library(pheatmap)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyverse)
## Warning: package 'ggplot2' was built under R version 4.3.2
## Warning: package 'tidyr' was built under R version 4.3.2
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats 1.0.0.9000 ✔ readr 2.1.5
## ✔ ggplot2 3.5.1 ✔ stringr 1.5.1
## ✔ lubridate 1.9.3 ✔ tibble 3.2.1
## ✔ purrr 1.0.2 ✔ tidyr 1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggplot2)
library(RColorBrewer)
library(readr)
data_matrix <- read.csv("~/Desktop/Ali.updated.GSVA.concordance.22june/try.UP.concordance.Timepoint.GSVA.NEW.Heatmap.july.csv", row.names = 1)
#data_matrix <- t(apply(data_matrix, 1, function(x) (x - min(x)) / (max(x) - min(x))))
# Generate the heatmap
pheatmap(data_matrix,
cluster_rows = FALSE,
cluster_cols = FALSE,
color = colorRampPalette(c("azure3", "red", "brown"))(100),
display_numbers = FALSE,
fontsize_row = 7,
fontsize_col = 12, border_color = NA)

library(readr)
data_matrix <- read.csv("~/Desktop/Ali.updated.GSVA.concordance.22june/try.Down.concordance.Timepoint.GSVA.NEW.Heatmap.july.csv", row.names = 1)
#data_matrix <- t(apply(data_matrix, 1, function(x) (x - min(x)) / (max(x) - min(x))))
# Generate the heatmap
pheatmap(data_matrix,
cluster_rows = FALSE,
cluster_cols = FALSE,
color = colorRampPalette(c("navy", "blue", "lightgray"))(100),
display_numbers = FALSE,
fontsize_row = 8,
fontsize_col = 12, border_color = NA)

library(readr)
data_matrix <- read.csv("~/Desktop/Camk2a.WGCNA.8june/july/JULY2/Discordant_Brain_vs_CSF_12july.csv", row.names = 1)
##Discordant plot (up and down together)
pheatmap(data_matrix,
cluster_rows = FALSE,
cluster_cols = FALSE,
color = colorRampPalette(c("blue", "lightgray", "red"))(250),
display_numbers = FALSE,
fontsize_row = 8,
fontsize_col = 9, border_color = FALSE)
