 versicolor
## 69           6.2         2.2          4.5         1.5 versicolor
## 70           5.6         2.5          3.9         1.1 versicolor
## 71           5.9         3.2          4.8         1.8 versicolor
## 72           6.1         2.8          4.0         1.3 versicolor
## 73           6.3         2.5          4.9         1.5 versicolor
## 74           6.1         2.8          4.7         1.2 versicolor
## 75           6.4         2.9          4.3         1.3 versicolor
## 76           6.6         3.0          4.4         1.4 versicolor
## 77           6.8         2.8          4.8         1.4 versicolor
## 78           6.7         3.0          5.0         1.7 versicolor
## 79           6.0         2.9          4.5         1.5 versicolor
## 80           5.7         2.6          3.5         1.0 versicolor
## 81           5.5         2.4          3.8         1.1 versicolor
## 82           5.5         2.4          3.7         1.0 versicolor
## 83           5.8         2.7          3.9         1.2 versicolor
## 84           6.0         2.7          5.1         1.6 versicolor
## 85           5.4         3.0          4.5         1.5 versicolor
## 86           6.0         3.4          4.5         1.6 versicolor
## 87           6.7         3.1          4.7         1.5 versicolor
## 88           6.3         2.3          4.4         1.3 versicolor
## 89           5.6         3.0          4.1         1.3 versicolor
## 90           5.5         2.5          4.0         1.3 versicolor
## 91           5.5         2.6          4.4         1.2 versicolor
## 92           6.1         3.0          4.6         1.4 versicolor
## 93           5.8         2.6          4.0         1.2 versicolor
## 94           5.0         2.3          3.3         1.0 versicolor
## 95           5.6         2.7          4.2         1.3 versicolor
## 96           5.7         3.0          4.2         1.2 versicolor
## 97           5.7         2.9          4.2         1.3 versicolor
## 98           6.2         2.9          4.3         1.3 versicolor
## 99           5.1         2.5          3.0         1.1 versicolor
## 100          5.7         2.8          4.1         1.3 versicolor
## 101          6.3         3.3          6.0         2.5  virginica
## 102          5.8         2.7          5.1         1.9  virginica
## 103          7.1         3.0          5.9         2.1  virginica
## 104          6.3         2.9          5.6         1.8  virginica
## 105          6.5         3.0          5.8         2.2  virginica
## 106          7.6         3.0          6.6         2.1  virginica
## 107          4.9         2.5          4.5         1.7  virginica
## 108          7.3         2.9          6.3         1.8  virginica
## 109          6.7         2.5          5.8         1.8  virginica
## 110          7.2         3.6          6.1         2.5  virginica
## 111          6.5         3.2          5.1         2.0  virginica
## 112          6.4         2.7          5.3         1.9  virginica
## 113          6.8         3.0          5.5         2.1  virginica
## 114          5.7         2.5          5.0         2.0  virginica
## 115          5.8         2.8          5.1         2.4  virginica
## 116          6.4         3.2          5.3         2.3  virginica
## 117          6.5         3.0          5.5         1.8  virginica
## 118          7.7         3.8          6.7         2.2  virginica
## 119          7.7         2.6          6.9         2.3  virginica
## 120          6.0         2.2          5.0         1.5  virginica
## 121          6.9         3.2          5.7         2.3  virginica
## 122          5.6         2.8          4.9         2.0  virginica
## 123          7.7         2.8          6.7         2.0  virginica
## 124          6.3         2.7          4.9         1.8  virginica
## 125          6.7         3.3          5.7         2.1  virginica
## 126          7.2         3.2          6.0         1.8  virginica
## 127          6.2         2.8          4.8         1.8  virginica
## 128          6.1         3.0          4.9         1.8  virginica
## 129          6.4         2.8          5.6         2.1  virginica
## 130          7.2         3.0          5.8         1.6  virginica
## 131          7.4         2.8          6.1         1.9  virginica
## 132          7.9         3.8          6.4         2.0  virginica
## 133          6.4         2.8          5.6         2.2  virginica
## 134          6.3         2.8          5.1         1.5  virginica
## 135          6.1         2.6          5.6         1.4  virginica
## 136          7.7         3.0          6.1         2.3  virginica
## 137          6.3         3.4          5.6         2.4  virginica
## 138          6.4         3.1          5.5         1.8  virginica
## 139          6.0         3.0          4.8         1.8  virginica
## 140          6.9         3.1          5.4         2.1  virginica
## 141          6.7         3.1          5.6         2.4  virginica
## 142          6.9         3.1          5.1         2.3  virginica
## 143          5.8         2.7          5.1         1.9  virginica
## 144          6.8         3.2          5.9         2.3  virginica
## 145          6.7         3.3          5.7         2.5  virginica
## 146          6.7         3.0          5.2         2.3  virginica
## 147          6.3         2.5          5.0         1.9  virginica
## 148          6.5         3.0          5.2         2.0  virginica
## 149          6.2         3.4          5.4         2.3  virginica
## 150          5.9         3.0          5.1         1.8  virginica
    summary(algae)
##     season       size       speed         mxPH            mnO2       
##  autumn:40   large :45   high  :84   Min.   :5.600   Min.   : 1.500  
##  spring:53   medium:84   low   :33   1st Qu.:7.700   1st Qu.: 7.725  
##  summer:45   small :71   medium:83   Median :8.060   Median : 9.800  
##  winter:62                           Mean   :8.012   Mean   : 9.118  
##                                      3rd Qu.:8.400   3rd Qu.:10.800  
##                                      Max.   :9.700   Max.   :13.400  
##                                      NA's   :1       NA's   :2       
##        Cl               NO3              NH4                oPO4       
##  Min.   :  0.222   Min.   : 0.050   Min.   :    5.00   Min.   :  1.00  
##  1st Qu.: 10.981   1st Qu.: 1.296   1st Qu.:   38.33   1st Qu.: 15.70  
##  Median : 32.730   Median : 2.675   Median :  103.17   Median : 40.15  
##  Mean   : 43.636   Mean   : 3.282   Mean   :  501.30   Mean   : 73.59  
##  3rd Qu.: 57.824   3rd Qu.: 4.446   3rd Qu.:  226.95   3rd Qu.: 99.33  
##  Max.   :391.500   Max.   :45.650   Max.   :24064.00   Max.   :564.60  
##  NA's   :10        NA's   :2        NA's   :2          NA's   :2       
##       PO4              Chla               a1              a2        
##  Min.   :  1.00   Min.   :  0.200   Min.   : 0.00   Min.   : 0.000  
##  1st Qu.: 41.38   1st Qu.:  2.000   1st Qu.: 1.50   1st Qu.: 0.000  
##  Median :103.29   Median :  5.475   Median : 6.95   Median : 3.000  
##  Mean   :137.88   Mean   : 13.971   Mean   :16.92   Mean   : 7.458  
##  3rd Qu.:213.75   3rd Qu.: 18.308   3rd Qu.:24.80   3rd Qu.:11.375  
##  Max.   :771.60   Max.   :110.456   Max.   :89.80   Max.   :72.600  
##  NA's   :2        NA's   :12                                        
##        a3               a4               a5               a6        
##  Min.   : 0.000   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 0.000   1st Qu.: 0.000   1st Qu.: 0.000   1st Qu.: 0.000  
##  Median : 1.550   Median : 0.000   Median : 1.900   Median : 0.000  
##  Mean   : 4.309   Mean   : 1.992   Mean   : 5.064   Mean   : 5.964  
##  3rd Qu.: 4.925   3rd Qu.: 2.400   3rd Qu.: 7.500   3rd Qu.: 6.925  
##  Max.   :42.800   Max.   :44.600   Max.   :44.400   Max.   :77.600  
##                                                                     
##        a7        
##  Min.   : 0.000  
##  1st Qu.: 0.000  
##  Median : 1.000  
##  Mean   : 2.495  
##  3rd Qu.: 2.400  
##  Max.   :31.600  
## 
    summary(iris)
##   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
##  Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
##  1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
##  Median :5.800   Median :3.000   Median :4.350   Median :1.300  
##  Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  
##  3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
##  Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
##        Species  
##  setosa    :50  
##  versicolor:50  
##  virginica :50  
##                 
##                 
## 

(b) This data set contains observations on 11 variables as well as the concentration levels of 7 harmful algae. Values were measured in several European rivers. The 11 predictor variables include 3 contextual variables (season, size and speed) describing the water sample, plus 8 chemical concentration measurements.
(c) The Iris Dataset contains four features (length and width of sepals and petals) of 50 samples of three species of Iris (Iris setosa, Iris virginica and Iris versicolor). These measures were used to create a linear discriminant model to classify the species.
(d) Yes, it seems that there is a high correlation between sepal length and sepal width if you look at the summary and the iris data.

Problem 10:
The summarise() function can be used to apply any function that produces a scalar value to any column of a data frame table.

Problem 11:
We can apply a set of functions to all columns of a data set table using functions summarise_each() and funs().

Problem 12:
It can be used to form sub-groups of a dataset using all combinations of the values of one or more normal variables.

Problem 13:
summarise()

Problem 14:

Mode <- function(x, na.rm = FALSE){
  if(na.rm) x <- x[!is.na(x)]
  ux <- unique(x)
  return(ux[which.max(tabulate(match(x, ux)))])
}
Mode(iris$Sepal.Length, na.rm = TRUE)
## [1] 5
Mode(iris$Petal.Length)
## [1] 1.4

Problem 15:
Function centralValue() in our book package can be used to obtain the more adequate statistic of centrality of a given sample of values. It will return the median in the case of numeric variables and the mode for nominal variables.

Problem 16:
(a) IQR is the difference between the 3rd and 1st quartiles. It is the interval that contains 50% of the most central values of a continuous variable.
(b) The x-quartile is the value below which there are x % of the observed values.
(c) A large value of the IQR means that these central values are spread over a large range.
(d) A small value represents a very packed set of values.

Problem 17:
the range

Problem 18:
a.

aggregate(iris$Sepal.Length, list(Species=iris$Species), quantile)
##      Species  x.0% x.25% x.50% x.75% x.100%
## 1     setosa 4.300 4.800 5.000 5.200  5.800
## 2 versicolor 4.900 5.600 5.900 6.300  7.000
## 3  virginica 4.900 6.225 6.500 6.900  7.900

b. the aggregate function from base R

Problem 19:

Mode <- function(x, na.rm = FALSE){
  if(na.rm) x <- x[!is.na(x)]
  ux <- unique(x)
  return(ux[which.max(tabulate(match(x, ux)))])
}
Mode(iris$Species, na.rm = TRUE)
## [1] setosa
## Levels: setosa versicolor virginica

Problem 20:
(a) R pipes are a way to chain multiple operations together in a concise and expressive way.
(b) They are represented by the %>% operator.
(c) It takes the output of the expression on its left and passes it as the first argument to the function on its right.

R pipes are a way to chain multiple operations together in a concise and expressive way.

Problem 21:
The second argument of the aggregate() function is a list that can include as many factors as you want to form the sub-group of the data.

Problem 22:
The second argument was answered in the previous question. For each sub-group the function supplied in the third argument is applied to the values of the variables specified in the first argument.

Problem 23:
You can use the as.numeric() function.

Problem 24:
(a) If we want to check how many unknown values exist in a database, we can proceed as follows.
(b)

data(algae, package = "DMwR2")
nasRow <- apply(algae, 1, function(r) sum(is.na(r)))
cat("The Algae database contains ", sum(nasRow), " NA values.\n")
## The Algae database contains  33  NA values.

Problem 25:
(a) The method is the boxplot rule.
(b) This rules states that a value in a sample of a continuous variable is considered an outlier if it is outside of the interval [Q1 - 1.5 * IQR, Q3 + 1.5 * IQR], where Q1, Q3 are the first, and third quartile, and IQR = Q3 - Q1 the interquartile range.

Problem 26:
The result is a summary of basic descriptive statistics of the dataset.

Problem 27:
(a) It is used for a global summary of a dataset.
(b) Hmisc

Problem 28:
As a verb, it means to analyze (a sentence) into its parts and describe their syntactic roles.
As a noun, it means an act of or the result obtained by parsing a string or a text.