library("haven")
警告: 套件 ‘haven’ 是用 R 版本 4.3.3 來建造的
library("tidyverse")
警告: 套件 ‘tidyverse’ 是用 R 版本 4.3.3 來建造的警告: 套件 ‘tidyr’ 是用 R 版本 4.3.3 來建造的警告: 套件 ‘readr’ 是用 R 版本 4.3.3 來建造的警告: 套件 ‘purrr’ 是用 R 版本 4.3.3 來建造的警告: 套件 ‘forcats’ 是用 R 版本 4.3.3 來建造的警告: 套件 ‘lubridate’ 是用 R 版本 4.3.3 來建造的── Attaching core tidyverse packages ───────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.1
✔ lubridate 1.9.3 ✔ tibble 3.2.1
✔ purrr 1.0.2 ✔ tidyr 1.3.1── Conflicts ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::group_rows() masks kableExtra::group_rows()
✖ dplyr::lag() masks stats::lag()
ℹ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errors
library("dplyr")
library("foreign")
library("survey")
警告: 套件 ‘survey’ 是用 R 版本 4.3.3 來建造的載入需要的套件:grid
載入需要的套件:Matrix
載入套件:‘Matrix’
下列物件被遮斷自 ‘package:tidyr’:
expand, pack, unpack
載入需要的套件:survival
載入套件:‘survival’
下列物件被遮斷由 ‘.GlobalEnv’:
cancer
載入套件:‘survey’
下列物件被遮斷自 ‘package:graphics’:
dotchart
library("ggplot2")
library("car")
警告: 套件 ‘car’ 是用 R 版本 4.3.3 來建造的載入需要的套件:carData
警告: 套件 ‘carData’ 是用 R 版本 4.3.3 來建造的
載入套件:‘car’
下列物件被遮斷自 ‘package:dplyr’:
recode
下列物件被遮斷自 ‘package:purrr’:
some
library("rms")
警告: 套件 ‘rms’ 是用 R 版本 4.3.3 來建造的載入需要的套件:Hmisc
警告: 套件 ‘Hmisc’ 是用 R 版本 4.3.3 來建造的Registered S3 method overwritten by 'htmlwidgets':
method from
print.htmlwidget tools:rstudio
載入套件:‘Hmisc’
下列物件被遮斷自 ‘package:survey’:
deff
下列物件被遮斷自 ‘package:dplyr’:
src, summarize
下列物件被遮斷自 ‘package:base’:
format.pval, units
警告: "replValueSp" 類別的子類別 "ndiMatrix" 沒有定義;因此沒有更新
載入套件:‘rms’
下列物件被遮斷自 ‘package:car’:
Predict, vif
下列物件被遮斷自 ‘package:survey’:
calibrate
library("SciViews")
#list variable
colnames(Fulldat_mediation_pfas)
[1] "SEQN" "chronological_age" "Gender" "Race"
[5] "Pregnancy" "Marital_Status" "Ratio_income_poverty" "Interview_Weight"
[9] "MEC_Weight" "psu" "Strata" "BMI"
[13] "Vitamin_A" "Vitamin_C" "Vitamin_E" "Zinc"
[17] "Selenium" "sleep_disorders" "Smoked_days" "now_smoke"
[21] "quit_smoking" "Avg_alcohol_drinks" "equipment_walk" "walk_difficulty"
[25] "had_cancer" "weight_2" "Perfluorohexane_sulfonic_acid" "Perfluorohexane_sulfonic_acid_comment"
[29] "Perfluorononanoic_acid" "Perfluorononanoic_acid_comment" "perfluorooctanoic_acid" "perfluorooctanoic_acid_comment"
[33] "perfluorooctane_sulfonic_acid" "perfluorooctane_sulfonic_acid_comment" "White_blood_cell_count" "Lymphocyte_percent"
[37] "Red_cell_distribution_width" "Mean_cell_volume" "Albumin" "Creatinine"
[41] "Glucose_serum" "Alkaline_phosphotase" "xb" "Phenotypic_Age"
[45] "cate_age" "age_binary" "BMI_cat" "income_cat"
[49] "triglycerides" "fastglucose" "TriGlu_BMI" "pfas_comment"
#Examine the pfas and Phenotypic_Age
```r
ggplot(Fulldat_Pheno, aes(x = Perfluorohexane_sulfonic_acid)) +
geom_histogram(binwidth = 100, color = \skyblue\, fill = \red\, alpha = 0.7) +
labs(title = \Distribution of Perfluorohexane_sulfonic_acid\,
x = \Perfluorohexane_sulfonic_acid\,
y = \Frequency\) +
theme_minimal()
ggplot(Fulldat_Pheno, aes(x = Perfluorohexane_sulfonic_acid, y = Phenotypic_Age)) +
geom_point() +
geom_smooth(method = \lm\, se = FALSE) +
labs(x = \Perfluorohexane_sulfonic_acid\, y = \Phenotypic_Age\, title = \Scatter Plot Perfluorohexane_sulfonic_acid vs Phenotypic_Age with Regression Line\)
# Define breaks for age groups
breaks <- c(20, 45, 65, Inf) # Breaks represent the age boundaries
# Define labels for the age groups
labels <- c(\1\, \2\, \3\)
# Categorize chronological_age into groups and assign custom labels
Fulldat_Pheno$cate_age <- cut(Fulldat_Pheno$chronological_age, breaks = breaks, labels = labels, include.lowest = TRUE)
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
#sample density curves of pfas concentrations among accelerated and delayed age
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxuRnVsbGRhdF9QaGVubyA8LSBGdWxsZGF0X1BoZW5vICU+JSBtdXRhdGUoYWdlX2JpbmFyeSA9IGNhc2Vfd2hlbihcbiAgUGhlbm90eXBpY19BZ2UtY2hyb25vbG9naWNhbF9hZ2UgPj0gMCB+XFxhY2NlbGVyYXRlZFxcLFxuICBQaGVub3R5cGljX0FnZS1jaHJvbm9sb2dpY2FsX2FnZSA8IDAgflxcZGVsYXllZFxcXG4pKVxuXG5saWJyYXJ5KGdncGxvdDIpXG5jb2xzIDwtIGMoXFwjRjc2RDVFXFwsIFxcIzcyRDhGRlxcKVxuXG4jUGVyZmx1b3JvaGV4YW5lX3N1bGZvbmljX2FjaWRcbmdncGxvdChGdWxsZGF0X1BoZW5vLCBhZXMoeCA9IFBlcmZsdW9yb2hleGFuZV9zdWxmb25pY19hY2lkLCBjb2xvdXIgPSBhZ2VfYmluYXJ5KSkgK1xuICBnZW9tX2RlbnNpdHkobHdkID0gMS4yLCBsaW5ldHlwZSA9IDEpICsgXG4gIHNjYWxlX2NvbG9yX21hbnVhbCh2YWx1ZXMgPSBjb2xzKVxuXG5cbiNQZXJmbHVvcm9oZXhhbmVfc3VsZm9uaWNfYWNpZF9jb21tZW50XG5nZ3Bsb3QoRnVsbGRhdF9QaGVubywgYWVzKHggPSBQZXJmbHVvcm9ub25hbm9pY19hY2lkLCBjb2xvdXIgPSBhZ2VfYmluYXJ5KSkgK1xuICBnZW9tX2RlbnNpdHkobHdkID0gMS4yLCBsaW5ldHlwZSA9IDEpICsgXG4gIHNjYWxlX2NvbG9yX21hbnVhbCh2YWx1ZXMgPSBjb2xzKVxuXG5cbiNQZXJmbHVvcm9ub25hbm9pY19hY2lkXG5nZ3Bsb3QoRnVsbGRhdF9QaGVubywgYWVzKHggPSBwZXJmbHVvcm9vY3Rhbm9pY19hY2lkLCBjb2xvdXIgPSBhZ2VfYmluYXJ5KSkgK1xuICBnZW9tX2RlbnNpdHkobHdkID0gMS4yLCBsaW5ldHlwZSA9IDEpICsgXG4gIHNjYWxlX2NvbG9yX21hbnVhbCh2YWx1ZXMgPSBjb2xzKVxuXG4jUGVyZmx1b3Jvbm9uYW5vaWNfYWNpZF9jb21tZW50XG5nZ3Bsb3QoRnVsbGRhdF9QaGVubywgYWVzKHggPSBwZXJmbHVvcm9vY3RhbmVfc3VsZm9uaWNfYWNpZCwgY29sb3VyID0gYWdlX2JpbmFyeSkpICtcbiAgZ2VvbV9kZW5zaXR5KGx3ZCA9IDEuMiwgbGluZXR5cGUgPSAxKSArIFxuICBzY2FsZV9jb2xvcl9tYW51YWwodmFsdWVzID0gY29scylcblxuYGBgXG5gYGAifQ== -->
```r
```r
Fulldat_Pheno <- Fulldat_Pheno %>% mutate(age_binary = case_when(
Phenotypic_Age-chronological_age >= 0 ~\accelerated\,
Phenotypic_Age-chronological_age < 0 ~\delayed\
))
library(ggplot2)
cols <- c(\#F76D5E\, \#72D8FF\)
#Perfluorohexane_sulfonic_acid
ggplot(Fulldat_Pheno, aes(x = Perfluorohexane_sulfonic_acid, colour = age_binary)) +
geom_density(lwd = 1.2, linetype = 1) +
scale_color_manual(values = cols)
#Perfluorohexane_sulfonic_acid_comment
ggplot(Fulldat_Pheno, aes(x = Perfluorononanoic_acid, colour = age_binary)) +
geom_density(lwd = 1.2, linetype = 1) +
scale_color_manual(values = cols)
#Perfluorononanoic_acid
ggplot(Fulldat_Pheno, aes(x = perfluorooctanoic_acid, colour = age_binary)) +
geom_density(lwd = 1.2, linetype = 1) +
scale_color_manual(values = cols)
#Perfluorononanoic_acid_comment
ggplot(Fulldat_Pheno, aes(x = perfluorooctane_sulfonic_acid, colour = age_binary)) +
geom_density(lwd = 1.2, linetype = 1) +
scale_color_manual(values = cols)
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
#Main model of regression for association, and adjust for covariates (Table 2)
#Perfluorohexane_sulfonic_acid
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-output-begin eyJkYXRhIjoiXG5DYWxsOlxuc3Z5Z2xtKGZvcm11bGEgPSBQaGVub3R5cGljX0FnZSB+IFBlcmZsdW9yb2hleGFuZV9zdWxmb25pY19hY2lkX2NvbW1lbnQsIFxuICAgIGRlc2lnbiA9IGRlcywgZmFtaWx5ID0gXCJnYXVzc2lhblwiLCBkYXRhID0gRnVsbGRhdF9QaGVubylcblxuU3VydmV5IGRlc2lnbjpcbnN2eWRlc2lnbihpZCA9IH5wc3UsIHN0cmF0YSA9IH5TdHJhdGEsIHdlaWdodHMgPSB+d2VpZ2h0XzIsIG5lc3QgPSBUUlVFLCBcbiAgICBkYXRhID0gRnVsbGRhdF9QaGVubylcblxuQ29lZmZpY2llbnRzOlxuICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBFc3RpbWF0ZSBTdGQuIEVycm9yIHQgdmFsdWUgUHIoPnx0fCkgICAgXG4oSW50ZXJjZXB0KSAgICAgICAgICAgICAgICAgICAgICAgICAgICA0NS40OTc1ICAgICAwLjI2NTcgMTcxLjIzMCAgIDwyZS0xNiAqKipcblBlcmZsdW9yb2hleGFuZV9zdWxmb25pY19hY2lkX2NvbW1lbnQgICA1LjI1MzQgICAgIDIuMTMwNSAgIDIuNDY2ICAgMC4wMTQ5ICogIFxuLS0tXG5TaWduaWYuIGNvZGVzOiAgMCDigJgqKirigJkgMC4wMDEg4oCYKirigJkgMC4wMSDigJgq4oCZIDAuMDUg4oCYLuKAmSAwLjEg4oCYIOKAmSAxXG5cbihEaXNwZXJzaW9uIHBhcmFtZXRlciBmb3IgZ2F1c3NpYW4gZmFtaWx5IHRha2VuIHRvIGJlIDM3Ny4wMDA3KVxuXG5OdW1iZXIgb2YgRmlzaGVyIFNjb3JpbmcgaXRlcmF0aW9uczogMlxuXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAyLjUgJSAgICA5Ny41ICVcbihJbnRlcmNlcHQpICAgICAgICAgICAgICAgICAgICAgICAgICAgNDQuOTcxODkwIDQ2LjAyMzAxOFxuUGVyZmx1b3JvaGV4YW5lX3N1bGZvbmljX2FjaWRfY29tbWVudCAgMS4wMzkzMjkgIDkuNDY3NDUxXG5cbkNhbGw6XG5zdnlnbG0oZm9ybXVsYSA9IFBoZW5vdHlwaWNfQWdlIH4gUGVyZmx1b3JvaGV4YW5lX3N1bGZvbmljX2FjaWRfY29tbWVudCArIFxuICAgIEdlbmRlciArIFJhY2UgKyBNYXJpdGFsX1N0YXR1cyArIFJhdGlvX2luY29tZV9wb3ZlcnR5LCBkZXNpZ24gPSBkZXMsIFxuICAgIGZhbWlseSA9IFwiZ2F1c3NpYW5cIiwgZGF0YSA9IEZ1bGxkYXRfUGhlbm8pXG5cblN1cnZleSBkZXNpZ246XG5zdnlkZXNpZ24oaWQgPSB+cHN1LCBzdHJhdGEgPSB+U3RyYXRhLCB3ZWlnaHRzID0gfndlaWdodF8yLCBuZXN0ID0gVFJVRSwgXG4gICAgZGF0YSA9IEZ1bGxkYXRfUGhlbm8pXG5cbkNvZWZmaWNpZW50czpcbiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgRXN0aW1hdGUgU3RkLiBFcnJvciB0IHZhbHVlIFByKD58dHwpICAgIFxuKEludGVyY2VwdCkgICAgICAgICAgICAgICAgICAgICAgICAgICAgNTAuMjc3MyAgICAgMS40NTA2ICAzNC42NjAgIDwgMmUtMTYgKioqXG5QZXJmbHVvcm9oZXhhbmVfc3VsZm9uaWNfYWNpZF9jb21tZW50ICAgNS45ODE3ICAgICAyLjIwMjggICAyLjcxNiAgMC4wMDc1MiAqKiBcbkdlbmRlciAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIC0wLjMxNzYgICAgIDAuNDExNyAgLTAuNzcxICAwLjQ0MTg4ICAgIFxuUmFjZSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDEuMjI3OSAgICAgMC4xODU3ICAgNi42MTMgOS4wNWUtMTAgKioqXG5NYXJpdGFsX1N0YXR1cyAgICAgICAgICAgICAgICAgICAgICAgICAtMi45MTM2ICAgICAwLjM2OTggIC03Ljg3OSAxLjIwZS0xMiAqKipcblJhdGlvX2luY29tZV9wb3ZlcnR5ICAgICAgICAgICAgICAgICAgIC0wLjMyNjcgICAgIDAuMTczMSAgLTEuODg3ICAwLjA2MTQ2IC4gIFxuLS0tXG5TaWduaWYuIGNvZGVzOiAgMCDigJgqKirigJkgMC4wMDEg4oCYKirigJkgMC4wMSDigJgq4oCZIDAuMDUg4oCYLuKAmSAwLjEg4oCYIOKAmSAxXG5cbihEaXNwZXJzaW9uIHBhcmFtZXRlciBmb3IgZ2F1c3NpYW4gZmFtaWx5IHRha2VuIHRvIGJlIDMzNi44MTIxKVxuXG5OdW1iZXIgb2YgRmlzaGVyIFNjb3JpbmcgaXRlcmF0aW9uczogMlxuXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMi41ICUgICAgICA5Ny41ICVcbihJbnRlcmNlcHQpICAgICAgICAgICAgICAgICAgICAgICAgICAgNDcuNDA3Mjg3NyA1My4xNDc0MTE0OFxuUGVyZmx1b3JvaGV4YW5lX3N1bGZvbmljX2FjaWRfY29tbWVudCAgMS42MjM0MzA1IDEwLjMzOTk1MjI0XG5HZW5kZXIgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIC0xLjEzMjE3MDIgIDAuNDk2OTgyNDJcblJhY2UgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDAuODYwNTA2MiAgMS41OTUxOTY3NlxuTWFyaXRhbF9TdGF0dXMgICAgICAgICAgICAgICAgICAgICAgICAtMy42NDUyNjQ3IC0yLjE4MTk0NTY4XG5SYXRpb19pbmNvbWVfcG92ZXJ0eSAgICAgICAgICAgICAgICAgIC0wLjY2OTIzMTkgIDAuMDE1OTE0NTVcblxuQ2FsbDpcbnN2eWdsbShmb3JtdWxhID0gUGhlbm90eXBpY19BZ2UgfiBQZXJmbHVvcm9oZXhhbmVfc3VsZm9uaWNfYWNpZF9jb21tZW50ICsgXG4gICAgR2VuZGVyICsgUmFjZSArIE1hcml0YWxfU3RhdHVzICsgUmF0aW9faW5jb21lX3BvdmVydHkgKyBCTUkgKyBcbiAgICBzbGVlcF9kaXNvcmRlcnMgKyBTbW9rZWRfZGF5cyArIG5vd19zbW9rZSArIHF1aXRfc21va2luZyArIFxuICAgIEF2Z19hbGNvaG9sX2RyaW5rcyArIGhhZF9jYW5jZXIsIGRlc2lnbiA9IGRlcywgZmFtaWx5ID0gXCJnYXVzc2lhblwiLCBcbiAgICBkYXRhID0gRnVsbGRhdF9QaGVubylcblxuU3VydmV5IGRlc2lnbjpcbnN2eWRlc2lnbihpZCA9IH5wc3UsIHN0cmF0YSA9IH5TdHJhdGEsIHdlaWdodHMgPSB+d2VpZ2h0XzIsIG5lc3QgPSBUUlVFLCBcbiAgICBkYXRhID0gRnVsbGRhdF9QaGVubylcblxuQ29lZmZpY2llbnRzOiAoMiBub3QgZGVmaW5lZCBiZWNhdXNlIG9mIHNpbmd1bGFyaXRpZXMpXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgRXN0aW1hdGUgU3RkLiBFcnJvciB0IHZhbHVlIFByKD58dHwpICAgIFxuKEludGVyY2VwdCkgICAgICAgICAgICAgICAgICAgICAgICAgICAgNy44NTNlKzAxICA1LjE1N2UrMDAgIDE1LjIyNyAgPCAyZS0xNiAqKipcblBlcmZsdW9yb2hleGFuZV9zdWxmb25pY19hY2lkX2NvbW1lbnQgIDEuNDc1ZSswMSAgMy4zOThlKzAwICAgNC4zNDIgMy41NmUtMDUgKioqXG5HZW5kZXIgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIC05LjE1NWUtMDEgIDkuNzM3ZS0wMSAgLTAuOTQwICAwLjM0OTUwICAgIFxuUmFjZSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMS40ODJlKzAwICA0LjMxNGUtMDEgICAzLjQzNiAgMC4wMDA4OCAqKipcbk1hcml0YWxfU3RhdHVzICAgICAgICAgICAgICAgICAgICAgICAgLTMuMTE3ZSswMCAgMy42MDNlLTAxICAtOC42NTAgMS4zNmUtMTMgKioqXG5SYXRpb19pbmNvbWVfcG92ZXJ0eSAgICAgICAgICAgICAgICAgIC0xLjA4OWUrMDAgIDMuOTMyZS0wMSAgLTIuNzcwICAwLjAwNjc1ICoqIFxuQk1JICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMi4wMTRlLTAxICA3LjYzNGUtMDIgICAyLjYzOCAgMC4wMDk3NyAqKiBcbnNsZWVwX2Rpc29yZGVycyAgICAgICAgICAgICAgICAgICAgICAgLTIuNzQwZSswMCAgMS4xMzNlKzAwICAtMi40MTggIDAuMDE3NTUgKiAgXG5xdWl0X3Ntb2tpbmcgICAgICAgICAgICAgICAgICAgICAgICAgICAzLjA5NmUtMDQgIDIuNzk3ZS0wNSAgMTEuMDY5ICA8IDJlLTE2ICoqKlxuQXZnX2FsY29ob2xfZHJpbmtzICAgICAgICAgICAgICAgICAgICAgNS43NzVlKzAwICAxLjIxMGUrMDAgICA0Ljc3MiA2LjY3ZS0wNiAqKipcbmhhZF9jYW5jZXIgICAgICAgICAgICAgICAgICAgICAgICAgICAgLTEuNDgwZSswMSAgMS41OTdlKzAwICAtOS4yNjYgNi42OGUtMTUgKioqXG4tLS1cblNpZ25pZi4gY29kZXM6ICAwIOKAmCoqKuKAmSAwLjAwMSDigJgqKuKAmSAwLjAxIOKAmCrigJkgMC4wNSDigJgu4oCZIDAuMSDigJgg4oCZIDFcblxuKERpc3BlcnNpb24gcGFyYW1ldGVyIGZvciBnYXVzc2lhbiBmYW1pbHkgdGFrZW4gdG8gYmUgMzA1LjA1MTkpXG5cbk51bWJlciBvZiBGaXNoZXIgU2NvcmluZyBpdGVyYXRpb25zOiAyXG5cbiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAyLjUgJSAgICAgICAgOTcuNSAlXG4oSW50ZXJjZXB0KSAgICAgICAgICAgICAgICAgICAgICAgICAgICA2LjgyODYzNWUrMDEgIDguODc2NDg4ZSswMVxuUGVyZmx1b3JvaGV4YW5lX3N1bGZvbmljX2FjaWRfY29tbWVudCAgOC4wMDU2OTRlKzAwICAyLjE0OTgyNGUrMDFcbkdlbmRlciAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgLTIuODQ4ODk2ZSswMCAgMS4wMTc4MDRlKzAwXG5SYWNlICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA2LjI1ODM5MGUtMDEgIDIuMzM4OTg5ZSswMFxuTWFyaXRhbF9TdGF0dXMgICAgICAgICAgICAgICAgICAgICAgICAtMy44MzIyODFlKzAwIC0yLjQwMTM3MmUrMDBcblJhdGlvX2luY29tZV9wb3ZlcnR5ICAgICAgICAgICAgICAgICAgLTEuODY5Njc5ZSswMCAtMy4wODQ1MjdlLTAxXG5CTUkgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA0Ljk3ODY1OWUtMDIgIDMuNTI5Mzg5ZS0wMVxuc2xlZXBfZGlzb3JkZXJzICAgICAgICAgICAgICAgICAgICAgICAtNC45ODk5NjRlKzAwIC00Ljg5NzU1MWUtMDFcbnF1aXRfc21va2luZyAgICAgICAgICAgICAgICAgICAgICAgICAgIDIuNTQwNTYyZS0wNCAgMy42NTEyNjJlLTA0XG5BdmdfYWxjb2hvbF9kcmlua3MgICAgICAgICAgICAgICAgICAgICAzLjM3MTk1MmUrMDAgIDguMTc3NTM3ZSswMFxuaGFkX2NhbmNlciAgICAgICAgICAgICAgICAgICAgICAgICAgICAtMS43OTY3MTNlKzAxIC0xLjE2MjYwNWUrMDFcblxuQ2FsbDpcbnN2eWdsbShmb3JtdWxhID0gUGhlbm90eXBpY19BZ2UgfiBsbihQZXJmbHVvcm9oZXhhbmVfc3VsZm9uaWNfYWNpZCksIFxuICAgIGRlc2lnbiA9IGRlcywgZmFtaWx5ID0gXCJnYXVzc2lhblwiLCBkYXRhID0gRnVsbGRhdF9QaGVubylcblxuU3VydmV5IGRlc2lnbjpcbnN2eWRlc2lnbihpZCA9IH5wc3UsIHN0cmF0YSA9IH5TdHJhdGEsIHdlaWdodHMgPSB+d2VpZ2h0XzIsIG5lc3QgPSBUUlVFLCBcbiAgICBkYXRhID0gRnVsbGRhdF9QaGVubylcblxuQ29lZmZpY2llbnRzOlxuICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIEVzdGltYXRlIFN0ZC4gRXJyb3IgdCB2YWx1ZSBQcig+fHR8KSAgICBcbihJbnRlcmNlcHQpICAgICAgICAgICAgICAgICAgICAgICAgNDQuOTUwMSAgICAgMC4yNzY3IDE2Mi40MjcgIDwgMmUtMTYgKioqXG5sbihQZXJmbHVvcm9oZXhhbmVfc3VsZm9uaWNfYWNpZCkgICAxLjcwNDAgICAgIDAuMjU5MyAgIDYuNTcxIDEuMDRlLTA5ICoqKlxuLS0tXG5TaWduaWYuIGNvZGVzOiAgMCDigJgqKirigJkgMC4wMDEg4oCYKirigJkgMC4wMSDigJgq4oCZIDAuMDUg4oCYLuKAmSAwLjEg4oCYIOKAmSAxXG5cbihEaXNwZXJzaW9uIHBhcmFtZXRlciBmb3IgZ2F1c3NpYW4gZmFtaWx5IHRha2VuIHRvIGJlIDM3NC44MDUzKVxuXG5OdW1iZXIgb2YgRmlzaGVyIFNjb3JpbmcgaXRlcmF0aW9uczogMlxuXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDIuNSAlICAgOTcuNSAlXG4oSW50ZXJjZXB0KSAgICAgICAgICAgICAgICAgICAgICAgNDQuNDAyNzYxIDQ1LjQ5NzUzXG5sbihQZXJmbHVvcm9oZXhhbmVfc3VsZm9uaWNfYWNpZCkgIDEuMTkxMDMxICAyLjIxNjg5XG5cbkNhbGw6XG5zdnlnbG0oZm9ybXVsYSA9IFBoZW5vdHlwaWNfQWdlIH4gbG4oUGVyZmx1b3JvaGV4YW5lX3N1bGZvbmljX2FjaWQpICsgXG4gICAgR2VuZGVyICsgUmFjZSArIE1hcml0YWxfU3RhdHVzICsgUmF0aW9faW5jb21lX3BvdmVydHksIGRlc2lnbiA9IGRlcywgXG4gICAgZmFtaWx5ID0gXCJnYXVzc2lhblwiLCBkYXRhID0gRnVsbGRhdF9QaGVubylcblxuU3VydmV5IGRlc2lnbjpcbnN2eWRlc2lnbihpZCA9IH5wc3UsIHN0cmF0YSA9IH5TdHJhdGEsIHdlaWdodHMgPSB+d2VpZ2h0XzIsIG5lc3QgPSBUUlVFLCBcbiAgICBkYXRhID0gRnVsbGRhdF9QaGVubylcblxuQ29lZmZpY2llbnRzOlxuICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIEVzdGltYXRlIFN0ZC4gRXJyb3IgdCB2YWx1ZSBQcig+fHR8KSAgICBcbihJbnRlcmNlcHQpICAgICAgICAgICAgICAgICAgICAgICAgNDguNjEyMyAgICAgMS40NjM1ICAzMy4yMTcgIDwgMmUtMTYgKioqXG5sbihQZXJmbHVvcm9oZXhhbmVfc3VsZm9uaWNfYWNpZCkgICAxLjkyMzAgICAgIDAuMjY5NCAgIDcuMTM5IDYuMDllLTExICoqKlxuR2VuZGVyICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMC43NTUwICAgICAwLjQ0NjMgICAxLjY5MiAgIDAuMDkzMSAuICBcblJhY2UgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDEuMTg4MCAgICAgMC4xNzU1ICAgNi43NzAgNC4wOWUtMTAgKioqXG5NYXJpdGFsX1N0YXR1cyAgICAgICAgICAgICAgICAgICAgIC0yLjkzNTQgICAgIDAuMzcxMiAgLTcuOTA3IDEuMDNlLTEyICoqKlxuUmF0aW9faW5jb21lX3BvdmVydHkgICAgICAgICAgICAgICAtMC40Njk4ICAgICAwLjE3NDkgIC0yLjY4NSAgIDAuMDA4MiAqKiBcbi0tLVxuU2lnbmlmLiBjb2RlczogIDAg4oCYKioq4oCZIDAuMDAxIOKAmCoq4oCZIDAuMDEg4oCYKuKAmSAwLjA1IOKAmC7igJkgMC4xIOKAmCDigJkgMVxuXG4oRGlzcGVyc2lvbiBwYXJhbWV0ZXIgZm9yIGdhdXNzaWFuIGZhbWlseSB0YWtlbiB0byBiZSAzMzQuMjg4MylcblxuTnVtYmVyIG9mIEZpc2hlciBTY29yaW5nIGl0ZXJhdGlvbnM6IDJcblxuICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMi41ICUgICAgIDk3LjUgJVxuKEludGVyY2VwdCkgICAgICAgICAgICAgICAgICAgICAgIDQ1LjcxNjgxNzcgNTEuNTA3ODcxMFxubG4oUGVyZmx1b3JvaGV4YW5lX3N1bGZvbmljX2FjaWQpICAxLjM5MDExMTAgIDIuNDU1OTc3NlxuR2VuZGVyICAgICAgICAgICAgICAgICAgICAgICAgICAgIC0wLjEyNzk5NzMgIDEuNjM4MDI0NlxuUmFjZSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAwLjg0MDgxODIgIDEuNTM1MjE3NFxuTWFyaXRhbF9TdGF0dXMgICAgICAgICAgICAgICAgICAgIC0zLjY2OTkyNDMgLTIuMjAwOTM4M1xuUmF0aW9faW5jb21lX3BvdmVydHkgICAgICAgICAgICAgIC0wLjgxNTg4NTAgLTAuMTIzNjQ3M1xuXG5DYWxsOlxuc3Z5Z2xtKGZvcm11bGEgPSBQaGVub3R5cGljX0FnZSB+IGxuKFBlcmZsdW9yb2hleGFuZV9zdWxmb25pY19hY2lkKSArIFxuICAgIEdlbmRlciArIFJhY2UgKyBNYXJpdGFsX1N0YXR1cyArIFJhdGlvX2luY29tZV9wb3ZlcnR5ICsgQk1JICsgXG4gICAgc2xlZXBfZGlzb3JkZXJzICsgU21va2VkX2RheXMgKyBub3dfc21va2UgKyBxdWl0X3Ntb2tpbmcgKyBcbiAgICBBdmdfYWxjb2hvbF9kcmlua3MgKyBoYWRfY2FuY2VyLCBkZXNpZ24gPSBkZXMsIGZhbWlseSA9IFwiZ2F1c3NpYW5cIiwgXG4gICAgZGF0YSA9IEZ1bGxkYXRfUGhlbm8pXG5cblN1cnZleSBkZXNpZ246XG5zdnlkZXNpZ24oaWQgPSB+cHN1LCBzdHJhdGEgPSB+U3RyYXRhLCB3ZWlnaHRzID0gfndlaWdodF8yLCBuZXN0ID0gVFJVRSwgXG4gICAgZGF0YSA9IEZ1bGxkYXRfUGhlbm8pXG5cbkNvZWZmaWNpZW50czogKDIgbm90IGRlZmluZWQgYmVjYXVzZSBvZiBzaW5ndWxhcml0aWVzKVxuICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgRXN0aW1hdGUgU3RkLiBFcnJvciB0IHZhbHVlIFByKD58dHwpICAgIFxuKEludGVyY2VwdCkgICAgICAgICAgICAgICAgICAgICAgICA3LjU1NmUrMDEgIDUuNTE1ZSswMCAgMTMuNzAwICA8IDJlLTE2ICoqKlxubG4oUGVyZmx1b3JvaGV4YW5lX3N1bGZvbmljX2FjaWQpICAyLjc3MmUrMDAgIDcuMzU0ZS0wMSAgIDMuNzY5IDAuMDAwMjg2ICoqKlxuR2VuZGVyICAgICAgICAgICAgICAgICAgICAgICAgICAgICA0LjUzMWUtMDEgIDEuMTA5ZSswMCAgIDAuNDA5IDAuNjgzODI3ICAgIFxuUmFjZSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAxLjMzN2UrMDAgIDQuMTkwZS0wMSAgIDMuMTkxIDAuMDAxOTI3ICoqIFxuTWFyaXRhbF9TdGF0dXMgICAgICAgICAgICAgICAgICAgIC0zLjA4MmUrMDAgIDMuNTcwZS0wMSAgLTguNjM0IDEuNDdlLTEzICoqKlxuUmF0aW9faW5jb21lX3BvdmVydHkgICAgICAgICAgICAgIC0xLjIwMWUrMDAgIDMuODI3ZS0wMSAgLTMuMTM5IDAuMDAyMjYyICoqIFxuQk1JICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAyLjIxNGUtMDEgIDcuNTQwZS0wMiAgIDIuOTM2IDAuMDA0MTgzICoqIFxuc2xlZXBfZGlzb3JkZXJzICAgICAgICAgICAgICAgICAgIC0yLjk4NWUrMDAgIDEuMTIzZSswMCAgLTIuNjU5IDAuMDA5MjExICoqIFxucXVpdF9zbW9raW5nICAgICAgICAgICAgICAgICAgICAgICAyLjk5M2UtMDQgIDIuNjI0ZS0wNSAgMTEuNDEwICA8IDJlLTE2ICoqKlxuQXZnX2FsY29ob2xfZHJpbmtzICAgICAgICAgICAgICAgICA1Ljk2OGUrMDAgIDEuMjQ2ZSswMCAgIDQuNzg5IDYuMjVlLTA2ICoqKlxuaGFkX2NhbmNlciAgICAgICAgICAgICAgICAgICAgICAgIC0xLjQ2N2UrMDEgIDEuNjQyZSswMCAgLTguOTM3IDMuMzVlLTE0ICoqKlxuLS0tXG5TaWduaWYuIGNvZGVzOiAgMCDigJgqKirigJkgMC4wMDEg4oCYKirigJkgMC4wMSDigJgq4oCZIDAuMDUg4oCYLuKAmSAwLjEg4oCYIOKAmSAxXG5cbihEaXNwZXJzaW9uIHBhcmFtZXRlciBmb3IgZ2F1c3NpYW4gZmFtaWx5IHRha2VuIHRvIGJlIDMwMS4zOTA4KVxuXG5OdW1iZXIgb2YgRmlzaGVyIFNjb3JpbmcgaXRlcmF0aW9uczogMlxuXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAyLjUgJSAgICAgICAgOTcuNSAlXG4oSW50ZXJjZXB0KSAgICAgICAgICAgICAgICAgICAgICAgIDYuNDYwNjgxZSswMSAgOC42NTA3MzBlKzAxXG5sbihQZXJmbHVvcm9oZXhhbmVfc3VsZm9uaWNfYWNpZCkgIDEuMzExNTI0ZSswMCAgNC4yMzE4NzBlKzAwXG5HZW5kZXIgICAgICAgICAgICAgICAgICAgICAgICAgICAgLTEuNzQ5MzMxZSswMCAgMi42NTU2MjllKzAwXG5SYWNlICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDUuMDUyMTg4ZS0wMSAgMi4xNjkxOTdlKzAwXG5NYXJpdGFsX1N0YXR1cyAgICAgICAgICAgICAgICAgICAgLTMuNzkwOTA3ZSswMCAtMi4zNzMyODllKzAwXG5SYXRpb19pbmNvbWVfcG92ZXJ0eSAgICAgICAgICAgICAgLTEuOTYxMjYwZSswMCAtNC40MTU4MDJlLTAxXG5CTUkgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDcuMTY1MDExZS0wMiAgMy43MTA3NjVlLTAxXG5zbGVlcF9kaXNvcmRlcnMgICAgICAgICAgICAgICAgICAgLTUuMjEzOTg4ZSswMCAtNy41NjEwOTdlLTAxXG5xdWl0X3Ntb2tpbmcgICAgICAgICAgICAgICAgICAgICAgIDIuNDcyNDQzZS0wNCAgMy41MTQyNDllLTA0XG5BdmdfYWxjb2hvbF9kcmlua3MgICAgICAgICAgICAgICAgIDMuNDkzNjU3ZSswMCAgOC40NDMxNDJlKzAwXG5oYWRfY2FuY2VyICAgICAgICAgICAgICAgICAgICAgICAgLTEuNzkyOTQxZSswMSAtMS4xNDEwNjllKzAxXG4ifQ== -->
Call: svyglm(formula = Phenotypic_Age ~ Perfluorohexane_sulfonic_acid_comment, design = des, family = “gaussian”, data = Fulldat_Pheno)
Survey design: svydesign(id = ~psu, strata = ~Strata, weights = ~weight_2, nest = TRUE, data = Fulldat_Pheno)
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 45.4975 0.2657 171.230 <2e-16 **
Perfluorohexane_sulfonic_acid_comment 5.2534 2.1305 2.466 0.0149
— Signif. codes: 0 ‘’ 0.001 ‘’ 0.01 ‘’ 0.05
‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 377.0007)
Number of Fisher Scoring iterations: 2
2.5 % 97.5 %
(Intercept) 44.971890 46.023018 Perfluorohexane_sulfonic_acid_comment 1.039329 9.467451
Call: svyglm(formula = Phenotypic_Age ~ Perfluorohexane_sulfonic_acid_comment + Gender + Race + Marital_Status + Ratio_income_poverty, design = des, family = “gaussian”, data = Fulldat_Pheno)
Survey design: svydesign(id = ~psu, strata = ~Strata, weights = ~weight_2, nest = TRUE, data = Fulldat_Pheno)
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 50.2773 1.4506 34.660 < 2e-16
Perfluorohexane_sulfonic_acid_comment 5.9817 2.2028 2.716 0.00752
Gender -0.3176 0.4117 -0.771 0.44188
Race 1.2279 0.1857 6.613 9.05e-10 Marital_Status -2.9136
0.3698 -7.879 1.20e-12 * Ratio_income_poverty -0.3267 0.1731
-1.887 0.06146 .
— Signif. codes: 0 ‘’ 0.001 ‘’ 0.01 ‘’ 0.05
‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 336.8121)
Number of Fisher Scoring iterations: 2
2.5 % 97.5 %
(Intercept) 47.4072877 53.14741148 Perfluorohexane_sulfonic_acid_comment 1.6234305 10.33995224 Gender -1.1321702 0.49698242 Race 0.8605062 1.59519676 Marital_Status -3.6452647 -2.18194568 Ratio_income_poverty -0.6692319 0.01591455
Call: svyglm(formula = Phenotypic_Age ~ Perfluorohexane_sulfonic_acid_comment + Gender + Race + Marital_Status + Ratio_income_poverty + BMI + sleep_disorders + Smoked_days + now_smoke + quit_smoking + Avg_alcohol_drinks + had_cancer, design = des, family = “gaussian”, data = Fulldat_Pheno)
Survey design: svydesign(id = ~psu, strata = ~Strata, weights = ~weight_2, nest = TRUE, data = Fulldat_Pheno)
Coefficients: (2 not defined because of singularities) Estimate Std.
Error t value Pr(>|t|)
(Intercept) 7.853e+01 5.157e+00 15.227 < 2e-16
Perfluorohexane_sulfonic_acid_comment 1.475e+01 3.398e+00 4.342 3.56e-05
Gender -9.155e-01 9.737e-01 -0.940 0.34950
Race 1.482e+00 4.314e-01 3.436 0.00088 Marital_Status
-3.117e+00 3.603e-01 -8.650 1.36e-13 Ratio_income_poverty
-1.089e+00 3.932e-01 -2.770 0.00675 ** BMI 2.014e-01 7.634e-02 2.638
0.00977 ** sleep_disorders -2.740e+00 1.133e+00 -2.418 0.01755 *
quit_smoking 3.096e-04 2.797e-05 11.069 < 2e-16
Avg_alcohol_drinks 5.775e+00 1.210e+00 4.772 6.67e-06
had_cancer -1.480e+01 1.597e+00 -9.266 6.68e-15 *** — Signif. codes: 0
‘’ 0.001 ‘’ 0.01 ‘’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 305.0519)
Number of Fisher Scoring iterations: 2
2.5 % 97.5 %
(Intercept) 6.828635e+01 8.876488e+01 Perfluorohexane_sulfonic_acid_comment 8.005694e+00 2.149824e+01 Gender -2.848896e+00 1.017804e+00 Race 6.258390e-01 2.338989e+00 Marital_Status -3.832281e+00 -2.401372e+00 Ratio_income_poverty -1.869679e+00 -3.084527e-01 BMI 4.978659e-02 3.529389e-01 sleep_disorders -4.989964e+00 -4.897551e-01 quit_smoking 2.540562e-04 3.651262e-04 Avg_alcohol_drinks 3.371952e+00 8.177537e+00 had_cancer -1.796713e+01 -1.162605e+01
Call: svyglm(formula = Phenotypic_Age ~ ln(Perfluorohexane_sulfonic_acid), design = des, family = “gaussian”, data = Fulldat_Pheno)
Survey design: svydesign(id = ~psu, strata = ~Strata, weights = ~weight_2, nest = TRUE, data = Fulldat_Pheno)
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 44.9501 0.2767 162.427 < 2e-16
ln(Perfluorohexane_sulfonic_acid) 1.7040 0.2593 6.571 1.04e-09
— Signif. codes: 0 ‘’ 0.001 ‘’ 0.01
‘’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 374.8053)
Number of Fisher Scoring iterations: 2
2.5 % 97.5 %
(Intercept) 44.402761 45.49753 ln(Perfluorohexane_sulfonic_acid) 1.191031 2.21689
Call: svyglm(formula = Phenotypic_Age ~ ln(Perfluorohexane_sulfonic_acid) + Gender + Race + Marital_Status + Ratio_income_poverty, design = des, family = “gaussian”, data = Fulldat_Pheno)
Survey design: svydesign(id = ~psu, strata = ~Strata, weights = ~weight_2, nest = TRUE, data = Fulldat_Pheno)
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 48.6123 1.4635 33.217 < 2e-16
ln(Perfluorohexane_sulfonic_acid) 1.9230 0.2694 7.139 6.09e-11
Gender 0.7550 0.4463 1.692 0.0931 .
Race 1.1880 0.1755 6.770 4.09e-10 Marital_Status -2.9354
0.3712 -7.907 1.03e-12 Ratio_income_poverty -0.4698
0.1749 -2.685 0.0082 ** — Signif. codes: 0 ‘’ 0.001
‘’ 0.01 ‘’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 334.2883)
Number of Fisher Scoring iterations: 2
2.5 % 97.5 %
(Intercept) 45.7168177 51.5078710 ln(Perfluorohexane_sulfonic_acid) 1.3901110 2.4559776 Gender -0.1279973 1.6380246 Race 0.8408182 1.5352174 Marital_Status -3.6699243 -2.2009383 Ratio_income_poverty -0.8158850 -0.1236473
Call: svyglm(formula = Phenotypic_Age ~ ln(Perfluorohexane_sulfonic_acid) + Gender + Race + Marital_Status + Ratio_income_poverty + BMI + sleep_disorders + Smoked_days + now_smoke + quit_smoking + Avg_alcohol_drinks + had_cancer, design = des, family = “gaussian”, data = Fulldat_Pheno)
Survey design: svydesign(id = ~psu, strata = ~Strata, weights = ~weight_2, nest = TRUE, data = Fulldat_Pheno)
Coefficients: (2 not defined because of singularities) Estimate Std.
Error t value Pr(>|t|)
(Intercept) 7.556e+01 5.515e+00 13.700 < 2e-16
ln(Perfluorohexane_sulfonic_acid) 2.772e+00 7.354e-01 3.769 0.000286
Gender 4.531e-01 1.109e+00 0.409 0.683827
Race 1.337e+00 4.190e-01 3.191 0.001927 ** Marital_Status -3.082e+00
3.570e-01 -8.634 1.47e-13 Ratio_income_poverty -1.201e+00
3.827e-01 -3.139 0.002262 BMI 2.214e-01 7.540e-02 2.936
0.004183 sleep_disorders -2.985e+00 1.123e+00 -2.659 0.009211
quit_smoking 2.993e-04 2.624e-05 11.410 < 2e-16
Avg_alcohol_drinks 5.968e+00 1.246e+00 4.789 6.25e-06
had_cancer -1.467e+01 1.642e+00 -8.937 3.35e-14 ** —
Signif. codes: 0 ‘’ 0.001 ‘’ 0.01 ‘’ 0.05 ‘.’
0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 301.3908)
Number of Fisher Scoring iterations: 2
2.5 % 97.5 %
(Intercept) 6.460681e+01 8.650730e+01 ln(Perfluorohexane_sulfonic_acid) 1.311524e+00 4.231870e+00 Gender -1.749331e+00 2.655629e+00 Race 5.052188e-01 2.169197e+00 Marital_Status -3.790907e+00 -2.373289e+00 Ratio_income_poverty -1.961260e+00 -4.415802e-01 BMI 7.165011e-02 3.710765e-01 sleep_disorders -5.213988e+00 -7.561097e-01 quit_smoking 2.472443e-04 3.514249e-04 Avg_alcohol_drinks 3.493657e+00 8.443142e+00 had_cancer -1.792941e+01 -1.141069e+01
<!-- rnb-output-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
#"Perfluorononanoic_acid" "Perfluorononanoic_acid_comment"
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-output-begin eyJkYXRhIjoiXG5DYWxsOlxuc3Z5Z2xtKGZvcm11bGEgPSBQaGVub3R5cGljX0FnZSB+IFBlcmZsdW9yb25vbmFub2ljX2FjaWRfY29tbWVudCwgXG4gICAgZGVzaWduID0gZGVzLCBmYW1pbHkgPSBcImdhdXNzaWFuXCIsIGRhdGEgPSBGdWxsZGF0X1BoZW5vKVxuXG5TdXJ2ZXkgZGVzaWduOlxuc3Z5ZGVzaWduKGlkID0gfnBzdSwgc3RyYXRhID0gflN0cmF0YSwgd2VpZ2h0cyA9IH53ZWlnaHRfMiwgbmVzdCA9IFRSVUUsIFxuICAgIGRhdGEgPSBGdWxsZGF0X1BoZW5vKVxuXG5Db2VmZmljaWVudHM6XG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgRXN0aW1hdGUgU3RkLiBFcnJvciB0IHZhbHVlIFByKD58dHwpICAgIFxuKEludGVyY2VwdCkgICAgICAgICAgICAgICAgICAgICA0NS41NDE0ICAgICAwLjI2MTUgMTc0LjE2OCAgIDwyZS0xNiAqKipcblBlcmZsdW9yb25vbmFub2ljX2FjaWRfY29tbWVudCAgIDEuMjA4MiAgICAgMi41OTQ0ICAgMC40NjYgICAgMC42NDIgICAgXG4tLS1cblNpZ25pZi4gY29kZXM6ICAwIOKAmCoqKuKAmSAwLjAwMSDigJgqKuKAmSAwLjAxIOKAmCrigJkgMC4wNSDigJgu4oCZIDAuMSDigJgg4oCZIDFcblxuKERpc3BlcnNpb24gcGFyYW1ldGVyIGZvciBnYXVzc2lhbiBmYW1pbHkgdGFrZW4gdG8gYmUgMzc3LjMwODEpXG5cbk51bWJlciBvZiBGaXNoZXIgU2NvcmluZyBpdGVyYXRpb25zOiAyXG5cbiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMi41ICUgICAgOTcuNSAlXG4oSW50ZXJjZXB0KSAgICAgICAgICAgICAgICAgICAgNDUuMDI0MjQ3IDQ2LjA1ODY0MFxuUGVyZmx1b3Jvbm9uYW5vaWNfYWNpZF9jb21tZW50IC0zLjkyMzQ0NyAgNi4zMzk4MzdcblxuQ2FsbDpcbnN2eWdsbShmb3JtdWxhID0gUGhlbm90eXBpY19BZ2UgfiBQZXJmbHVvcm9ub25hbm9pY19hY2lkX2NvbW1lbnQgKyBcbiAgICBHZW5kZXIgKyBSYWNlICsgTWFyaXRhbF9TdGF0dXMgKyBSYXRpb19pbmNvbWVfcG92ZXJ0eSwgZGVzaWduID0gZGVzLCBcbiAgICBmYW1pbHkgPSBcImdhdXNzaWFuXCIsIGRhdGEgPSBGdWxsZGF0X1BoZW5vKVxuXG5TdXJ2ZXkgZGVzaWduOlxuc3Z5ZGVzaWduKGlkID0gfnBzdSwgc3RyYXRhID0gflN0cmF0YSwgd2VpZ2h0cyA9IH53ZWlnaHRfMiwgbmVzdCA9IFRSVUUsIFxuICAgIGRhdGEgPSBGdWxsZGF0X1BoZW5vKVxuXG5Db2VmZmljaWVudHM6XG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgRXN0aW1hdGUgU3RkLiBFcnJvciB0IHZhbHVlIFByKD58dHwpICAgIFxuKEludGVyY2VwdCkgICAgICAgICAgICAgICAgICAgICA1MC40MTIzICAgICAxLjQ0OTUgIDM0Ljc4MCAgPCAyZS0xNiAqKipcblBlcmZsdW9yb25vbmFub2ljX2FjaWRfY29tbWVudCAgLTAuMTIyMyAgICAgMi41MTEwICAtMC4wNDkgICAwLjk2MTIgICAgXG5HZW5kZXIgICAgICAgICAgICAgICAgICAgICAgICAgIC0wLjI5NTggICAgIDAuNDEwMSAgLTAuNzIxICAgMC40NzIwICAgIFxuUmFjZSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMS4yMjI5ICAgICAwLjE4MzkgICA2LjY1MCA3LjU0ZS0xMCAqKipcbk1hcml0YWxfU3RhdHVzICAgICAgICAgICAgICAgICAgLTIuOTE0MiAgICAgMC4zNjk4ICAtNy44ODEgMS4xOGUtMTIgKioqXG5SYXRpb19pbmNvbWVfcG92ZXJ0eSAgICAgICAgICAgIC0wLjM1MzAgICAgIDAuMTczMyAgLTIuMDM3ICAgMC4wNDM3ICogIFxuLS0tXG5TaWduaWYuIGNvZGVzOiAgMCDigJgqKirigJkgMC4wMDEg4oCYKirigJkgMC4wMSDigJgq4oCZIDAuMDUg4oCYLuKAmSAwLjEg4oCYIOKAmSAxXG5cbihEaXNwZXJzaW9uIHBhcmFtZXRlciBmb3IgZ2F1c3NpYW4gZmFtaWx5IHRha2VuIHRvIGJlIDMzNy4yMzgpXG5cbk51bWJlciBvZiBGaXNoZXIgU2NvcmluZyBpdGVyYXRpb25zOiAyXG5cbiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDIuNSAlICAgICAgOTcuNSAlXG4oSW50ZXJjZXB0KSAgICAgICAgICAgICAgICAgICAgNDcuNTQ0NDM2NSA1My4yODAxMDU1N1xuUGVyZmx1b3Jvbm9uYW5vaWNfYWNpZF9jb21tZW50IC01LjA5MDM1NDIgIDQuODQ1NzcwMTFcbkdlbmRlciAgICAgICAgICAgICAgICAgICAgICAgICAtMS4xMDcyMjA2ICAwLjUxNTU5MTMxXG5SYWNlICAgICAgICAgICAgICAgICAgICAgICAgICAgIDAuODU5MDEzMCAgMS41ODY3MjY2M1xuTWFyaXRhbF9TdGF0dXMgICAgICAgICAgICAgICAgIC0zLjY0NTg0NjEgLTIuMTgyNjM0MDNcblJhdGlvX2luY29tZV9wb3ZlcnR5ICAgICAgICAgICAtMC42OTU5MTQxIC0wLjAxMDE1Njk5XG5cbkNhbGw6XG5zdnlnbG0oZm9ybXVsYSA9IFBoZW5vdHlwaWNfQWdlIH4gUGVyZmx1b3Jvbm9uYW5vaWNfYWNpZF9jb21tZW50ICsgXG4gICAgR2VuZGVyICsgUmFjZSArIE1hcml0YWxfU3RhdHVzICsgUmF0aW9faW5jb21lX3BvdmVydHkgKyBCTUkgKyBcbiAgICBzbGVlcF9kaXNvcmRlcnMgKyBTbW9rZWRfZGF5cyArIG5vd19zbW9rZSArIHF1aXRfc21va2luZyArIFxuICAgIEF2Z19hbGNvaG9sX2RyaW5rcyArIGhhZF9jYW5jZXIsIGRlc2lnbiA9IGRlcywgZmFtaWx5ID0gXCJnYXVzc2lhblwiLCBcbiAgICBkYXRhID0gRnVsbGRhdF9QaGVubylcblxuU3VydmV5IGRlc2lnbjpcbnN2eWRlc2lnbihpZCA9IH5wc3UsIHN0cmF0YSA9IH5TdHJhdGEsIHdlaWdodHMgPSB+d2VpZ2h0XzIsIG5lc3QgPSBUUlVFLCBcbiAgICBkYXRhID0gRnVsbGRhdF9QaGVubylcblxuQ29lZmZpY2llbnRzOiAoMiBub3QgZGVmaW5lZCBiZWNhdXNlIG9mIHNpbmd1bGFyaXRpZXMpXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBFc3RpbWF0ZSBTdGQuIEVycm9yIHQgdmFsdWUgUHIoPnx0fCkgICAgXG4oSW50ZXJjZXB0KSAgICAgICAgICAgICAgICAgICAgIDcuODE1ZSswMSAgNS4yNTZlKzAwICAxNC44NjggIDwgMmUtMTYgKioqXG5QZXJmbHVvcm9ub25hbm9pY19hY2lkX2NvbW1lbnQgLTcuODcxZSswMCAgNC42ODllKzAwICAtMS42NzggIDAuMDk2NjAgLiAgXG5HZW5kZXIgICAgICAgICAgICAgICAgICAgICAgICAgLTcuNjM1ZS0wMSAgOS41MDRlLTAxICAtMC44MDMgIDAuNDIzODMgICAgXG5SYWNlICAgICAgICAgICAgICAgICAgICAgICAgICAgIDEuNDE2ZSswMCAgNC4yNzJlLTAxICAgMy4zMTQgIDAuMDAxMzEgKiogXG5NYXJpdGFsX1N0YXR1cyAgICAgICAgICAgICAgICAgLTMuMTY5ZSswMCAgMy41NDNlLTAxICAtOC45NDYgMy4yMGUtMTQgKioqXG5SYXRpb19pbmNvbWVfcG92ZXJ0eSAgICAgICAgICAgLTEuMTU3ZSswMCAgMy45NDNlLTAxICAtMi45MzQgIDAuMDA0MjEgKiogXG5CTUkgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDIuMTQ4ZS0wMSAgNy43MTllLTAyICAgMi43ODMgIDAuMDA2NTEgKiogXG5zbGVlcF9kaXNvcmRlcnMgICAgICAgICAgICAgICAgLTIuNjc4ZSswMCAgMS4xMzZlKzAwICAtMi4zNTggIDAuMDIwNDUgKiAgXG5xdWl0X3Ntb2tpbmcgICAgICAgICAgICAgICAgICAgIDMuMTEyZS0wNCAgMi44OTVlLTA1ICAxMC43NTAgIDwgMmUtMTYgKioqXG5BdmdfYWxjb2hvbF9kcmlua3MgICAgICAgICAgICAgIDUuOTY0ZSswMCAgMS4yNDhlKzAwICAgNC43NzggNi41MmUtMDYgKioqXG5oYWRfY2FuY2VyICAgICAgICAgICAgICAgICAgICAgLTEuNDY4ZSswMSAgMS42MDZlKzAwICAtOS4xMzkgMS4yNWUtMTQgKioqXG4tLS1cblNpZ25pZi4gY29kZXM6ICAwIOKAmCoqKuKAmSAwLjAwMSDigJgqKuKAmSAwLjAxIOKAmCrigJkgMC4wNSDigJgu4oCZIDAuMSDigJgg4oCZIDFcblxuKERpc3BlcnNpb24gcGFyYW1ldGVyIGZvciBnYXVzc2lhbiBmYW1pbHkgdGFrZW4gdG8gYmUgMzA1Ljg2MTYpXG5cbk51bWJlciBvZiBGaXNoZXIgU2NvcmluZyBpdGVyYXRpb25zOiAyXG5cbiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDIuNSAlICAgICAgICA5Ny41ICVcbihJbnRlcmNlcHQpICAgICAgICAgICAgICAgICAgICAgNjcuNzEzMDczNzI4ICA4Ljg1ODU4MmUrMDFcblBlcmZsdW9yb25vbmFub2ljX2FjaWRfY29tbWVudCAtMTcuMTgxNTkxNzYyICAxLjQ0MDM1MGUrMDBcbkdlbmRlciAgICAgICAgICAgICAgICAgICAgICAgICAgLTIuNjUwNjE4ODI0ICAxLjEyMzYzMmUrMDBcblJhY2UgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDAuNTY3NDQwNDk0ICAyLjI2NDA2N2UrMDBcbk1hcml0YWxfU3RhdHVzICAgICAgICAgICAgICAgICAgLTMuODcyOTEyNDEyIC0yLjQ2NjA1NmUrMDBcblJhdGlvX2luY29tZV9wb3ZlcnR5ICAgICAgICAgICAgLTEuOTM5ODg5Mzk4IC0zLjczOTI2NmUtMDFcbkJNSSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDAuMDYxNTc5MTMwICAzLjY4MTAyN2UtMDFcbnNsZWVwX2Rpc29yZGVycyAgICAgICAgICAgICAgICAgLTQuOTMyNDIxNTc1IC00LjIyOTQyNWUtMDFcbnF1aXRfc21va2luZyAgICAgICAgICAgICAgICAgICAgIDAuMDAwMjUzNzQ4ICAzLjY4NzIyMWUtMDRcbkF2Z19hbGNvaG9sX2RyaW5rcyAgICAgICAgICAgICAgIDMuNDg1NDcxODg0ICA4LjQ0MjM5NWUrMDBcbmhhZF9jYW5jZXIgICAgICAgICAgICAgICAgICAgICAtMTcuODY0OTk5MDcwIC0xLjE0ODc2NGUrMDFcblxuQ2FsbDpcbnN2eWdsbShmb3JtdWxhID0gUGhlbm90eXBpY19BZ2UgfiBsbihQZXJmbHVvcm9ub25hbm9pY19hY2lkKSwgXG4gICAgZGVzaWduID0gZGVzLCBmYW1pbHkgPSBcImdhdXNzaWFuXCIsIGRhdGEgPSBGdWxsZGF0X1BoZW5vKVxuXG5TdXJ2ZXkgZGVzaWduOlxuc3Z5ZGVzaWduKGlkID0gfnBzdSwgc3RyYXRhID0gflN0cmF0YSwgd2VpZ2h0cyA9IH53ZWlnaHRfMiwgbmVzdCA9IFRSVUUsIFxuICAgIGRhdGEgPSBGdWxsZGF0X1BoZW5vKVxuXG5Db2VmZmljaWVudHM6XG4gICAgICAgICAgICAgICAgICAgICAgICAgICBFc3RpbWF0ZSBTdGQuIEVycm9yIHQgdmFsdWUgUHIoPnx0fCkgICAgXG4oSW50ZXJjZXB0KSAgICAgICAgICAgICAgICAgNDUuODExNSAgICAgMC4yNjUwIDE3Mi44NjQgIDwgMmUtMTYgKioqXG5sbihQZXJmbHVvcm9ub25hbm9pY19hY2lkKSAgIDEuMTg2OCAgICAgMC4zMTgxICAgMy43MzEgMC4wMDAyODIgKioqXG4tLS1cblNpZ25pZi4gY29kZXM6ICAwIOKAmCoqKuKAmSAwLjAwMSDigJgqKuKAmSAwLjAxIOKAmCrigJkgMC4wNSDigJgu4oCZIDAuMSDigJgg4oCZIDFcblxuKERpc3BlcnNpb24gcGFyYW1ldGVyIGZvciBnYXVzc2lhbiBmYW1pbHkgdGFrZW4gdG8gYmUgMzc2LjQyNzQpXG5cbk51bWJlciBvZiBGaXNoZXIgU2NvcmluZyBpdGVyYXRpb25zOiAyXG5cbiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMi41ICUgICAgOTcuNSAlXG4oSW50ZXJjZXB0KSAgICAgICAgICAgICAgICA0NS4yODcyOTkzIDQ2LjMzNTY3NVxubG4oUGVyZmx1b3Jvbm9uYW5vaWNfYWNpZCkgIDAuNTU3NTc5NyAgMS44MTYwNDlcblxuQ2FsbDpcbnN2eWdsbShmb3JtdWxhID0gUGhlbm90eXBpY19BZ2UgfiBsbihQZXJmbHVvcm9ub25hbm9pY19hY2lkKSArIFxuICAgIEdlbmRlciArIFJhY2UgKyBNYXJpdGFsX1N0YXR1cyArIFJhdGlvX2luY29tZV9wb3ZlcnR5LCBkZXNpZ24gPSBkZXMsIFxuICAgIGZhbWlseSA9IFwiZ2F1c3NpYW5cIiwgZGF0YSA9IEZ1bGxkYXRfUGhlbm8pXG5cblN1cnZleSBkZXNpZ246XG5zdnlkZXNpZ24oaWQgPSB+cHN1LCBzdHJhdGEgPSB+U3RyYXRhLCB3ZWlnaHRzID0gfndlaWdodF8yLCBuZXN0ID0gVFJVRSwgXG4gICAgZGF0YSA9IEZ1bGxkYXRfUGhlbm8pXG5cbkNvZWZmaWNpZW50czpcbiAgICAgICAgICAgICAgICAgICAgICAgICAgIEVzdGltYXRlIFN0ZC4gRXJyb3IgdCB2YWx1ZSBQcig+fHR8KSAgICBcbihJbnRlcmNlcHQpICAgICAgICAgICAgICAgIDUwLjg0MTI5ICAgIDEuNDUyNzIgIDM0Ljk5NyAgPCAyZS0xNiAqKipcbmxuKFBlcmZsdW9yb25vbmFub2ljX2FjaWQpICAxLjMwNTIwICAgIDAuMzA4MjMgICA0LjIzNSA0LjMyZS0wNSAqKipcbkdlbmRlciAgICAgICAgICAgICAgICAgICAgIC0wLjA1OTg0ICAgIDAuNDE1MzQgIC0wLjE0NCAgIDAuODg1NyAgICBcblJhY2UgICAgICAgICAgICAgICAgICAgICAgICAxLjE0MTM0ICAgIDAuMTg0MjIgICA2LjE5NiA3LjIyZS0wOSAqKipcbk1hcml0YWxfU3RhdHVzICAgICAgICAgICAgIC0yLjkzNjg1ICAgIDAuMzcyMzIgIC03Ljg4OCAxLjE0ZS0xMiAqKipcblJhdGlvX2luY29tZV9wb3ZlcnR5ICAgICAgIC0wLjQyNzM2ICAgIDAuMTc1NzEgIC0yLjQzMiAgIDAuMDE2NCAqICBcbi0tLVxuU2lnbmlmLiBjb2RlczogIDAg4oCYKioq4oCZIDAuMDAxIOKAmCoq4oCZIDAuMDEg4oCYKuKAmSAwLjA1IOKAmC7igJkgMC4xIOKAmCDigJkgMVxuXG4oRGlzcGVyc2lvbiBwYXJhbWV0ZXIgZm9yIGdhdXNzaWFuIGZhbWlseSB0YWtlbiB0byBiZSAzMzYuMTU5KVxuXG5OdW1iZXIgb2YgRmlzaGVyIFNjb3JpbmcgaXRlcmF0aW9uczogMlxuXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDIuNSAlICAgICAgOTcuNSAlXG4oSW50ZXJjZXB0KSAgICAgICAgICAgICAgICA0Ny45NjcwNTU4IDUzLjcxNTUyNDQwXG5sbihQZXJmbHVvcm9ub25hbm9pY19hY2lkKSAgMC42OTUzNjU2ICAxLjkxNTAzODc0XG5HZW5kZXIgICAgICAgICAgICAgICAgICAgICAtMC44ODE1OTQxICAwLjc2MTkxNjczXG5SYWNlICAgICAgICAgICAgICAgICAgICAgICAgMC43NzY4NTUzICAxLjUwNTgyNTQ0XG5NYXJpdGFsX1N0YXR1cyAgICAgICAgICAgICAtMy42NzM0ODkzIC0yLjIwMDIwNTgxXG5SYXRpb19pbmNvbWVfcG92ZXJ0eSAgICAgICAtMC43NzQ5OTg4IC0wLjA3OTcxMjE2XG5cbkNhbGw6XG5zdnlnbG0oZm9ybXVsYSA9IFBoZW5vdHlwaWNfQWdlIH4gbG4oUGVyZmx1b3Jvbm9uYW5vaWNfYWNpZCkgKyBcbiAgICBHZW5kZXIgKyBSYWNlICsgTWFyaXRhbF9TdGF0dXMgKyBSYXRpb19pbmNvbWVfcG92ZXJ0eSArIEJNSSArIFxuICAgIHNsZWVwX2Rpc29yZGVycyArIFNtb2tlZF9kYXlzICsgbm93X3Ntb2tlICsgcXVpdF9zbW9raW5nICsgXG4gICAgQXZnX2FsY29ob2xfZHJpbmtzICsgaGFkX2NhbmNlciwgZGVzaWduID0gZGVzLCBmYW1pbHkgPSBcImdhdXNzaWFuXCIsIFxuICAgIGRhdGEgPSBGdWxsZGF0X1BoZW5vKVxuXG5TdXJ2ZXkgZGVzaWduOlxuc3Z5ZGVzaWduKGlkID0gfnBzdSwgc3RyYXRhID0gflN0cmF0YSwgd2VpZ2h0cyA9IH53ZWlnaHRfMiwgbmVzdCA9IFRSVUUsIFxuICAgIGRhdGEgPSBGdWxsZGF0X1BoZW5vKVxuXG5Db2VmZmljaWVudHM6ICgyIG5vdCBkZWZpbmVkIGJlY2F1c2Ugb2Ygc2luZ3VsYXJpdGllcylcbiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgRXN0aW1hdGUgU3RkLiBFcnJvciB0IHZhbHVlIFByKD58dHwpICAgIFxuKEludGVyY2VwdCkgICAgICAgICAgICAgICAgIDcuOTIwZSswMSAgNS4yOTJlKzAwICAxNC45NjYgIDwgMmUtMTYgKioqXG5sbihQZXJmbHVvcm9ub25hbm9pY19hY2lkKSAgMS42NzBlKzAwICA4LjU3MWUtMDEgICAxLjk0OCAgMC4wNTQzNyAuICBcbkdlbmRlciAgICAgICAgICAgICAgICAgICAgIC02LjU3NWUtMDEgIDEuMDA3ZSswMCAgLTAuNjUzICAwLjUxNTE5ICAgIFxuUmFjZSAgICAgICAgICAgICAgICAgICAgICAgIDEuMjgzZSswMCAgNC4yOTFlLTAxICAgMi45OTAgIDAuMDAzNTYgKiogXG5NYXJpdGFsX1N0YXR1cyAgICAgICAgICAgICAtMy4xMjhlKzAwICAzLjYyMWUtMDEgIC04LjY0MCAxLjQzZS0xMyAqKipcblJhdGlvX2luY29tZV9wb3ZlcnR5ICAgICAgIC0xLjE3NmUrMDAgIDMuOTY0ZS0wMSAgLTIuOTY3ICAwLjAwMzgxICoqIFxuQk1JICAgICAgICAgICAgICAgICAgICAgICAgIDIuMTg1ZS0wMSAgNy42MDJlLTAyICAgMi44NzQgIDAuMDA1MDEgKiogXG5zbGVlcF9kaXNvcmRlcnMgICAgICAgICAgICAtMi44MTllKzAwICAxLjEzNWUrMDAgIC0yLjQ4MyAgMC4wMTQ4MSAqICBcbnF1aXRfc21va2luZyAgICAgICAgICAgICAgICAzLjEwN2UtMDQgIDIuODAxZS0wNSAgMTEuMDkzICA8IDJlLTE2ICoqKlxuQXZnX2FsY29ob2xfZHJpbmtzICAgICAgICAgIDUuNzUzZSswMCAgMS4yMThlKzAwICAgNC43MjMgOC4xMGUtMDYgKioqXG5oYWRfY2FuY2VyICAgICAgICAgICAgICAgICAtMS40NzllKzAxICAxLjY0MWUrMDAgIC05LjAxNSAyLjI5ZS0xNCAqKipcbi0tLVxuU2lnbmlmLiBjb2RlczogIDAg4oCYKioq4oCZIDAuMDAxIOKAmCoq4oCZIDAuMDEg4oCYKuKAmSAwLjA1IOKAmC7igJkgMC4xIOKAmCDigJkgMVxuXG4oRGlzcGVyc2lvbiBwYXJhbWV0ZXIgZm9yIGdhdXNzaWFuIGZhbWlseSB0YWtlbiB0byBiZSAzMDUuMTkxNylcblxuTnVtYmVyIG9mIEZpc2hlciBTY29yaW5nIGl0ZXJhdGlvbnM6IDJcblxuICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAyLjUgJSAgICAgICAgOTcuNSAlXG4oSW50ZXJjZXB0KSAgICAgICAgICAgICAgICAgNi44NjkyMjNlKzAxICA4Ljk3MDcxNWUrMDFcbmxuKFBlcmZsdW9yb25vbmFub2ljX2FjaWQpIC0zLjE5NjQ0N2UtMDIgIDMuMzcxNTk1ZSswMFxuR2VuZGVyICAgICAgICAgICAgICAgICAgICAgLTIuNjU1OTc0ZSswMCAgMS4zNDA5NTBlKzAwXG5SYWNlICAgICAgICAgICAgICAgICAgICAgICAgNC4zMTExNTZlLTAxICAyLjEzNTE1OGUrMDBcbk1hcml0YWxfU3RhdHVzICAgICAgICAgICAgIC0zLjg0NzEwNWUrMDAgLTIuNDA5MzU3ZSswMFxuUmF0aW9faW5jb21lX3BvdmVydHkgICAgICAgLTEuOTYzMTk0ZSswMCAtMy44OTEzMTllLTAxXG5CTUkgICAgICAgICAgICAgICAgICAgICAgICAgNi43NTYyMzJlLTAyICAzLjY5NDQwM2UtMDFcbnNsZWVwX2Rpc29yZGVycyAgICAgICAgICAgIC01LjA3MzEzMmUrMDAgLTUuNjQ2MTEzZS0wMVxucXVpdF9zbW9raW5nICAgICAgICAgICAgICAgIDIuNTUwNTYyZS0wNCAgMy42NjI2NTllLTA0XG5BdmdfYWxjb2hvbF9kcmlua3MgICAgICAgICAgMy4zMzQ0NTRlKzAwICA4LjE3MDc0MGUrMDBcbmhhZF9jYW5jZXIgICAgICAgICAgICAgICAgIC0xLjgwNDY5NGUrMDEgLTEuMTUzMTkzZSswMVxuIn0= -->
Call: svyglm(formula = Phenotypic_Age ~ Perfluorononanoic_acid_comment, design = des, family = “gaussian”, data = Fulldat_Pheno)
Survey design: svydesign(id = ~psu, strata = ~Strata, weights = ~weight_2, nest = TRUE, data = Fulldat_Pheno)
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 45.5414 0.2615 174.168 <2e-16 ***
Perfluorononanoic_acid_comment 1.2082 2.5944 0.466 0.642
— Signif. codes: 0 ‘’ 0.001 ‘’ 0.01 ‘’ 0.05
‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 377.3081)
Number of Fisher Scoring iterations: 2
2.5 % 97.5 %
(Intercept) 45.024247 46.058640 Perfluorononanoic_acid_comment -3.923447 6.339837
Call: svyglm(formula = Phenotypic_Age ~ Perfluorononanoic_acid_comment + Gender + Race + Marital_Status + Ratio_income_poverty, design = des, family = “gaussian”, data = Fulldat_Pheno)
Survey design: svydesign(id = ~psu, strata = ~Strata, weights = ~weight_2, nest = TRUE, data = Fulldat_Pheno)
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 50.4123 1.4495 34.780 < 2e-16
Perfluorononanoic_acid_comment -0.1223 2.5110 -0.049 0.9612
Gender -0.2958 0.4101 -0.721 0.4720
Race 1.2229 0.1839 6.650 7.54e-10 Marital_Status -2.9142
0.3698 -7.881 1.18e-12 ** Ratio_income_poverty -0.3530 0.1733 -2.037
0.0437
— Signif. codes: 0 ‘’ 0.001 ‘’ 0.01 ‘’ 0.05
‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 337.238)
Number of Fisher Scoring iterations: 2
2.5 % 97.5 %
(Intercept) 47.5444365 53.28010557 Perfluorononanoic_acid_comment -5.0903542 4.84577011 Gender -1.1072206 0.51559131 Race 0.8590130 1.58672663 Marital_Status -3.6458461 -2.18263403 Ratio_income_poverty -0.6959141 -0.01015699
Call: svyglm(formula = Phenotypic_Age ~ Perfluorononanoic_acid_comment + Gender + Race + Marital_Status + Ratio_income_poverty + BMI + sleep_disorders + Smoked_days + now_smoke + quit_smoking + Avg_alcohol_drinks + had_cancer, design = des, family = “gaussian”, data = Fulldat_Pheno)
Survey design: svydesign(id = ~psu, strata = ~Strata, weights = ~weight_2, nest = TRUE, data = Fulldat_Pheno)
Coefficients: (2 not defined because of singularities) Estimate Std.
Error t value Pr(>|t|)
(Intercept) 7.815e+01 5.256e+00 14.868 < 2e-16
Perfluorononanoic_acid_comment -7.871e+00 4.689e+00 -1.678 0.09660
.
Gender -7.635e-01 9.504e-01 -0.803 0.42383
Race 1.416e+00 4.272e-01 3.314 0.00131 Marital_Status
-3.169e+00 3.543e-01 -8.946 3.20e-14 Ratio_income_poverty
-1.157e+00 3.943e-01 -2.934 0.00421 BMI 2.148e-01 7.719e-02
2.783 0.00651 ** sleep_disorders -2.678e+00 1.136e+00 -2.358 0.02045
*
quit_smoking 3.112e-04 2.895e-05 10.750 < 2e-16
Avg_alcohol_drinks 5.964e+00 1.248e+00 4.778 6.52e-06
had_cancer -1.468e+01 1.606e+00 -9.139 1.25e-14 *** — Signif. codes: 0
‘’ 0.001 ‘’ 0.01 ‘’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 305.8616)
Number of Fisher Scoring iterations: 2
2.5 % 97.5 %
(Intercept) 67.713073728 8.858582e+01 Perfluorononanoic_acid_comment -17.181591762 1.440350e+00 Gender -2.650618824 1.123632e+00 Race 0.567440494 2.264067e+00 Marital_Status -3.872912412 -2.466056e+00 Ratio_income_poverty -1.939889398 -3.739266e-01 BMI 0.061579130 3.681027e-01 sleep_disorders -4.932421575 -4.229425e-01 quit_smoking 0.000253748 3.687221e-04 Avg_alcohol_drinks 3.485471884 8.442395e+00 had_cancer -17.864999070 -1.148764e+01
Call: svyglm(formula = Phenotypic_Age ~ ln(Perfluorononanoic_acid), design = des, family = “gaussian”, data = Fulldat_Pheno)
Survey design: svydesign(id = ~psu, strata = ~Strata, weights = ~weight_2, nest = TRUE, data = Fulldat_Pheno)
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 45.8115 0.2650 172.864 < 2e-16
ln(Perfluorononanoic_acid) 1.1868 0.3181 3.731 0.000282 —
Signif. codes: 0 ‘’ 0.001 ‘’ 0.01 ‘’ 0.05 ‘.’
0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 376.4274)
Number of Fisher Scoring iterations: 2
2.5 % 97.5 %
(Intercept) 45.2872993 46.335675 ln(Perfluorononanoic_acid) 0.5575797 1.816049
Call: svyglm(formula = Phenotypic_Age ~ ln(Perfluorononanoic_acid) + Gender + Race + Marital_Status + Ratio_income_poverty, design = des, family = “gaussian”, data = Fulldat_Pheno)
Survey design: svydesign(id = ~psu, strata = ~Strata, weights = ~weight_2, nest = TRUE, data = Fulldat_Pheno)
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 50.84129 1.45272 34.997 < 2e-16
ln(Perfluorononanoic_acid) 1.30520 0.30823 4.235 4.32e-05
Gender -0.05984 0.41534 -0.144 0.8857
Race 1.14134 0.18422 6.196 7.22e-09 Marital_Status -2.93685
0.37232 -7.888 1.14e-12 Ratio_income_poverty -0.42736
0.17571 -2.432 0.0164 *
— Signif. codes: 0 ‘’ 0.001 ‘’ 0.01 ‘’ 0.05
‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 336.159)
Number of Fisher Scoring iterations: 2
2.5 % 97.5 %
(Intercept) 47.9670558 53.71552440 ln(Perfluorononanoic_acid) 0.6953656 1.91503874 Gender -0.8815941 0.76191673 Race 0.7768553 1.50582544 Marital_Status -3.6734893 -2.20020581 Ratio_income_poverty -0.7749988 -0.07971216
Call: svyglm(formula = Phenotypic_Age ~ ln(Perfluorononanoic_acid) + Gender + Race + Marital_Status + Ratio_income_poverty + BMI + sleep_disorders + Smoked_days + now_smoke + quit_smoking + Avg_alcohol_drinks + had_cancer, design = des, family = “gaussian”, data = Fulldat_Pheno)
Survey design: svydesign(id = ~psu, strata = ~Strata, weights = ~weight_2, nest = TRUE, data = Fulldat_Pheno)
Coefficients: (2 not defined because of singularities) Estimate Std.
Error t value Pr(>|t|)
(Intercept) 7.920e+01 5.292e+00 14.966 < 2e-16
ln(Perfluorononanoic_acid) 1.670e+00 8.571e-01 1.948 0.05437 .
Gender -6.575e-01 1.007e+00 -0.653 0.51519
Race 1.283e+00 4.291e-01 2.990 0.00356 Marital_Status
-3.128e+00 3.621e-01 -8.640 1.43e-13 Ratio_income_poverty
-1.176e+00 3.964e-01 -2.967 0.00381 BMI 2.185e-01 7.602e-02
2.874 0.00501 ** sleep_disorders -2.819e+00 1.135e+00 -2.483 0.01481
*
quit_smoking 3.107e-04 2.801e-05 11.093 < 2e-16
Avg_alcohol_drinks 5.753e+00 1.218e+00 4.723 8.10e-06
had_cancer -1.479e+01 1.641e+00 -9.015 2.29e-14 *** — Signif. codes: 0
‘’ 0.001 ‘’ 0.01 ‘’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 305.1917)
Number of Fisher Scoring iterations: 2
2.5 % 97.5 %
(Intercept) 6.869223e+01 8.970715e+01 ln(Perfluorononanoic_acid) -3.196447e-02 3.371595e+00 Gender -2.655974e+00 1.340950e+00 Race 4.311156e-01 2.135158e+00 Marital_Status -3.847105e+00 -2.409357e+00 Ratio_income_poverty -1.963194e+00 -3.891319e-01 BMI 6.756232e-02 3.694403e-01 sleep_disorders -5.073132e+00 -5.646113e-01 quit_smoking 2.550562e-04 3.662659e-04 Avg_alcohol_drinks 3.334454e+00 8.170740e+00 had_cancer -1.804694e+01 -1.153193e+01
<!-- rnb-output-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
#"perfluorooctanoic_acid" "perfluorooctanoic_acid_comment"
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-output-begin eyJkYXRhIjoiXG5DYWxsOlxuc3Z5Z2xtKGZvcm11bGEgPSBQaGVub3R5cGljX0FnZSB+IHBlcmZsdW9yb29jdGFub2ljX2FjaWRfY29tbWVudCwgXG4gICAgZGVzaWduID0gZGVzLCBmYW1pbHkgPSBcImdhdXNzaWFuXCIsIGRhdGEgPSBGdWxsZGF0X1BoZW5vKVxuXG5TdXJ2ZXkgZGVzaWduOlxuc3Z5ZGVzaWduKGlkID0gfnBzdSwgc3RyYXRhID0gflN0cmF0YSwgd2VpZ2h0cyA9IH53ZWlnaHRfMiwgbmVzdCA9IFRSVUUsIFxuICAgIGRhdGEgPSBGdWxsZGF0X1BoZW5vKVxuXG5Db2VmZmljaWVudHM6XG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgRXN0aW1hdGUgU3RkLiBFcnJvciB0IHZhbHVlIFByKD58dHwpICAgIFxuKEludGVyY2VwdCkgICAgICAgICAgICAgICAgICAgICA0My40OTcwICAgICAwLjMzOTggMTI3Ljk4OSAgPCAyZS0xNiAqKipcbnBlcmZsdW9yb29jdGFub2ljX2FjaWRfY29tbWVudCAgIDQuODIwOCAgICAgMC42NTIyICAgNy4zOTEgMi4yOWUtMTEgKioqXG4tLS1cblNpZ25pZi4gY29kZXM6ICAwIOKAmCoqKuKAmSAwLjAwMSDigJgqKuKAmSAwLjAxIOKAmCrigJkgMC4wNSDigJgu4oCZIDAuMSDigJgg4oCZIDFcblxuKERpc3BlcnNpb24gcGFyYW1ldGVyIGZvciBnYXVzc2lhbiBmYW1pbHkgdGFrZW4gdG8gYmUgMzY4LjY0NjgpXG5cbk51bWJlciBvZiBGaXNoZXIgU2NvcmluZyBpdGVyYXRpb25zOiAyXG5cbiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMi41ICUgICAgOTcuNSAlXG4oSW50ZXJjZXB0KSAgICAgICAgICAgICAgICAgICAgNDIuODI0MDI3IDQ0LjE3MDAxNFxucGVyZmx1b3Jvb2N0YW5vaWNfYWNpZF9jb21tZW50ICAzLjUyOTE2MyAgNi4xMTI0MTFcblxuQ2FsbDpcbnN2eWdsbShmb3JtdWxhID0gUGhlbm90eXBpY19BZ2UgfiBwZXJmbHVvcm9vY3Rhbm9pY19hY2lkX2NvbW1lbnQgKyBcbiAgICBHZW5kZXIgKyBSYWNlICsgTWFyaXRhbF9TdGF0dXMgKyBSYXRpb19pbmNvbWVfcG92ZXJ0eSwgZGVzaWduID0gZGVzLCBcbiAgICBmYW1pbHkgPSBcImdhdXNzaWFuXCIsIGRhdGEgPSBGdWxsZGF0X1BoZW5vKVxuXG5TdXJ2ZXkgZGVzaWduOlxuc3Z5ZGVzaWduKGlkID0gfnBzdSwgc3RyYXRhID0gflN0cmF0YSwgd2VpZ2h0cyA9IH53ZWlnaHRfMiwgbmVzdCA9IFRSVUUsIFxuICAgIGRhdGEgPSBGdWxsZGF0X1BoZW5vKVxuXG5Db2VmZmljaWVudHM6XG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgRXN0aW1hdGUgU3RkLiBFcnJvciB0IHZhbHVlIFByKD58dHwpICAgIFxuKEludGVyY2VwdCkgICAgICAgICAgICAgICAgICAgICA0OC41NDI0ICAgICAxLjU5NzEgIDMwLjM5MyAgPCAyZS0xNiAqKipcbnBlcmZsdW9yb29jdGFub2ljX2FjaWRfY29tbWVudCAgIDMuMTQ3OSAgICAgMC42MjQyICAgNS4wNDMgMS43NGUtMDYgKioqXG5HZW5kZXIgICAgICAgICAgICAgICAgICAgICAgICAgIC0wLjMzMDIgICAgIDAuNDU3NSAgLTAuNzIyICAgMC40NzE5ICAgIFxuUmFjZSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMS4yODkwICAgICAwLjIwMTYgICA2LjM5MyAzLjcwZS0wOSAqKipcbk1hcml0YWxfU3RhdHVzICAgICAgICAgICAgICAgICAgLTIuODQ0MyAgICAgMC4zOTAzICAtNy4yODcgNC40NWUtMTEgKioqXG5SYXRpb19pbmNvbWVfcG92ZXJ0eSAgICAgICAgICAgIC0wLjM1ODYgICAgIDAuMTc2NyAgLTIuMDMwICAgMC4wNDQ3ICogIFxuLS0tXG5TaWduaWYuIGNvZGVzOiAgMCDigJgqKirigJkgMC4wMDEg4oCYKirigJkgMC4wMSDigJgq4oCZIDAuMDUg4oCYLuKAmSAwLjEg4oCYIOKAmSAxXG5cbihEaXNwZXJzaW9uIHBhcmFtZXRlciBmb3IgZ2F1c3NpYW4gZmFtaWx5IHRha2VuIHRvIGJlIDMzMC43NTA2KVxuXG5OdW1iZXIgb2YgRmlzaGVyIFNjb3JpbmcgaXRlcmF0aW9uczogMlxuXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAyLjUgJSAgICAgICA5Ny41ICVcbihJbnRlcmNlcHQpICAgICAgICAgICAgICAgICAgICA0NS4zNzg0MzY1IDUxLjcwNjMxNTgyMVxucGVyZmx1b3Jvb2N0YW5vaWNfYWNpZF9jb21tZW50ICAxLjkxMTQ0NTMgIDQuMzg0NDA5NzU3XG5HZW5kZXIgICAgICAgICAgICAgICAgICAgICAgICAgLTEuMjM2NTA3MCAgMC41NzYxMTg0NDlcblJhY2UgICAgICAgICAgICAgICAgICAgICAgICAgICAgMC44ODk1Mzg5ICAxLjY4ODQxMzkyMlxuTWFyaXRhbF9TdGF0dXMgICAgICAgICAgICAgICAgIC0zLjYxNzU0NDYgLTIuMDcxMDE3MTMxXG5SYXRpb19pbmNvbWVfcG92ZXJ0eSAgICAgICAgICAgLTAuNzA4NTgyOCAtMC4wMDg2NDgyNDlcblxuQ2FsbDpcbnN2eWdsbShmb3JtdWxhID0gUGhlbm90eXBpY19BZ2UgfiBwZXJmbHVvcm9vY3Rhbm9pY19hY2lkX2NvbW1lbnQgKyBcbiAgICBHZW5kZXIgKyBSYWNlICsgTWFyaXRhbF9TdGF0dXMgKyBSYXRpb19pbmNvbWVfcG92ZXJ0eSArIEJNSSArIFxuICAgIHNsZWVwX2Rpc29yZGVycyArIFNtb2tlZF9kYXlzICsgbm93X3Ntb2tlICsgcXVpdF9zbW9raW5nICsgXG4gICAgQXZnX2FsY29ob2xfZHJpbmtzICsgaGFkX2NhbmNlciwgZGVzaWduID0gZGVzLCBmYW1pbHkgPSBcImdhdXNzaWFuXCIsIFxuICAgIGRhdGEgPSBGdWxsZGF0X1BoZW5vKVxuXG5TdXJ2ZXkgZGVzaWduOlxuc3Z5ZGVzaWduKGlkID0gfnBzdSwgc3RyYXRhID0gflN0cmF0YSwgd2VpZ2h0cyA9IH53ZWlnaHRfMiwgbmVzdCA9IFRSVUUsIFxuICAgIGRhdGEgPSBGdWxsZGF0X1BoZW5vKVxuXG5Db2VmZmljaWVudHM6ICgyIG5vdCBkZWZpbmVkIGJlY2F1c2Ugb2Ygc2luZ3VsYXJpdGllcylcbiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIEVzdGltYXRlIFN0ZC4gRXJyb3IgdCB2YWx1ZSBQcig+fHR8KSAgICBcbihJbnRlcmNlcHQpICAgICAgICAgICAgICAgICAgICAgNy44MTllKzAxICA2LjAyMmUrMDAgIDEyLjk4NSAgPCAyZS0xNiAqKipcbnBlcmZsdW9yb29jdGFub2ljX2FjaWRfY29tbWVudCAgMS43ODZlKzAwICAxLjIwNWUrMDAgICAxLjQ4MiAwLjE0MjI4NCAgICBcbkdlbmRlciAgICAgICAgICAgICAgICAgICAgICAgICAtMS4wMzFlKzAwICAxLjA1OWUrMDAgIC0wLjk3MyAwLjMzMzMxNSAgICBcblJhY2UgICAgICAgICAgICAgICAgICAgICAgICAgICAgMS4zNDVlKzAwICA0Ljc5M2UtMDEgICAyLjgwNiAwLjAwNjMxOCAqKiBcbk1hcml0YWxfU3RhdHVzICAgICAgICAgICAgICAgICAtMy4yOTNlKzAwICAzLjc2N2UtMDEgIC04Ljc0MSAzLjEyZS0xMyAqKipcblJhdGlvX2luY29tZV9wb3ZlcnR5ICAgICAgICAgICAtMS4wNzRlKzAwICAzLjk3OWUtMDEgIC0yLjcwMCAwLjAwODQ5MSAqKiBcbkJNSSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMS45NDZlLTAxICA4LjQxM2UtMDIgICAyLjMxNCAwLjAyMzI4NiAqICBcbnNsZWVwX2Rpc29yZGVycyAgICAgICAgICAgICAgICAtMi44ODFlKzAwICAxLjI0NGUrMDAgIC0yLjMxNiAwLjAyMzE0MCAqICBcbnF1aXRfc21va2luZyAgICAgICAgICAgICAgICAgICAgMi44OTFlLTA0ICAzLjQ2N2UtMDUgICA4LjMzNyAxLjkyZS0xMiAqKipcbkF2Z19hbGNvaG9sX2RyaW5rcyAgICAgICAgICAgICAgNS45NTNlKzAwICAxLjUzOWUrMDAgICAzLjg2OCAwLjAwMDIyNCAqKipcbmhhZF9jYW5jZXIgICAgICAgICAgICAgICAgICAgICAtMS40NzVlKzAxICAxLjgxNmUrMDAgIC04LjEyNiA0Ljk1ZS0xMiAqKipcbi0tLVxuU2lnbmlmLiBjb2RlczogIDAg4oCYKioq4oCZIDAuMDAxIOKAmCoq4oCZIDAuMDEg4oCYKuKAmSAwLjA1IOKAmC7igJkgMC4xIOKAmCDigJkgMVxuXG4oRGlzcGVyc2lvbiBwYXJhbWV0ZXIgZm9yIGdhdXNzaWFuIGZhbWlseSB0YWtlbiB0byBiZSAzMDYuODQxMSlcblxuTnVtYmVyIG9mIEZpc2hlciBTY29yaW5nIGl0ZXJhdGlvbnM6IDJcblxuICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMi41ICUgICAgICAgIDk3LjUgJVxuKEludGVyY2VwdCkgICAgICAgICAgICAgICAgICAgICA2LjYyMDU2M2UrMDEgIDkuMDE3ODEwZSswMVxucGVyZmx1b3Jvb2N0YW5vaWNfYWNpZF9jb21tZW50IC02LjEyNTA5NGUtMDEgIDQuMTg0MzI3ZSswMFxuR2VuZGVyICAgICAgICAgICAgICAgICAgICAgICAgIC0zLjEzNzkzNWUrMDAgIDEuMDc2NzU3ZSswMFxuUmFjZSAgICAgICAgICAgICAgICAgICAgICAgICAgICAzLjkwNzYzOWUtMDEgIDIuMjk4ODE0ZSswMFxuTWFyaXRhbF9TdGF0dXMgICAgICAgICAgICAgICAgIC00LjA0MjgyOWUrMDAgLTIuNTQzMDc2ZSswMFxuUmF0aW9faW5jb21lX3BvdmVydHkgICAgICAgICAgIC0xLjg2NjE4NmUrMDAgLTIuODIxNDU4ZS0wMVxuQk1JICAgICAgICAgICAgICAgICAgICAgICAgICAgICAyLjcxOTExMGUtMDIgIDMuNjIwODcxZS0wMVxuc2xlZXBfZGlzb3JkZXJzICAgICAgICAgICAgICAgIC01LjM1NjkzMWUrMDAgLTQuMDUyMDgyZS0wMVxucXVpdF9zbW9raW5nICAgICAgICAgICAgICAgICAgICAyLjIwMDM2N2UtMDQgIDMuNTgwNjM4ZS0wNFxuQXZnX2FsY29ob2xfZHJpbmtzICAgICAgICAgICAgICAyLjg4OTg0OGUrMDAgIDkuMDE1NjUzZSswMFxuaGFkX2NhbmNlciAgICAgICAgICAgICAgICAgICAgIC0xLjgzNjY5OGUrMDEgLTEuMTEzOTQ3ZSswMVxuXG5DYWxsOlxuc3Z5Z2xtKGZvcm11bGEgPSBQaGVub3R5cGljX0FnZSB+IGxuKFBlcmZsdW9yb25vbmFub2ljX2FjaWQpLCBcbiAgICBkZXNpZ24gPSBkZXMsIGZhbWlseSA9IFwiZ2F1c3NpYW5cIiwgZGF0YSA9IEZ1bGxkYXRfUGhlbm8pXG5cblN1cnZleSBkZXNpZ246XG5zdnlkZXNpZ24oaWQgPSB+cHN1LCBzdHJhdGEgPSB+U3RyYXRhLCB3ZWlnaHRzID0gfndlaWdodF8yLCBuZXN0ID0gVFJVRSwgXG4gICAgZGF0YSA9IEZ1bGxkYXRfUGhlbm8pXG5cbkNvZWZmaWNpZW50czpcbiAgICAgICAgICAgICAgICAgICAgICAgICAgIEVzdGltYXRlIFN0ZC4gRXJyb3IgdCB2YWx1ZSBQcig+fHR8KSAgICBcbihJbnRlcmNlcHQpICAgICAgICAgICAgICAgICA0NS44MTE1ICAgICAwLjI2NTAgMTcyLjg2NCAgPCAyZS0xNiAqKipcbmxuKFBlcmZsdW9yb25vbmFub2ljX2FjaWQpICAgMS4xODY4ICAgICAwLjMxODEgICAzLjczMSAwLjAwMDI4MiAqKipcbi0tLVxuU2lnbmlmLiBjb2RlczogIDAg4oCYKioq4oCZIDAuMDAxIOKAmCoq4oCZIDAuMDEg4oCYKuKAmSAwLjA1IOKAmC7igJkgMC4xIOKAmCDigJkgMVxuXG4oRGlzcGVyc2lvbiBwYXJhbWV0ZXIgZm9yIGdhdXNzaWFuIGZhbWlseSB0YWtlbiB0byBiZSAzNzYuNDI3NClcblxuTnVtYmVyIG9mIEZpc2hlciBTY29yaW5nIGl0ZXJhdGlvbnM6IDJcblxuICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAyLjUgJSAgICA5Ny41ICVcbihJbnRlcmNlcHQpICAgICAgICAgICAgICAgIDQ1LjI4NzI5OTMgNDYuMzM1Njc1XG5sbihQZXJmbHVvcm9ub25hbm9pY19hY2lkKSAgMC41NTc1Nzk3ICAxLjgxNjA0OVxuXG5DYWxsOlxuc3Z5Z2xtKGZvcm11bGEgPSBQaGVub3R5cGljX0FnZSB+IGxuKFBlcmZsdW9yb25vbmFub2ljX2FjaWQpICsgXG4gICAgR2VuZGVyICsgUmFjZSArIE1hcml0YWxfU3RhdHVzICsgUmF0aW9faW5jb21lX3BvdmVydHksIGRlc2lnbiA9IGRlcywgXG4gICAgZmFtaWx5ID0gXCJnYXVzc2lhblwiLCBkYXRhID0gRnVsbGRhdF9QaGVubylcblxuU3VydmV5IGRlc2lnbjpcbnN2eWRlc2lnbihpZCA9IH5wc3UsIHN0cmF0YSA9IH5TdHJhdGEsIHdlaWdodHMgPSB+d2VpZ2h0XzIsIG5lc3QgPSBUUlVFLCBcbiAgICBkYXRhID0gRnVsbGRhdF9QaGVubylcblxuQ29lZmZpY2llbnRzOlxuICAgICAgICAgICAgICAgICAgICAgICAgICAgRXN0aW1hdGUgU3RkLiBFcnJvciB0IHZhbHVlIFByKD58dHwpICAgIFxuKEludGVyY2VwdCkgICAgICAgICAgICAgICAgNTAuODQxMjkgICAgMS40NTI3MiAgMzQuOTk3ICA8IDJlLTE2ICoqKlxubG4oUGVyZmx1b3Jvbm9uYW5vaWNfYWNpZCkgIDEuMzA1MjAgICAgMC4zMDgyMyAgIDQuMjM1IDQuMzJlLTA1ICoqKlxuR2VuZGVyICAgICAgICAgICAgICAgICAgICAgLTAuMDU5ODQgICAgMC40MTUzNCAgLTAuMTQ0ICAgMC44ODU3ICAgIFxuUmFjZSAgICAgICAgICAgICAgICAgICAgICAgIDEuMTQxMzQgICAgMC4xODQyMiAgIDYuMTk2IDcuMjJlLTA5ICoqKlxuTWFyaXRhbF9TdGF0dXMgICAgICAgICAgICAgLTIuOTM2ODUgICAgMC4zNzIzMiAgLTcuODg4IDEuMTRlLTEyICoqKlxuUmF0aW9faW5jb21lX3BvdmVydHkgICAgICAgLTAuNDI3MzYgICAgMC4xNzU3MSAgLTIuNDMyICAgMC4wMTY0ICogIFxuLS0tXG5TaWduaWYuIGNvZGVzOiAgMCDigJgqKirigJkgMC4wMDEg4oCYKirigJkgMC4wMSDigJgq4oCZIDAuMDUg4oCYLuKAmSAwLjEg4oCYIOKAmSAxXG5cbihEaXNwZXJzaW9uIHBhcmFtZXRlciBmb3IgZ2F1c3NpYW4gZmFtaWx5IHRha2VuIHRvIGJlIDMzNi4xNTkpXG5cbk51bWJlciBvZiBGaXNoZXIgU2NvcmluZyBpdGVyYXRpb25zOiAyXG5cbiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMi41ICUgICAgICA5Ny41ICVcbihJbnRlcmNlcHQpICAgICAgICAgICAgICAgIDQ3Ljk2NzA1NTggNTMuNzE1NTI0NDBcbmxuKFBlcmZsdW9yb25vbmFub2ljX2FjaWQpICAwLjY5NTM2NTYgIDEuOTE1MDM4NzRcbkdlbmRlciAgICAgICAgICAgICAgICAgICAgIC0wLjg4MTU5NDEgIDAuNzYxOTE2NzNcblJhY2UgICAgICAgICAgICAgICAgICAgICAgICAwLjc3Njg1NTMgIDEuNTA1ODI1NDRcbk1hcml0YWxfU3RhdHVzICAgICAgICAgICAgIC0zLjY3MzQ4OTMgLTIuMjAwMjA1ODFcblJhdGlvX2luY29tZV9wb3ZlcnR5ICAgICAgIC0wLjc3NDk5ODggLTAuMDc5NzEyMTZcblxuQ2FsbDpcbnN2eWdsbShmb3JtdWxhID0gUGhlbm90eXBpY19BZ2UgfiBsbihQZXJmbHVvcm9ub25hbm9pY19hY2lkKSArIFxuICAgIEdlbmRlciArIFJhY2UgKyBNYXJpdGFsX1N0YXR1cyArIFJhdGlvX2luY29tZV9wb3ZlcnR5ICsgQk1JICsgXG4gICAgc2xlZXBfZGlzb3JkZXJzICsgU21va2VkX2RheXMgKyBub3dfc21va2UgKyBxdWl0X3Ntb2tpbmcgKyBcbiAgICBBdmdfYWxjb2hvbF9kcmlua3MgKyBoYWRfY2FuY2VyLCBkZXNpZ24gPSBkZXMsIGZhbWlseSA9IFwiZ2F1c3NpYW5cIiwgXG4gICAgZGF0YSA9IEZ1bGxkYXRfUGhlbm8pXG5cblN1cnZleSBkZXNpZ246XG5zdnlkZXNpZ24oaWQgPSB+cHN1LCBzdHJhdGEgPSB+U3RyYXRhLCB3ZWlnaHRzID0gfndlaWdodF8yLCBuZXN0ID0gVFJVRSwgXG4gICAgZGF0YSA9IEZ1bGxkYXRfUGhlbm8pXG5cbkNvZWZmaWNpZW50czogKDIgbm90IGRlZmluZWQgYmVjYXVzZSBvZiBzaW5ndWxhcml0aWVzKVxuICAgICAgICAgICAgICAgICAgICAgICAgICAgICBFc3RpbWF0ZSBTdGQuIEVycm9yIHQgdmFsdWUgUHIoPnx0fCkgICAgXG4oSW50ZXJjZXB0KSAgICAgICAgICAgICAgICAgNy45MjBlKzAxICA1LjI5MmUrMDAgIDE0Ljk2NiAgPCAyZS0xNiAqKipcbmxuKFBlcmZsdW9yb25vbmFub2ljX2FjaWQpICAxLjY3MGUrMDAgIDguNTcxZS0wMSAgIDEuOTQ4ICAwLjA1NDM3IC4gIFxuR2VuZGVyICAgICAgICAgICAgICAgICAgICAgLTYuNTc1ZS0wMSAgMS4wMDdlKzAwICAtMC42NTMgIDAuNTE1MTkgICAgXG5SYWNlICAgICAgICAgICAgICAgICAgICAgICAgMS4yODNlKzAwICA0LjI5MWUtMDEgICAyLjk5MCAgMC4wMDM1NiAqKiBcbk1hcml0YWxfU3RhdHVzICAgICAgICAgICAgIC0zLjEyOGUrMDAgIDMuNjIxZS0wMSAgLTguNjQwIDEuNDNlLTEzICoqKlxuUmF0aW9faW5jb21lX3BvdmVydHkgICAgICAgLTEuMTc2ZSswMCAgMy45NjRlLTAxICAtMi45NjcgIDAuMDAzODEgKiogXG5CTUkgICAgICAgICAgICAgICAgICAgICAgICAgMi4xODVlLTAxICA3LjYwMmUtMDIgICAyLjg3NCAgMC4wMDUwMSAqKiBcbnNsZWVwX2Rpc29yZGVycyAgICAgICAgICAgIC0yLjgxOWUrMDAgIDEuMTM1ZSswMCAgLTIuNDgzICAwLjAxNDgxICogIFxucXVpdF9zbW9raW5nICAgICAgICAgICAgICAgIDMuMTA3ZS0wNCAgMi44MDFlLTA1ICAxMS4wOTMgIDwgMmUtMTYgKioqXG5BdmdfYWxjb2hvbF9kcmlua3MgICAgICAgICAgNS43NTNlKzAwICAxLjIxOGUrMDAgICA0LjcyMyA4LjEwZS0wNiAqKipcbmhhZF9jYW5jZXIgICAgICAgICAgICAgICAgIC0xLjQ3OWUrMDEgIDEuNjQxZSswMCAgLTkuMDE1IDIuMjllLTE0ICoqKlxuLS0tXG5TaWduaWYuIGNvZGVzOiAgMCDigJgqKirigJkgMC4wMDEg4oCYKirigJkgMC4wMSDigJgq4oCZIDAuMDUg4oCYLuKAmSAwLjEg4oCYIOKAmSAxXG5cbihEaXNwZXJzaW9uIHBhcmFtZXRlciBmb3IgZ2F1c3NpYW4gZmFtaWx5IHRha2VuIHRvIGJlIDMwNS4xOTE3KVxuXG5OdW1iZXIgb2YgRmlzaGVyIFNjb3JpbmcgaXRlcmF0aW9uczogMlxuXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDIuNSAlICAgICAgICA5Ny41ICVcbihJbnRlcmNlcHQpICAgICAgICAgICAgICAgICA2Ljg2OTIyM2UrMDEgIDguOTcwNzE1ZSswMVxubG4oUGVyZmx1b3Jvbm9uYW5vaWNfYWNpZCkgLTMuMTk2NDQ3ZS0wMiAgMy4zNzE1OTVlKzAwXG5HZW5kZXIgICAgICAgICAgICAgICAgICAgICAtMi42NTU5NzRlKzAwICAxLjM0MDk1MGUrMDBcblJhY2UgICAgICAgICAgICAgICAgICAgICAgICA0LjMxMTE1NmUtMDEgIDIuMTM1MTU4ZSswMFxuTWFyaXRhbF9TdGF0dXMgICAgICAgICAgICAgLTMuODQ3MTA1ZSswMCAtMi40MDkzNTdlKzAwXG5SYXRpb19pbmNvbWVfcG92ZXJ0eSAgICAgICAtMS45NjMxOTRlKzAwIC0zLjg5MTMxOWUtMDFcbkJNSSAgICAgICAgICAgICAgICAgICAgICAgICA2Ljc1NjIzMmUtMDIgIDMuNjk0NDAzZS0wMVxuc2xlZXBfZGlzb3JkZXJzICAgICAgICAgICAgLTUuMDczMTMyZSswMCAtNS42NDYxMTNlLTAxXG5xdWl0X3Ntb2tpbmcgICAgICAgICAgICAgICAgMi41NTA1NjJlLTA0ICAzLjY2MjY1OWUtMDRcbkF2Z19hbGNvaG9sX2RyaW5rcyAgICAgICAgICAzLjMzNDQ1NGUrMDAgIDguMTcwNzQwZSswMFxuaGFkX2NhbmNlciAgICAgICAgICAgICAgICAgLTEuODA0Njk0ZSswMSAtMS4xNTMxOTNlKzAxXG4ifQ== -->
Call: svyglm(formula = Phenotypic_Age ~ perfluorooctanoic_acid_comment, design = des, family = “gaussian”, data = Fulldat_Pheno)
Survey design: svydesign(id = ~psu, strata = ~Strata, weights = ~weight_2, nest = TRUE, data = Fulldat_Pheno)
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 43.4970 0.3398 127.989 < 2e-16
perfluorooctanoic_acid_comment 4.8208 0.6522 7.391 2.29e-11
— Signif. codes: 0 ‘’ 0.001 ‘’ 0.01
‘’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 368.6468)
Number of Fisher Scoring iterations: 2
2.5 % 97.5 %
(Intercept) 42.824027 44.170014 perfluorooctanoic_acid_comment 3.529163 6.112411
Call: svyglm(formula = Phenotypic_Age ~ perfluorooctanoic_acid_comment + Gender + Race + Marital_Status + Ratio_income_poverty, design = des, family = “gaussian”, data = Fulldat_Pheno)
Survey design: svydesign(id = ~psu, strata = ~Strata, weights = ~weight_2, nest = TRUE, data = Fulldat_Pheno)
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 48.5424 1.5971 30.393 < 2e-16
perfluorooctanoic_acid_comment 3.1479 0.6242 5.043 1.74e-06
Gender -0.3302 0.4575 -0.722 0.4719
Race 1.2890 0.2016 6.393 3.70e-09 Marital_Status -2.8443
0.3903 -7.287 4.45e-11 Ratio_income_poverty -0.3586
0.1767 -2.030 0.0447 *
— Signif. codes: 0 ‘’ 0.001 ‘’ 0.01 ‘’ 0.05
‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 330.7506)
Number of Fisher Scoring iterations: 2
2.5 % 97.5 %
(Intercept) 45.3784365 51.706315821 perfluorooctanoic_acid_comment 1.9114453 4.384409757 Gender -1.2365070 0.576118449 Race 0.8895389 1.688413922 Marital_Status -3.6175446 -2.071017131 Ratio_income_poverty -0.7085828 -0.008648249
Call: svyglm(formula = Phenotypic_Age ~ perfluorooctanoic_acid_comment + Gender + Race + Marital_Status + Ratio_income_poverty + BMI + sleep_disorders + Smoked_days + now_smoke + quit_smoking + Avg_alcohol_drinks + had_cancer, design = des, family = “gaussian”, data = Fulldat_Pheno)
Survey design: svydesign(id = ~psu, strata = ~Strata, weights = ~weight_2, nest = TRUE, data = Fulldat_Pheno)
Coefficients: (2 not defined because of singularities) Estimate Std.
Error t value Pr(>|t|)
(Intercept) 7.819e+01 6.022e+00 12.985 < 2e-16
perfluorooctanoic_acid_comment 1.786e+00 1.205e+00 1.482 0.142284
Gender -1.031e+00 1.059e+00 -0.973 0.333315
Race 1.345e+00 4.793e-01 2.806 0.006318 Marital_Status
-3.293e+00 3.767e-01 -8.741 3.12e-13 Ratio_income_poverty
-1.074e+00 3.979e-01 -2.700 0.008491 BMI 1.946e-01 8.413e-02
2.314 0.023286 *
sleep_disorders -2.881e+00 1.244e+00 -2.316 0.023140 *
quit_smoking 2.891e-04 3.467e-05 8.337 1.92e-12
Avg_alcohol_drinks 5.953e+00 1.539e+00 3.868 0.000224
had_cancer -1.475e+01 1.816e+00 -8.126 4.95e-12 *** — Signif. codes: 0
‘’ 0.001 ‘’ 0.01 ‘’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 306.8411)
Number of Fisher Scoring iterations: 2
2.5 % 97.5 %
(Intercept) 6.620563e+01 9.017810e+01 perfluorooctanoic_acid_comment -6.125094e-01 4.184327e+00 Gender -3.137935e+00 1.076757e+00 Race 3.907639e-01 2.298814e+00 Marital_Status -4.042829e+00 -2.543076e+00 Ratio_income_poverty -1.866186e+00 -2.821458e-01 BMI 2.719110e-02 3.620871e-01 sleep_disorders -5.356931e+00 -4.052082e-01 quit_smoking 2.200367e-04 3.580638e-04 Avg_alcohol_drinks 2.889848e+00 9.015653e+00 had_cancer -1.836698e+01 -1.113947e+01
Call: svyglm(formula = Phenotypic_Age ~ ln(Perfluorononanoic_acid), design = des, family = “gaussian”, data = Fulldat_Pheno)
Survey design: svydesign(id = ~psu, strata = ~Strata, weights = ~weight_2, nest = TRUE, data = Fulldat_Pheno)
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 45.8115 0.2650 172.864 < 2e-16
ln(Perfluorononanoic_acid) 1.1868 0.3181 3.731 0.000282 —
Signif. codes: 0 ‘’ 0.001 ‘’ 0.01 ‘’ 0.05 ‘.’
0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 376.4274)
Number of Fisher Scoring iterations: 2
2.5 % 97.5 %
(Intercept) 45.2872993 46.335675 ln(Perfluorononanoic_acid) 0.5575797 1.816049
Call: svyglm(formula = Phenotypic_Age ~ ln(Perfluorononanoic_acid) + Gender + Race + Marital_Status + Ratio_income_poverty, design = des, family = “gaussian”, data = Fulldat_Pheno)
Survey design: svydesign(id = ~psu, strata = ~Strata, weights = ~weight_2, nest = TRUE, data = Fulldat_Pheno)
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 50.84129 1.45272 34.997 < 2e-16
ln(Perfluorononanoic_acid) 1.30520 0.30823 4.235 4.32e-05
Gender -0.05984 0.41534 -0.144 0.8857
Race 1.14134 0.18422 6.196 7.22e-09 Marital_Status -2.93685
0.37232 -7.888 1.14e-12 Ratio_income_poverty -0.42736
0.17571 -2.432 0.0164 *
— Signif. codes: 0 ‘’ 0.001 ‘’ 0.01 ‘’ 0.05
‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 336.159)
Number of Fisher Scoring iterations: 2
2.5 % 97.5 %
(Intercept) 47.9670558 53.71552440 ln(Perfluorononanoic_acid) 0.6953656 1.91503874 Gender -0.8815941 0.76191673 Race 0.7768553 1.50582544 Marital_Status -3.6734893 -2.20020581 Ratio_income_poverty -0.7749988 -0.07971216
Call: svyglm(formula = Phenotypic_Age ~ ln(Perfluorononanoic_acid) + Gender + Race + Marital_Status + Ratio_income_poverty + BMI + sleep_disorders + Smoked_days + now_smoke + quit_smoking + Avg_alcohol_drinks + had_cancer, design = des, family = “gaussian”, data = Fulldat_Pheno)
Survey design: svydesign(id = ~psu, strata = ~Strata, weights = ~weight_2, nest = TRUE, data = Fulldat_Pheno)
Coefficients: (2 not defined because of singularities) Estimate Std.
Error t value Pr(>|t|)
(Intercept) 7.920e+01 5.292e+00 14.966 < 2e-16
ln(Perfluorononanoic_acid) 1.670e+00 8.571e-01 1.948 0.05437 .
Gender -6.575e-01 1.007e+00 -0.653 0.51519
Race 1.283e+00 4.291e-01 2.990 0.00356 Marital_Status
-3.128e+00 3.621e-01 -8.640 1.43e-13 Ratio_income_poverty
-1.176e+00 3.964e-01 -2.967 0.00381 BMI 2.185e-01 7.602e-02
2.874 0.00501 ** sleep_disorders -2.819e+00 1.135e+00 -2.483 0.01481
*
quit_smoking 3.107e-04 2.801e-05 11.093 < 2e-16
Avg_alcohol_drinks 5.753e+00 1.218e+00 4.723 8.10e-06
had_cancer -1.479e+01 1.641e+00 -9.015 2.29e-14 *** — Signif. codes: 0
‘’ 0.001 ‘’ 0.01 ‘’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 305.1917)
Number of Fisher Scoring iterations: 2
2.5 % 97.5 %
(Intercept) 6.869223e+01 8.970715e+01 ln(Perfluorononanoic_acid) -3.196447e-02 3.371595e+00 Gender -2.655974e+00 1.340950e+00 Race 4.311156e-01 2.135158e+00 Marital_Status -3.847105e+00 -2.409357e+00 Ratio_income_poverty -1.963194e+00 -3.891319e-01 BMI 6.756232e-02 3.694403e-01 sleep_disorders -5.073132e+00 -5.646113e-01 quit_smoking 2.550562e-04 3.662659e-04 Avg_alcohol_drinks 3.334454e+00 8.170740e+00 had_cancer -1.804694e+01 -1.153193e+01
<!-- rnb-output-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
#"perfluorooctane_sulfonic_acid" "perfluorooctane_sulfonic_acid_comment"
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-output-begin eyJkYXRhIjoiXG5DYWxsOlxuc3Z5Z2xtKGZvcm11bGEgPSBQaGVub3R5cGljX0FnZSB+IHBlcmZsdW9yb29jdGFuZV9zdWxmb25pY19hY2lkX2NvbW1lbnQsIFxuICAgIGRlc2lnbiA9IGRlcywgZmFtaWx5ID0gXCJnYXVzc2lhblwiLCBkYXRhID0gRnVsbGRhdF9QaGVubylcblxuU3VydmV5IGRlc2lnbjpcbnN2eWRlc2lnbihpZCA9IH5wc3UsIHN0cmF0YSA9IH5TdHJhdGEsIHdlaWdodHMgPSB+d2VpZ2h0XzIsIG5lc3QgPSBUUlVFLCBcbiAgICBkYXRhID0gRnVsbGRhdF9QaGVubylcblxuQ29lZmZpY2llbnRzOlxuICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBFc3RpbWF0ZSBTdGQuIEVycm9yIHQgdmFsdWUgUHIoPnx0fCkgICAgXG4oSW50ZXJjZXB0KSAgICAgICAgICAgICAgICAgICAgICAgICAgICA0NS4xMzAwICAgICAwLjI5MjEgMTU0LjQ4NSAgIDwyZS0xNiAqKipcbnBlcmZsdW9yb29jdGFuZV9zdWxmb25pY19hY2lkX2NvbW1lbnQgICA4LjI2NDUgICAgIDQuMTgzNSAgIDEuOTc1ICAgMC4wNTA1IC4gIFxuLS0tXG5TaWduaWYuIGNvZGVzOiAgMCDigJgqKirigJkgMC4wMDEg4oCYKirigJkgMC4wMSDigJgq4oCZIDAuMDUg4oCYLuKAmSAwLjEg4oCYIOKAmSAxXG5cbihEaXNwZXJzaW9uIHBhcmFtZXRlciBmb3IgZ2F1c3NpYW4gZmFtaWx5IHRha2VuIHRvIGJlIDM3My42MDU1KVxuXG5OdW1iZXIgb2YgRmlzaGVyIFNjb3JpbmcgaXRlcmF0aW9uczogMlxuXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDIuNSAlICAgOTcuNSAlXG4oSW50ZXJjZXB0KSAgICAgICAgICAgICAgICAgICAgICAgICAgIDQ0LjU1MTQ2MDg0IDQ1LjcwODQ2XG5wZXJmbHVvcm9vY3RhbmVfc3VsZm9uaWNfYWNpZF9jb21tZW50IC0wLjAyMDAzMjMxIDE2LjU0OTEwXG5cbkNhbGw6XG5zdnlnbG0oZm9ybXVsYSA9IFBoZW5vdHlwaWNfQWdlIH4gcGVyZmx1b3Jvb2N0YW5lX3N1bGZvbmljX2FjaWRfY29tbWVudCArIFxuICAgIEdlbmRlciArIFJhY2UgKyBNYXJpdGFsX1N0YXR1cyArIFJhdGlvX2luY29tZV9wb3ZlcnR5LCBkZXNpZ24gPSBkZXMsIFxuICAgIGZhbWlseSA9IFwiZ2F1c3NpYW5cIiwgZGF0YSA9IEZ1bGxkYXRfUGhlbm8pXG5cblN1cnZleSBkZXNpZ246XG5zdnlkZXNpZ24oaWQgPSB+cHN1LCBzdHJhdGEgPSB+U3RyYXRhLCB3ZWlnaHRzID0gfndlaWdodF8yLCBuZXN0ID0gVFJVRSwgXG4gICAgZGF0YSA9IEZ1bGxkYXRfUGhlbm8pXG5cbkNvZWZmaWNpZW50czpcbiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgRXN0aW1hdGUgU3RkLiBFcnJvciB0IHZhbHVlIFByKD58dHwpICAgIFxuKEludGVyY2VwdCkgICAgICAgICAgICAgICAgICAgICAgICAgICAgNDkuNjM2MiAgICAgMS42MDE2ICAzMC45OTEgIDwgMmUtMTYgKioqXG5wZXJmbHVvcm9vY3RhbmVfc3VsZm9uaWNfYWNpZF9jb21tZW50ICAgOS42MzQ0ICAgICA1LjIxNTggICAxLjg0NyAgIDAuMDY3MyAuICBcbkdlbmRlciAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIC0wLjM0NTEgICAgIDAuNDU3OCAgLTAuNzU0ICAgMC40NTI1ICAgIFxuUmFjZSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDEuMzMzOCAgICAgMC4xOTY5ICAgNi43NzMgNS44MGUtMTAgKioqXG5NYXJpdGFsX1N0YXR1cyAgICAgICAgICAgICAgICAgICAgICAgICAtMi45NDAzICAgICAwLjM5OTQgIC03LjM2MiAzLjAzZS0xMSAqKipcblJhdGlvX2luY29tZV9wb3ZlcnR5ICAgICAgICAgICAgICAgICAgIC0wLjM0ODEgICAgIDAuMTgyMSAgLTEuOTExICAgMC4wNTg1IC4gIFxuLS0tXG5TaWduaWYuIGNvZGVzOiAgMCDigJgqKirigJkgMC4wMDEg4oCYKirigJkgMC4wMSDigJgq4oCZIDAuMDUg4oCYLuKAmSAwLjEg4oCYIOKAmSAxXG5cbihEaXNwZXJzaW9uIHBhcmFtZXRlciBmb3IgZ2F1c3NpYW4gZmFtaWx5IHRha2VuIHRvIGJlIDMzMi41NzQzKVxuXG5OdW1iZXIgb2YgRmlzaGVyIFNjb3JpbmcgaXRlcmF0aW9uczogMlxuXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMi41ICUgICAgICA5Ny41ICVcbihJbnRlcmNlcHQpICAgICAgICAgICAgICAgICAgICAgICAgICAgNDYuNDYzMzQ5NiA1Mi44MDkwNTIxMlxucGVyZmx1b3Jvb2N0YW5lX3N1bGZvbmljX2FjaWRfY29tbWVudCAtMC42OTgwODM4IDE5Ljk2Njg3NDgyXG5HZW5kZXIgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIC0xLjI1MTkyOTkgIDAuNTYxNzI4MDFcblJhY2UgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDAuOTQzNzAxNiAgMS43MjM5Nzc2NFxuTWFyaXRhbF9TdGF0dXMgICAgICAgICAgICAgICAgICAgICAgICAtMy43MzE0NjkxIC0yLjE0OTE2MzUxXG5SYXRpb19pbmNvbWVfcG92ZXJ0eSAgICAgICAgICAgICAgICAgIC0wLjcwODg2NzIgIDAuMDEyNjg3NTJcblxuQ2FsbDpcbnN2eWdsbShmb3JtdWxhID0gUGhlbm90eXBpY19BZ2UgfiBwZXJmbHVvcm9vY3RhbmVfc3VsZm9uaWNfYWNpZF9jb21tZW50ICsgXG4gICAgR2VuZGVyICsgUmFjZSArIE1hcml0YWxfU3RhdHVzICsgUmF0aW9faW5jb21lX3BvdmVydHkgKyBCTUkgKyBcbiAgICBzbGVlcF9kaXNvcmRlcnMgKyBTbW9rZWRfZGF5cyArIG5vd19zbW9rZSArIHF1aXRfc21va2luZyArIFxuICAgIEF2Z19hbGNvaG9sX2RyaW5rcyArIGhhZF9jYW5jZXIsIGRlc2lnbiA9IGRlcywgZmFtaWx5ID0gXCJnYXVzc2lhblwiLCBcbiAgICBkYXRhID0gRnVsbGRhdF9QaGVubylcblxuU3VydmV5IGRlc2lnbjpcbnN2eWRlc2lnbihpZCA9IH5wc3UsIHN0cmF0YSA9IH5TdHJhdGEsIHdlaWdodHMgPSB+d2VpZ2h0XzIsIG5lc3QgPSBUUlVFLCBcbiAgICBkYXRhID0gRnVsbGRhdF9QaGVubylcblxuQ29lZmZpY2llbnRzOiAoMiBub3QgZGVmaW5lZCBiZWNhdXNlIG9mIHNpbmd1bGFyaXRpZXMpXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgRXN0aW1hdGUgU3RkLiBFcnJvciB0IHZhbHVlIFByKD58dHwpICAgIFxuKEludGVyY2VwdCkgICAgICAgICAgICAgICAgICAgICAgICAgICAgNy45MjhlKzAxICA1LjkwN2UrMDAgIDEzLjQyMSAgPCAyZS0xNiAqKipcbnBlcmZsdW9yb29jdGFuZV9zdWxmb25pY19hY2lkX2NvbW1lbnQgIDEuOTU1ZSswMCAgOC4wNjVlKzAwICAgMC4yNDIgMC44MDkwNjAgICAgXG5HZW5kZXIgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIC05LjMzOWUtMDEgIDEuMDc5ZSswMCAgLTAuODY1IDAuMzg5NDAxICAgIFxuUmFjZSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMS4zOTBlKzAwICA0LjczNGUtMDEgICAyLjkzNiAwLjAwNDM1MCAqKiBcbk1hcml0YWxfU3RhdHVzICAgICAgICAgICAgICAgICAgICAgICAgLTMuMzc2ZSswMCAgNC4wMDdlLTAxICAtOC40MjYgMS4yOWUtMTIgKioqXG5SYXRpb19pbmNvbWVfcG92ZXJ0eSAgICAgICAgICAgICAgICAgIC0xLjA4MGUrMDAgIDQuMDEzZS0wMSAgLTIuNjkyIDAuMDA4NjY5ICoqIFxuQk1JICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMi4wNTJlLTAxICA4LjE2N2UtMDIgICAyLjUxMiAwLjAxNDAzNyAqICBcbnNsZWVwX2Rpc29yZGVycyAgICAgICAgICAgICAgICAgICAgICAgLTMuMDA4ZSswMCAgMS4yNDZlKzAwICAtMi40MTQgMC4wMTgxMTIgKiAgXG5xdWl0X3Ntb2tpbmcgICAgICAgICAgICAgICAgICAgICAgICAgICAzLjAxMmUtMDQgIDMuMzI0ZS0wNSAgIDkuMDYzIDcuMzRlLTE0ICoqKlxuQXZnX2FsY29ob2xfZHJpbmtzICAgICAgICAgICAgICAgICAgICAgNS41OTFlKzAwICAxLjQ4NmUrMDAgICAzLjc2MiAwLjAwMDMyMiAqKipcbmhhZF9jYW5jZXIgICAgICAgICAgICAgICAgICAgICAgICAgICAgLTEuNDgxZSswMSAgMS44MzFlKzAwICAtOC4wOTAgNS44M2UtMTIgKioqXG4tLS1cblNpZ25pZi4gY29kZXM6ICAwIOKAmCoqKuKAmSAwLjAwMSDigJgqKuKAmSAwLjAxIOKAmCrigJkgMC4wNSDigJgu4oCZIDAuMSDigJgg4oCZIDFcblxuKERpc3BlcnNpb24gcGFyYW1ldGVyIGZvciBnYXVzc2lhbiBmYW1pbHkgdGFrZW4gdG8gYmUgMzA3LjYwNTQpXG5cbk51bWJlciBvZiBGaXNoZXIgU2NvcmluZyBpdGVyYXRpb25zOiAyXG5cbiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAyLjUgJSAgICAgICAgOTcuNSAlXG4oSW50ZXJjZXB0KSAgICAgICAgICAgICAgICAgICAgICAgICAgICA2Ljc1MjI5N2UrMDEgIDkuMTAzOTQzZSswMVxucGVyZmx1b3Jvb2N0YW5lX3N1bGZvbmljX2FjaWRfY29tbWVudCAtMS40MDk3MDZlKzAxICAxLjgwMDc2M2UrMDFcbkdlbmRlciAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgLTMuMDgxNjEyZSswMCAgMS4yMTM4ODBlKzAwXG5SYWNlICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA0LjQ3NjkzMGUtMDEgIDIuMzMyMDY0ZSswMFxuTWFyaXRhbF9TdGF0dXMgICAgICAgICAgICAgICAgICAgICAgICAtNC4xNzM0MzJlKzAwIC0yLjU3ODQyNGUrMDBcblJhdGlvX2luY29tZV9wb3ZlcnR5ICAgICAgICAgICAgICAgICAgLTEuODc4ODEzZSswMCAtMi44MTQ3MzNlLTAxXG5CTUkgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA0LjI2MDQ4M2UtMDIgIDMuNjc3MDc1ZS0wMVxuc2xlZXBfZGlzb3JkZXJzICAgICAgICAgICAgICAgICAgICAgICAtNS40ODc4MTdlKzAwIC01LjI3MjI5NWUtMDFcbnF1aXRfc21va2luZyAgICAgICAgICAgICAgICAgICAgICAgICAgIDIuMzUwNzU3ZS0wNCAgMy42NzM5ODdlLTA0XG5BdmdfYWxjb2hvbF9kcmlua3MgICAgICAgICAgICAgICAgICAgICAyLjYzMjkyNWUrMDAgIDguNTQ5MDM3ZSswMFxuaGFkX2NhbmNlciAgICAgICAgICAgICAgICAgICAgICAgICAgICAtMS44NDUzNDFlKzAxIC0xLjExNjU1N2UrMDFcblxuQ2FsbDpcbnN2eWdsbShmb3JtdWxhID0gUGhlbm90eXBpY19BZ2UgfiBsbihwZXJmbHVvcm9vY3RhbmVfc3VsZm9uaWNfYWNpZCksIFxuICAgIGRlc2lnbiA9IGRlcywgZmFtaWx5ID0gXCJnYXVzc2lhblwiLCBkYXRhID0gRnVsbGRhdF9QaGVubylcblxuU3VydmV5IGRlc2lnbjpcbnN2eWRlc2lnbihpZCA9IH5wc3UsIHN0cmF0YSA9IH5TdHJhdGEsIHdlaWdodHMgPSB+d2VpZ2h0XzIsIG5lc3QgPSBUUlVFLCBcbiAgICBkYXRhID0gRnVsbGRhdF9QaGVubylcblxuQ29lZmZpY2llbnRzOlxuICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIEVzdGltYXRlIFN0ZC4gRXJyb3IgdCB2YWx1ZSBQcig+fHR8KSAgICBcbihJbnRlcmNlcHQpICAgICAgICAgICAgICAgICAgICAgICAgMzkuOTMwMCAgICAgMC42MTU4ICA2NC44MzggIDwgMmUtMTYgKioqXG5sbihwZXJmbHVvcm9vY3RhbmVfc3VsZm9uaWNfYWNpZCkgICAyLjQzNTAgICAgIDAuMjU2MCAgIDkuNTEzIDIuODZlLTE2ICoqKlxuLS0tXG5TaWduaWYuIGNvZGVzOiAgMCDigJgqKirigJkgMC4wMDEg4oCYKirigJkgMC4wMSDigJgq4oCZIDAuMDUg4oCYLuKAmSAwLjEg4oCYIOKAmSAxXG5cbihEaXNwZXJzaW9uIHBhcmFtZXRlciBmb3IgZ2F1c3NpYW4gZmFtaWx5IHRha2VuIHRvIGJlIDM2OC4xODQxKVxuXG5OdW1iZXIgb2YgRmlzaGVyIFNjb3JpbmcgaXRlcmF0aW9uczogMlxuXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDIuNSAlICAgOTcuNSAlXG4oSW50ZXJjZXB0KSAgICAgICAgICAgICAgICAgICAgICAgMzguNzEwNTAxIDQxLjE0OTU5XG5sbihwZXJmbHVvcm9vY3RhbmVfc3VsZm9uaWNfYWNpZCkgIDEuOTI4MDY5ICAyLjk0MTg1XG5cbkNhbGw6XG5zdnlnbG0oZm9ybXVsYSA9IFBoZW5vdHlwaWNfQWdlIH4gbG4ocGVyZmx1b3Jvb2N0YW5lX3N1bGZvbmljX2FjaWQpICsgXG4gICAgR2VuZGVyICsgUmFjZSArIE1hcml0YWxfU3RhdHVzICsgUmF0aW9faW5jb21lX3BvdmVydHksIGRlc2lnbiA9IGRlcywgXG4gICAgZmFtaWx5ID0gXCJnYXVzc2lhblwiLCBkYXRhID0gRnVsbGRhdF9QaGVubylcblxuU3VydmV5IGRlc2lnbjpcbnN2eWRlc2lnbihpZCA9IH5wc3UsIHN0cmF0YSA9IH5TdHJhdGEsIHdlaWdodHMgPSB+d2VpZ2h0XzIsIG5lc3QgPSBUUlVFLCBcbiAgICBkYXRhID0gRnVsbGRhdF9QaGVubylcblxuQ29lZmZpY2llbnRzOlxuICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIEVzdGltYXRlIFN0ZC4gRXJyb3IgdCB2YWx1ZSBQcig+fHR8KSAgICBcbihJbnRlcmNlcHQpICAgICAgICAgICAgICAgICAgICAgICAgNDMuODQxOCAgICAgMS42ODUyICAyNi4wMTYgIDwgMmUtMTYgKioqXG5sbihwZXJmbHVvcm9vY3RhbmVfc3VsZm9uaWNfYWNpZCkgICAyLjM3MTAgICAgIDAuMjc2MSAgIDguNTg2IDUuMjhlLTE0ICoqKlxuR2VuZGVyICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMC43MTg3ICAgICAwLjQ2OTAgICAxLjUzMiAgIDAuMTI4MiAgICBcblJhY2UgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDEuMTYxMyAgICAgMC4xOTMwICAgNi4wMTYgMi4yMWUtMDggKioqXG5NYXJpdGFsX1N0YXR1cyAgICAgICAgICAgICAgICAgICAgIC0yLjk3MDkgICAgIDAuNDAyNCAgLTcuMzgyIDIuNzRlLTExICoqKlxuUmF0aW9faW5jb21lX3BvdmVydHkgICAgICAgICAgICAgICAtMC40NjA3ICAgICAwLjE4MzkgIC0yLjUwNSAgIDAuMDEzNyAqICBcbi0tLVxuU2lnbmlmLiBjb2RlczogIDAg4oCYKioq4oCZIDAuMDAxIOKAmCoq4oCZIDAuMDEg4oCYKuKAmSAwLjA1IOKAmC7igJkgMC4xIOKAmCDigJkgMVxuXG4oRGlzcGVyc2lvbiBwYXJhbWV0ZXIgZm9yIGdhdXNzaWFuIGZhbWlseSB0YWtlbiB0byBiZSAzMjcuOClcblxuTnVtYmVyIG9mIEZpc2hlciBTY29yaW5nIGl0ZXJhdGlvbnM6IDJcblxuICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMi41ICUgICAgICA5Ny41ICVcbihJbnRlcmNlcHQpICAgICAgICAgICAgICAgICAgICAgICA0MC41MDM0OTQ3IDQ3LjE4MDE5MjQzXG5sbihwZXJmbHVvcm9vY3RhbmVfc3VsZm9uaWNfYWNpZCkgIDEuODIzOTQ0MyAgMi45MTc5NzE0OVxuR2VuZGVyICAgICAgICAgICAgICAgICAgICAgICAgICAgIC0wLjIxMDQzNjUgIDEuNjQ3NzgyMTlcblJhY2UgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMC43Nzg5MjY0ICAxLjU0MzcxNTM0XG5NYXJpdGFsX1N0YXR1cyAgICAgICAgICAgICAgICAgICAgLTMuNzY4MTMwMiAtMi4xNzM2NzU3NFxuUmF0aW9faW5jb21lX3BvdmVydHkgICAgICAgICAgICAgIC0wLjgyNTA0MDggLTAuMDk2MzM4OTdcblxuQ2FsbDpcbnN2eWdsbShmb3JtdWxhID0gUGhlbm90eXBpY19BZ2UgfiBsbihwZXJmbHVvcm9vY3RhbmVfc3VsZm9uaWNfYWNpZCkgKyBcbiAgICBHZW5kZXIgKyBSYWNlICsgTWFyaXRhbF9TdGF0dXMgKyBSYXRpb19pbmNvbWVfcG92ZXJ0eSArIEJNSSArIFxuICAgIHNsZWVwX2Rpc29yZGVycyArIFNtb2tlZF9kYXlzICsgbm93X3Ntb2tlICsgcXVpdF9zbW9raW5nICsgXG4gICAgQXZnX2FsY29ob2xfZHJpbmtzICsgaGFkX2NhbmNlciwgZGVzaWduID0gZGVzLCBmYW1pbHkgPSBcImdhdXNzaWFuXCIsIFxuICAgIGRhdGEgPSBGdWxsZGF0X1BoZW5vKVxuXG5TdXJ2ZXkgZGVzaWduOlxuc3Z5ZGVzaWduKGlkID0gfnBzdSwgc3RyYXRhID0gflN0cmF0YSwgd2VpZ2h0cyA9IH53ZWlnaHRfMiwgbmVzdCA9IFRSVUUsIFxuICAgIGRhdGEgPSBGdWxsZGF0X1BoZW5vKVxuXG5Db2VmZmljaWVudHM6ICgyIG5vdCBkZWZpbmVkIGJlY2F1c2Ugb2Ygc2luZ3VsYXJpdGllcylcbiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIEVzdGltYXRlIFN0ZC4gRXJyb3IgdCB2YWx1ZSBQcig+fHR8KSAgICBcbihJbnRlcmNlcHQpICAgICAgICAgICAgICAgICAgICAgICAgNy4wMjhlKzAxICA2LjM3MmUrMDAgIDExLjAyOCAgPCAyZS0xNiAqKipcbmxuKHBlcmZsdW9yb29jdGFuZV9zdWxmb25pY19hY2lkKSAgMy41NjRlKzAwICA3LjU3NGUtMDEgICA0LjcwNiAxLjA2ZS0wNSAqKipcbkdlbmRlciAgICAgICAgICAgICAgICAgICAgICAgICAgICAgOC44NzVlLTAxICAxLjE4OGUrMDAgICAwLjc0NyAgMC40NTcxNyAgICBcblJhY2UgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgOS45MjJlLTAxICA0LjQ0NmUtMDEgICAyLjIzMiAgMC4wMjg0NyAqICBcbk1hcml0YWxfU3RhdHVzICAgICAgICAgICAgICAgICAgICAtMy4zMzBlKzAwICA0LjAyMmUtMDEgIC04LjI3OCAyLjUwZS0xMiAqKipcblJhdGlvX2luY29tZV9wb3ZlcnR5ICAgICAgICAgICAgICAtMS4xNTZlKzAwICAzLjgyN2UtMDEgIC0zLjAyMCAgMC4wMDM0MCAqKiBcbkJNSSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMi4zOTNlLTAxICA3Ljk2NmUtMDIgICAzLjAwNSAgMC4wMDM1NiAqKiBcbnNsZWVwX2Rpc29yZGVycyAgICAgICAgICAgICAgICAgICAtMy4yNTNlKzAwICAxLjI0NmUrMDAgIC0yLjYwOSAgMC4wMTA4NCAqICBcbnF1aXRfc21va2luZyAgICAgICAgICAgICAgICAgICAgICAgMi45MDdlLTA0ICAzLjA2NGUtMDUgICA5LjQ4NyAxLjA5ZS0xNCAqKipcbkF2Z19hbGNvaG9sX2RyaW5rcyAgICAgICAgICAgICAgICAgNS4wMDRlKzAwICAxLjQ4MmUrMDAgICAzLjM3NiAgMC4wMDExNCAqKiBcbmhhZF9jYW5jZXIgICAgICAgICAgICAgICAgICAgICAgICAtMS40NDJlKzAxICAxLjgyN2UrMDAgIC03Ljg5MCAxLjQzZS0xMSAqKipcbi0tLVxuU2lnbmlmLiBjb2RlczogIDAg4oCYKioq4oCZIDAuMDAxIOKAmCoq4oCZIDAuMDEg4oCYKuKAmSAwLjA1IOKAmC7igJkgMC4xIOKAmCDigJkgMVxuXG4oRGlzcGVyc2lvbiBwYXJhbWV0ZXIgZm9yIGdhdXNzaWFuIGZhbWlseSB0YWtlbiB0byBiZSAyOTcuMDk1MylcblxuTnVtYmVyIG9mIEZpc2hlciBTY29yaW5nIGl0ZXJhdGlvbnM6IDJcblxuICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMi41ICUgICAgICAgIDk3LjUgJVxuKEludGVyY2VwdCkgICAgICAgICAgICAgICAgICAgICAgICA1Ljc1OTQ0MWUrMDEgIDguMjk2MjU1ZSswMVxubG4ocGVyZmx1b3Jvb2N0YW5lX3N1bGZvbmljX2FjaWQpICAyLjA1NjQyMWUrMDAgIDUuMDcxNTkyZSswMFxuR2VuZGVyICAgICAgICAgICAgICAgICAgICAgICAgICAgIC0xLjQ3NjY1NGUrMDAgIDMuMjUxNTY2ZSswMFxuUmFjZSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAxLjA3MjcxM2UtMDEgIDEuODc3MjE0ZSswMFxuTWFyaXRhbF9TdGF0dXMgICAgICAgICAgICAgICAgICAgIC00LjEzMDQ3M2UrMDAgLTIuNTI5MjEwZSswMFxuUmF0aW9faW5jb21lX3BvdmVydHkgICAgICAgICAgICAgIC0xLjkxNzI2M2UrMDAgLTMuOTM5NDk1ZS0wMVxuQk1JICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA4LjA3ODQwNWUtMDIgIDMuOTc4OTY4ZS0wMVxuc2xlZXBfZGlzb3JkZXJzICAgICAgICAgICAgICAgICAgIC01LjczMzczNWUrMDAgLTcuNzE1ODU2ZS0wMVxucXVpdF9zbW9raW5nICAgICAgICAgICAgICAgICAgICAgICAyLjI5Njg4MmUtMDQgIDMuNTE2NjE1ZS0wNFxuQXZnX2FsY29ob2xfZHJpbmtzICAgICAgICAgICAgICAgICAyLjA1MzY4N2UrMDAgIDcuOTU1MTcwZSswMFxuaGFkX2NhbmNlciAgICAgICAgICAgICAgICAgICAgICAgIC0xLjgwNTE2MWUrMDEgLTEuMDc3ODY0ZSswMVxuIn0= -->
Call: svyglm(formula = Phenotypic_Age ~ perfluorooctane_sulfonic_acid_comment, design = des, family = “gaussian”, data = Fulldat_Pheno)
Survey design: svydesign(id = ~psu, strata = ~Strata, weights = ~weight_2, nest = TRUE, data = Fulldat_Pheno)
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 45.1300 0.2921 154.485 <2e-16 ***
perfluorooctane_sulfonic_acid_comment 8.2645 4.1835 1.975 0.0505 .
— Signif. codes: 0 ‘’ 0.001 ‘’ 0.01 ‘’ 0.05
‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 373.6055)
Number of Fisher Scoring iterations: 2
2.5 % 97.5 %
(Intercept) 44.55146084 45.70846 perfluorooctane_sulfonic_acid_comment -0.02003231 16.54910
Call: svyglm(formula = Phenotypic_Age ~ perfluorooctane_sulfonic_acid_comment + Gender + Race + Marital_Status + Ratio_income_poverty, design = des, family = “gaussian”, data = Fulldat_Pheno)
Survey design: svydesign(id = ~psu, strata = ~Strata, weights = ~weight_2, nest = TRUE, data = Fulldat_Pheno)
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 49.6362 1.6016 30.991 < 2e-16
perfluorooctane_sulfonic_acid_comment 9.6344 5.2158 1.847 0.0673 .
Gender -0.3451 0.4578 -0.754 0.4525
Race 1.3338 0.1969 6.773 5.80e-10 Marital_Status -2.9403
0.3994 -7.362 3.03e-11 *** Ratio_income_poverty -0.3481 0.1821 -1.911
0.0585 .
— Signif. codes: 0 ‘’ 0.001 ‘’ 0.01 ‘’ 0.05
‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 332.5743)
Number of Fisher Scoring iterations: 2
2.5 % 97.5 %
(Intercept) 46.4633496 52.80905212 perfluorooctane_sulfonic_acid_comment -0.6980838 19.96687482 Gender -1.2519299 0.56172801 Race 0.9437016 1.72397764 Marital_Status -3.7314691 -2.14916351 Ratio_income_poverty -0.7088672 0.01268752
Call: svyglm(formula = Phenotypic_Age ~ perfluorooctane_sulfonic_acid_comment + Gender + Race + Marital_Status + Ratio_income_poverty + BMI + sleep_disorders + Smoked_days + now_smoke + quit_smoking + Avg_alcohol_drinks + had_cancer, design = des, family = “gaussian”, data = Fulldat_Pheno)
Survey design: svydesign(id = ~psu, strata = ~Strata, weights = ~weight_2, nest = TRUE, data = Fulldat_Pheno)
Coefficients: (2 not defined because of singularities) Estimate Std.
Error t value Pr(>|t|)
(Intercept) 7.928e+01 5.907e+00 13.421 < 2e-16
perfluorooctane_sulfonic_acid_comment 1.955e+00 8.065e+00 0.242
0.809060
Gender -9.339e-01 1.079e+00 -0.865 0.389401
Race 1.390e+00 4.734e-01 2.936 0.004350 Marital_Status
-3.376e+00 4.007e-01 -8.426 1.29e-12 Ratio_income_poverty
-1.080e+00 4.013e-01 -2.692 0.008669 BMI 2.052e-01 8.167e-02
2.512 0.014037 *
sleep_disorders -3.008e+00 1.246e+00 -2.414 0.018112 *
quit_smoking 3.012e-04 3.324e-05 9.063 7.34e-14
Avg_alcohol_drinks 5.591e+00 1.486e+00 3.762 0.000322
had_cancer -1.481e+01 1.831e+00 -8.090 5.83e-12 *** — Signif. codes: 0
‘’ 0.001 ‘’ 0.01 ‘’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 307.6054)
Number of Fisher Scoring iterations: 2
2.5 % 97.5 %
(Intercept) 6.752297e+01 9.103943e+01 perfluorooctane_sulfonic_acid_comment -1.409706e+01 1.800763e+01 Gender -3.081612e+00 1.213880e+00 Race 4.476930e-01 2.332064e+00 Marital_Status -4.173432e+00 -2.578424e+00 Ratio_income_poverty -1.878813e+00 -2.814733e-01 BMI 4.260483e-02 3.677075e-01 sleep_disorders -5.487817e+00 -5.272295e-01 quit_smoking 2.350757e-04 3.673987e-04 Avg_alcohol_drinks 2.632925e+00 8.549037e+00 had_cancer -1.845341e+01 -1.116557e+01
Call: svyglm(formula = Phenotypic_Age ~ ln(perfluorooctane_sulfonic_acid), design = des, family = “gaussian”, data = Fulldat_Pheno)
Survey design: svydesign(id = ~psu, strata = ~Strata, weights = ~weight_2, nest = TRUE, data = Fulldat_Pheno)
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 39.9300 0.6158 64.838 < 2e-16
ln(perfluorooctane_sulfonic_acid) 2.4350 0.2560 9.513 2.86e-16
— Signif. codes: 0 ‘’ 0.001 ‘’ 0.01
‘’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 368.1841)
Number of Fisher Scoring iterations: 2
2.5 % 97.5 %
(Intercept) 38.710501 41.14959 ln(perfluorooctane_sulfonic_acid) 1.928069 2.94185
Call: svyglm(formula = Phenotypic_Age ~ ln(perfluorooctane_sulfonic_acid) + Gender + Race + Marital_Status + Ratio_income_poverty, design = des, family = “gaussian”, data = Fulldat_Pheno)
Survey design: svydesign(id = ~psu, strata = ~Strata, weights = ~weight_2, nest = TRUE, data = Fulldat_Pheno)
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 43.8418 1.6852 26.016 < 2e-16
ln(perfluorooctane_sulfonic_acid) 2.3710 0.2761 8.586 5.28e-14
Gender 0.7187 0.4690 1.532 0.1282
Race 1.1613 0.1930 6.016 2.21e-08 Marital_Status -2.9709
0.4024 -7.382 2.74e-11 Ratio_income_poverty -0.4607
0.1839 -2.505 0.0137 *
— Signif. codes: 0 ‘’ 0.001 ‘’ 0.01 ‘’ 0.05
‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 327.8)
Number of Fisher Scoring iterations: 2
2.5 % 97.5 %
(Intercept) 40.5034947 47.18019243 ln(perfluorooctane_sulfonic_acid) 1.8239443 2.91797149 Gender -0.2104365 1.64778219 Race 0.7789264 1.54371534 Marital_Status -3.7681302 -2.17367574 Ratio_income_poverty -0.8250408 -0.09633897
Call: svyglm(formula = Phenotypic_Age ~ ln(perfluorooctane_sulfonic_acid) + Gender + Race + Marital_Status + Ratio_income_poverty + BMI + sleep_disorders + Smoked_days + now_smoke + quit_smoking + Avg_alcohol_drinks + had_cancer, design = des, family = “gaussian”, data = Fulldat_Pheno)
Survey design: svydesign(id = ~psu, strata = ~Strata, weights = ~weight_2, nest = TRUE, data = Fulldat_Pheno)
Coefficients: (2 not defined because of singularities) Estimate Std.
Error t value Pr(>|t|)
(Intercept) 7.028e+01 6.372e+00 11.028 < 2e-16
ln(perfluorooctane_sulfonic_acid) 3.564e+00 7.574e-01 4.706 1.06e-05
Gender 8.875e-01 1.188e+00 0.747 0.45717
Race 9.922e-01 4.446e-01 2.232 0.02847 *
Marital_Status -3.330e+00 4.022e-01 -8.278 2.50e-12
Ratio_income_poverty -1.156e+00 3.827e-01 -3.020 0.00340 BMI
2.393e-01 7.966e-02 3.005 0.00356 sleep_disorders -3.253e+00
1.246e+00 -2.609 0.01084 *
quit_smoking 2.907e-04 3.064e-05 9.487 1.09e-14
Avg_alcohol_drinks 5.004e+00 1.482e+00 3.376 0.00114 ** had_cancer
-1.442e+01 1.827e+00 -7.890 1.43e-11 *** — Signif. codes: 0
‘’ 0.001 ‘’ 0.01 ‘’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 297.0953)
Number of Fisher Scoring iterations: 2
2.5 % 97.5 %
(Intercept) 5.759441e+01 8.296255e+01 ln(perfluorooctane_sulfonic_acid) 2.056421e+00 5.071592e+00 Gender -1.476654e+00 3.251566e+00 Race 1.072713e-01 1.877214e+00 Marital_Status -4.130473e+00 -2.529210e+00 Ratio_income_poverty -1.917263e+00 -3.939495e-01 BMI 8.078405e-02 3.978968e-01 sleep_disorders -5.733735e+00 -7.715856e-01 quit_smoking 2.296882e-04 3.516615e-04 Avg_alcohol_drinks 2.053687e+00 7.955170e+00 had_cancer -1.805161e+01 -1.077864e+01
<!-- rnb-output-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
# run cubic spline model for non-linear regression(Figure 2)
#Perfluorohexane_sulfonic_acid
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxubGlicmFyeShcXHJjc3NjaVxcKVxucmNzc2NpX2xpbmVhcihkYXRhID0gRnVsbGRhdF9QaGVubywgeSA9IFxcUGhlbm90eXBpY19BZ2VcXCwgeCA9IFxcUGVyZmx1b3JvaGV4YW5lX3N1bGZvbmljX2FjaWRcXCwgY292cz1jKFxcR2VuZGVyXFwsIFxcUmFjZVxcLCBcXEJNSVxcLFxcaGFkX2NhbmNlclxcKSwgcHJvYiA9IDAuMSxyZWYuemVybz1GQUxTRSxcbiAgICAgICAgICAgICAgZmlsZXBhdGggPSBcXEM6L1VzZXJzL0hLVVNDTS9Eb2N1bWVudHNcXClcbmBgYFxuYGBgIn0= -->
```r
```r
library(\rcssci\)
rcssci_linear(data = Fulldat_Pheno, y = \Phenotypic_Age\, x = \Perfluorohexane_sulfonic_acid\, covs=c(\Gender\, \Race\, \BMI\,\had_cancer\), prob = 0.1,ref.zero=FALSE,
filepath = \C:/Users/HKUSCM/Documents\)
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
#Perfluorononanoic_acid
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxubGlicmFyeShcXHJjc3NjaVxcKVxucmNzc2NpX2xpbmVhcihkYXRhID0gRnVsbGRhdF9QaGVubywgeSA9IFxcUGhlbm90eXBpY19BZ2VcXCwgeCA9IFxcUGVyZmx1b3Jvbm9uYW5vaWNfYWNpZFxcLCBjb3ZzPWMoXFxHZW5kZXJcXCwgXFxSYWNlXFwsIFxcQk1JXFwsXFxoYWRfY2FuY2VyXFwpLCBwcm9iID0gMC4xLHJlZi56ZXJvPUZBTFNFLFxuICAgICAgICAgICAgICBmaWxlcGF0aCA9IFxcQzovVXNlcnMvSEtVU0NNL0RvY3VtZW50c1xcKVxuYGBgXG5gYGAifQ== -->
```r
```r
library(\rcssci\)
rcssci_linear(data = Fulldat_Pheno, y = \Phenotypic_Age\, x = \Perfluorononanoic_acid\, covs=c(\Gender\, \Race\, \BMI\,\had_cancer\), prob = 0.1,ref.zero=FALSE,
filepath = \C:/Users/HKUSCM/Documents\)
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
#perfluorooctanoic_acid
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxubGlicmFyeShcXHJjc3NjaVxcKVxucmNzc2NpX2xpbmVhcihkYXRhID0gRnVsbGRhdF9QaGVubywgeSA9IFxcUGhlbm90eXBpY19BZ2VcXCwgeCA9IFxccGVyZmx1b3Jvb2N0YW5vaWNfYWNpZFxcLCBjb3ZzPWMoXFxHZW5kZXJcXCwgXFxSYWNlXFwsIFxcQk1JXFwsXFxoYWRfY2FuY2VyXFwpLCBwcm9iID0gMC4xLHJlZi56ZXJvPUZBTFNFLFxuICAgICAgICAgICAgICBmaWxlcGF0aCA9IFxcQzovVXNlcnMvSEtVU0NNL0RvY3VtZW50c1xcKVxuYGBgXG5gYGAifQ== -->
```r
```r
library(\rcssci\)
rcssci_linear(data = Fulldat_Pheno, y = \Phenotypic_Age\, x = \perfluorooctanoic_acid\, covs=c(\Gender\, \Race\, \BMI\,\had_cancer\), prob = 0.1,ref.zero=FALSE,
filepath = \C:/Users/HKUSCM/Documents\)
<!-- rnb-source-end -->
<!-- rnb-chunk-end -->
<!-- rnb-text-begin -->
#perfluorooctane_sulfonic_acid
<!-- rnb-text-end -->
<!-- rnb-chunk-begin -->
<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxubGlicmFyeShcXHJjc3NjaVxcKVxucmNzc2NpX2xpbmVhcihkYXRhID0gRnVsbGRhdF9QaGVubywgeSA9IFxcUGhlbm90eXBpY19BZ2VcXCwgeCA9IFxccGVyZmx1b3Jvb2N0YW5lX3N1bGZvbmljX2FjaWRcXCwgY292cz1jKFxcR2VuZGVyXFwsIFxcUmFjZVxcLCBcXEJNSVxcLFxcaGFkX2NhbmNlclxcKSwgcHJvYiA9IDAuMSxyZWYuemVybz1GQUxTRSxcbiAgICAgICAgICAgICAgZmlsZXBhdGggPSBcXEM6L1VzZXJzL0hLVVNDTS9Eb2N1bWVudHNcXClcbmBgYFxuYGBgIn0= -->
```r
```r
library(\rcssci\)
rcssci_linear(data = Fulldat_Pheno, y = \Phenotypic_Age\, x = \perfluorooctane_sulfonic_acid\, covs=c(\Gender\, \Race\, \BMI\,\had_cancer\), prob = 0.1,ref.zero=FALSE,
filepath = \C:/Users/HKUSCM/Documents\)
```