L1_Merged_first_HPC_PC-1:50-5

1. load libraries

2. Load Seurat Object

#Load Seurat Object merged from cell lines and a control(PBMC) after filtration
load("All_T_cells_Merged_filtered_Mono_using_clusters.Robj")

All_samples_Merged <- filtered_data
 All_samples_Merged
## An object of class Seurat 
## 62626 features across 46976 samples within 6 assays 
## Active assay: SCT (25902 features, 3000 variable features)
##  3 layers present: counts, data, scale.data
##  5 other assays present: RNA, ADT, prediction.score.celltype.l1, prediction.score.celltype.l2, prediction.score.celltype.l3
##  4 dimensional reductions calculated: pca, umap, integrated_dr, ref.umap
 rm(filtered_data)

3. QC

Idents(object = All_samples_Merged) <- "cell_line"  


All_samples_Merged[["percent.rb"]] <- PercentageFeatureSet(All_samples_Merged, 
                                                           pattern = "^RP[SL]")

VlnPlot(All_samples_Merged, features = c("nFeature_RNA", 
                                         "nCount_RNA", 
                                         "percent.mt",
                                         "percent.rb"), 
                            ncol = 4, pt.size = 0.1) & 
              theme(plot.title = element_text(size=10))

FeatureScatter(All_samples_Merged, feature1 = "percent.mito", 
                                  feature2 = "percent.rb")

FeatureScatter(All_samples_Merged, 
               feature1 = "nCount_RNA", 
               feature2 = "nFeature_RNA") +
  geom_smooth(method = 'lm')
## `geom_smooth()` using formula = 'y ~ x'

##FeatureScatter is typically used to visualize feature-feature relationships ##for anything calculated by the object, ##i.e. columns in object metadata, PC scores etc.

FeatureScatter(All_samples_Merged, 
               feature1 = "nCount_RNA", 
               feature2 = "percent.mito")+
  geom_smooth(method = 'lm')
## `geom_smooth()` using formula = 'y ~ x'

FeatureScatter(All_samples_Merged, 
               feature1 = "nCount_RNA", 
               feature2 = "nFeature_RNA")+
  geom_smooth(method = 'lm')
## `geom_smooth()` using formula = 'y ~ x'

Assign Cell-Cycle Scores

## Warning: The following features are not present in the object: MLF1IP, not
## searching for symbol synonyms
## Warning: The following features are not present in the object: FAM64A, HN1, not
## searching for symbol synonyms

4. Normalize data

# Apply SCTransform
All_samples_Merged <- SCTransform(All_samples_Merged, 
                                  vars.to.regress = c("percent.rb","percent.mito", "CC.Difference"), 
                                  verbose = TRUE)
## Running SCTransform on assay: RNA
## vst.flavor='v2' set. Using model with fixed slope and excluding poisson genes.
## Calculating cell attributes from input UMI matrix: log_umi
## Variance stabilizing transformation of count matrix of size 25901 by 46976
## Model formula is y ~ log_umi
## Get Negative Binomial regression parameters per gene
## Using 2000 genes, 5000 cells
## Found 484 outliers - those will be ignored in fitting/regularization step
## Second step: Get residuals using fitted parameters for 25901 genes
## Computing corrected count matrix for 25901 genes
## Calculating gene attributes
## Wall clock passed: Time difference of 2.289435 mins
## Determine variable features
## Regressing out percent.rb, percent.mito, CC.Difference
## Centering data matrix
## Place corrected count matrix in counts slot
## Warning: Different cells and/or features from existing assay SCT
## Set default assay to SCT

5. Perform PCA

Variables_genes <- All_samples_Merged@assays$SCT@var.features

# Exclude genes starting with "HLA-" or "Xist"
Variables_genes_after_exclusion <- Variables_genes[!grepl("^HLA-|^XIST|^TRBV|^TRAV", Variables_genes)]


# These are now standard steps in the Seurat workflow for visualization and clustering
All_samples_Merged <- RunPCA(All_samples_Merged,
                        features = Variables_genes_after_exclusion,
                        do.print = TRUE, 
                        pcs.print = 1:5, 
                        genes.print = 15,
                         npcs = 50)
## PC_ 1 
## Positive:  CCL17, TNFRSF4, CA2, SYT4, MIR155HG, SEC11C, EGFL6, C12orf75, IL2RA, CA10 
##     CCL5, IGHE, KRT7, PRG4, LTA, STC1, TIGIT, CD74, EEF1A2, ALOX5AP 
##     THY1, CFI, HDGFL3, MIIP, RANBP17, RXFP1, PHLDA2, ONECUT2, BACE2, HACD1 
## Negative:  CD7, XCL1, KIR3DL1, MALAT1, XCL2, LTB, KIR2DL3, CST7, CD52, RPS4Y1 
##     MT1G, KLRC1, IL7R, KIR2DL4, ESYT2, GIMAP7, IFITM1, TMSB4X, IFITM2, ID3 
##     SH3BGRL3, CXCR3, KRT81, GZMM, KIR3DL2, KRT86, MYO1E, CLEC2B, KLF2, KLRK1 
## PC_ 2 
## Positive:  CCL17, XCL1, CD7, KIR3DL1, XCL2, LTB, CST7, MT1G, KLRC1, KIR2DL4 
##     CA2, KIR2DL3, TNFRSF4, PLPP1, SPINT2, KRT81, CYBA, MATK, GZMM, KRT86 
##     ESYT2, HIST1H1B, MYO1E, EPCAM, SYT4, TRGV2, CORO1B, HIST1H4C, CXCR3, NKG7 
## Negative:  PPBP, CD74, MT2A, PAGE5, CD70, LMNA, TENM3, RPL22L1, LGALS3, STAT1 
##     RBPMS, CCDC50, B2M, FABP5, IQCG, GSTP1, PPP2R2B, ANXA1, MACROD2, SPOCK1 
##     CTAG2, PIM2, FTL, SLC7A11-AS1, BASP1, GAPDH, LGALS1, VIM, TNFSF10, AHNAK 
## PC_ 3 
## Positive:  RPS4Y1, MALAT1, IL7R, BTG1, PNRC1, CCL17, LINC00861, TCF7, GIMAP7, SELL 
##     SARAF, B2M, GIMAP5, PIK3IP1, ZFP36, FTH1, KLF2, TRBC2, CCR7, SESN3 
##     YPEL3, PCED1B-AS1, CCL5, TRBC1, GIMAP4, PABPC1, RGCC, ZFP36L2, FYB1, ITM2B 
## Negative:  PPBP, XCL1, KRT1, GAPDH, CD74, ACTB, KIR3DL1, XCL2, FABP5, MT2A 
##     RPL22L1, HIST1H4C, RPS2, TUBA1B, TUBB, C1QBP, KIR2DL3, TTC29, CST7, NME2 
##     GZMA, ACTG1, RPL13, NKG7, RPLP0, RPS15, FTL, RPS4X, RPLP1, PFN1 
## PC_ 4 
## Positive:  CCL17, PPBP, MT2A, CD7, CA2, CCL5, LTA, XCL1, MIR155HG, CD74 
##     CA10, MGST3, STC1, XCL2, MALAT1, KIR2DL3, RXFP1, FCER2, RANBP17, CFI 
##     KIR3DL1, AL590550.1, IQCG, RYR2, IGHE, THY1, IL7R, STAT1, MT1G, KLRC1 
## Negative:  EEF1A2, TNFRSF4, IL2RA, WFDC1, PHLDA2, FN1, MIIP, S100A4, KRT1, HIST1H1C 
##     S100A11, PXYLP1, RDH10, S100A6, DUSP4, GPAT3, TIGIT, CDKN1A, LGALS1, HOXC9 
##     TNFRSF18, CORO1B, GATA3, AL136456.1, CEP135, EGLN3, HIST1H2BK, TP73, PTGDR2, TMEM163 
## PC_ 5 
## Positive:  PPBP, RPS4Y1, FABP5, GSTP1, CD7, ENPP2, DNAJC12, AC068672.2, MGST1, IL7R 
##     CSMD1, LINC00861, SLC7A11-AS1, TCF7, FCER2, IL2RA, RDH10, CCDC50, EEF1A2, FAM162A 
##     HSP90B1, HSPD1, HSPE1, C1QBP, MIIP, SELL, EIF5A, PPID, SPINK6, FTH1 
## Negative:  S100A4, MT2A, GZMA, LGALS3, CD74, KRT1, CCL17, S100A6, GZMB, NKG7 
##     CCL1, IL32, CSF2, SERPINE1, TNFSF10, NCR3, CCL4, TSC22D3, TTC29, VIM 
##     PTGIS, MAL, SH3BGRL3, AC114977.1, CD52, RYR2, S100A11, CYP1B1, LMNA, PLD1
# determine dimensionality of the data
ElbowPlot(All_samples_Merged, ndims = 50)

Perform PCA TEST

library(ggplot2)
library(RColorBrewer)  

# Assuming you have 10 different cell lines, generating a color palette with 10 colors
cell_line_colors <- brewer.pal(10, "Set3")

# Assuming All_samples_Merged$cell_line is a factor or character vector containing cell line names
data <- as.data.frame(table(All_samples_Merged$cell_line))
colnames(data) <- c("cell_line", "nUMI")  # Change column name to nUMI

ncells <- ggplot(data, aes(x = cell_line, y = nUMI, fill = cell_line)) + 
  geom_col() +
  theme_classic() +
  geom_text(aes(label = nUMI), 
            position = position_dodge(width = 0.9), 
            vjust = -0.25) +
  scale_fill_manual(values = cell_line_colors) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1),
        plot.title = element_text(hjust = 0.5)) +  # Adjust the title position
  ggtitle("Filtered cells per sample") +
  xlab("Cell lines") +  # Adjust x-axis label
  ylab("Frequency")    # Adjust y-axis label

print(ncells)

# TEST-1
# given that the output of RunPCA is "pca"
# replace "so" by the name of your seurat object

pct <- All_samples_Merged[["pca"]]@stdev / sum(All_samples_Merged[["pca"]]@stdev) * 100
cumu <- cumsum(pct) # Calculate cumulative percents for each PC
# Determine the difference between variation of PC and subsequent PC
co2 <- sort(which((pct[-length(pct)] - pct[-1]) > 0.1), decreasing = T)[1] + 1
# last point where change of % of variation is more than 0.1%. -> co2
co2
## [1] 21
# TEST-2
# get significant PCs
stdv <- All_samples_Merged[["pca"]]@stdev
sum.stdv <- sum(All_samples_Merged[["pca"]]@stdev)
percent.stdv <- (stdv / sum.stdv) * 100
cumulative <- cumsum(percent.stdv)
co1 <- which(cumulative > 90 & percent.stdv < 5)[1]
co2 <- sort(which((percent.stdv[1:length(percent.stdv) - 1] - 
                       percent.stdv[2:length(percent.stdv)]) > 0.1), 
              decreasing = T)[1] + 1
min.pc <- min(co1, co2)
min.pc
## [1] 21
# Create a dataframe with values
plot_df <- data.frame(pct = percent.stdv, 
           cumu = cumulative, 
           rank = 1:length(percent.stdv))

# Elbow plot to visualize 
  ggplot(plot_df, aes(cumulative, percent.stdv, label = rank, color = rank > min.pc)) + 
  geom_text() + 
  geom_vline(xintercept = 90, color = "grey") + 
  geom_hline(yintercept = min(percent.stdv[percent.stdv > 5]), color = "grey") +
  theme_bw()

6. Clustering

All_samples_Merged <- FindNeighbors(All_samples_Merged, 
                                dims = 1:50, 
                                verbose = FALSE)

# understanding resolution
All_samples_Merged <- FindClusters(All_samples_Merged, 
                                   resolution = c(0.4,0.5, 0.6, 0.7,0.8, 0.9, 1))
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 46976
## Number of edges: 1681420
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9549
## Number of communities: 17
## Elapsed time: 7 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 46976
## Number of edges: 1681420
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9465
## Number of communities: 20
## Elapsed time: 8 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 46976
## Number of edges: 1681420
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9392
## Number of communities: 23
## Elapsed time: 8 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 46976
## Number of edges: 1681420
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9322
## Number of communities: 24
## Elapsed time: 8 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 46976
## Number of edges: 1681420
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9255
## Number of communities: 27
## Elapsed time: 8 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 46976
## Number of edges: 1681420
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9189
## Number of communities: 29
## Elapsed time: 8 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 46976
## Number of edges: 1681420
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9135
## Number of communities: 30
## Elapsed time: 8 seconds
# non-linear dimensionality reduction --------------
All_samples_Merged <- RunUMAP(All_samples_Merged, 
                          dims = 1:50,
                          verbose = FALSE)
## Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
## To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
## This message will be shown once per session
# note that you can set `label = TRUE` or use the LabelClusters function to help label
# individual clusters
DimPlot(All_samples_Merged,group.by = "cell_line", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T)

DimPlot(All_samples_Merged,
        group.by = "SCT_snn_res.0.7", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T)

cluster_table <- table(Idents(All_samples_Merged))


barplot(cluster_table, main = "Number of Cells in Each Cluster", 
                      xlab = "Cluster", 
                      ylab = "Number of Cells", 
                      col = rainbow(length(cluster_table)))

print(cluster_table)
## 
##    0    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
## 4849 4152 3897 3695 3370 3214 2900 2561 2421 2177 2004 1842 1716 1223  827  792 
##   16   17   18   19   20   21   22   23   24   25   26   27   28   29 
##  650  636  528  518  517  510  499  346  278  245  207  197  112   93

7. Azimuth Annotation

InstallData("pbmcref")
## Warning: The following packages are already installed and will not be
## reinstalled: pbmcref
# The RunAzimuth function can take a Seurat object as input
All_samples_Merged <- RunAzimuth(All_samples_Merged, reference = "pbmcref")
## Warning: Overwriting miscellanous data for model
## Warning: Adding a dimensional reduction (refUMAP) without the associated assay
## being present
## Warning: Adding a dimensional reduction (refUMAP) without the associated assay
## being present
## detected inputs from HUMAN with id type Gene.name
## reference rownames detected HUMAN with id type Gene.name
## Normalizing query using reference SCT model
## Warning: 113 features of the features specified were not present in both the reference query assays. 
## Continuing with remaining 4887 features.
## Projecting cell embeddings
## Finding query neighbors
## Finding neighborhoods
## Finding anchors
##  Found 4803 anchors
## Finding integration vectors
## Finding integration vector weights
## Predicting cell labels
## Predicting cell labels
## Warning: Feature names cannot have underscores ('_'), replacing with dashes
## ('-')
## Predicting cell labels
## Warning: Feature names cannot have underscores ('_'), replacing with dashes
## ('-')
## 
## Integrating dataset 2 with reference dataset
## Finding integration vectors
## Integrating data
## Warning: Keys should be one or more alphanumeric characters followed by an
## underscore, setting key from integrated_dr_ to integrateddr_
## Computing nearest neighbors
## Running UMAP projection
## Warning in RunUMAP.default(object = neighborlist, reduction.model =
## reduction.model, : Number of neighbors between query and reference is not equal
## to the number of neighbors within reference
## 12:27:05 Read 46976 rows
## 12:27:05 Processing block 1 of 1
## 12:27:05 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 20
## 12:27:06 Initializing by weighted average of neighbor coordinates using 1 thread
## 12:27:06 Commencing optimization for 67 epochs, with 939520 positive edges
## 12:27:10 Finished
## Warning: No assay specified, setting assay as RNA by default.
## Projecting reference PCA onto query
## Finding integration vector weights
## Projecting back the query cells into original PCA space
## Finding integration vector weights
## Computing scores:
##     Finding neighbors of original query cells
##     Finding neighbors of transformed query cells
##     Computing query SNN
##     Determining bandwidth and computing transition probabilities
## Total elapsed time: 21.6214122772217
DimPlot(All_samples_Merged, group.by = "predicted.celltype.l2", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = F)

DimPlot(All_samples_Merged, group.by = "predicted.celltype.l2", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T)
## Warning: ggrepel: 1 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

8. Cell type annotation using ProjectTils

#Load reference atlas and query data
ref <- readRDS(file = "../../8-Cell_Lines_Test/CD4T_human_ref_v1.rds")

#Run Projection algorithm
query.projected <- Run.ProjecTILs(All_samples_Merged, ref = ref)
##   |                                                                              |                                                                      |   0%[1] "Using assay SCT for query"
## Pre-filtering cells with scGate...
## 
## ### Detected a total of 26819 pure 'Target' cells (57.09% of total)
## [1] "20157 out of 46976 ( 43% ) non-pure cells removed. Use filter.cells=FALSE to avoid pre-filtering"
## [1] "Aligning query to reference map for batch-correction..."
## Warning: Layer counts isn't present in the assay object[[assay]]; returning
## NULL
## Preparing PCA embeddings for objects...
## Warning: Number of dimensions changing from 50 to 20
## 
## Projecting corrected query onto Reference PCA space
## 
## Projecting corrected query onto Reference UMAP space
## Warning: Not all features provided are in this Assay object, removing the
## following feature(s): CD177, TASL, H1-4, H2AZ1, ELAPOR1, CCL3L3, POLR1F, AHSP,
## H1-2, H1-0, WARS1, H1-3, H2BC11, GPX1, H2AC6, IRAG2, H1-10, H3C10, IL22, ECEL1,
## H4C3
##   |                                                                              |======================================================================| 100%
## Creating slots functional.cluster and functional.cluster.conf in query object
#reference atlas
DimPlot(ref, label = T)

#Visualize projection
plot.projection(ref, query.projected, linesize = 0.5, pointsize = 0.5)

#Plot the predicted composition of the query in terms of reference T cell subtypes
plot.statepred.composition(ref, query.projected, metric = "Percent")

All_samples_Merged <- ProjecTILs.classifier(query = All_samples_Merged, ref = ref)
##   |                                                                              |                                                                      |   0%[1] "Using assay SCT for query"
## Pre-filtering cells with scGate...
## 
## ### Detected a total of 26819 pure 'Target' cells (57.09% of total)
## [1] "20157 out of 46976 ( 43% ) non-pure cells removed. Use filter.cells=FALSE to avoid pre-filtering"
## [1] "Aligning query to reference map for batch-correction..."
## Warning: Layer counts isn't present in the assay object[[assay]]; returning
## NULL
## Preparing PCA embeddings for objects...
## Warning: Number of dimensions changing from 50 to 20
## 
## Projecting corrected query onto Reference PCA space
## 
## Projecting corrected query onto Reference UMAP space
## Warning: Not all features provided are in this Assay object, removing the
## following feature(s): CD177, TASL, H1-4, H2AZ1, ELAPOR1, CCL3L3, POLR1F, AHSP,
## H1-2, H1-0, WARS1, H1-3, H2BC11, GPX1, H2AC6, IRAG2, H1-10, H3C10, IL22, ECEL1,
## H4C3
##   |                                                                              |======================================================================| 100%
## Creating slots functional.cluster and functional.cluster.conf in query object
DimPlot(All_samples_Merged, group.by = "functional.cluster", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T)

clusTree

library(clustree)
## Loading required package: ggraph
## 
## Attaching package: 'ggraph'
## The following object is masked from 'package:sp':
## 
##     geometry
clustree(All_samples_Merged, prefix = "SCT_snn_res.")

Azimuth Visualization

DimPlot(All_samples_Merged, group.by = "predicted.celltype.l1", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(All_samples_Merged, group.by = "predicted.celltype.l1", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = F)

DimPlot(All_samples_Merged, group.by = "predicted.celltype.l2", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)
## Warning: ggrepel: 7 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

DimPlot(All_samples_Merged, group.by = "predicted.celltype.l2", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = F)

DimPlot(All_samples_Merged, group.by = "predicted.celltype.l2", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)
## Warning: ggrepel: 7 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

table(All_samples_Merged$predicted.celltype.l2, All_samples_Merged$SCT_snn_res.0.4)
##                    
##                        0    1    2    3    4    5    6    7    8    9   10   11
##   ASDC                45    0    0    0    0   26    6    0    1    8    0    0
##   B intermediate       3    0    0    1    2    0    0    1    0    0    0    0
##   B memory             0    0    2    0    0    0    0    0    0    0    1    0
##   CD4 CTL              0    0    0    0    0    0    0    0    0    0    0    6
##   CD4 Naive            0    0    0  741    0    0    0    0    0    0    0    1
##   CD4 Proliferating 5217 2895 2416    0 3669 3843 2885 2921 1342 1019 1198    0
##   CD4 TCM            442  287 2814 4205   62  325   65    5    7  171    6   45
##   CD4 TEM              0    0   11   17    0    0    0    0    0    0    0   31
##   CD8 Naive            1    0    0   49    1  146   14    0    1   41    0  325
##   CD8 Proliferating    0    0    0    0    0    0    0    0    0    0    0    0
##   CD8 TCM              0   14  434   33    0    0    0    0    0    0    0  219
##   CD8 TEM              0    1    0    1    0    0    0    0    0    0    0  206
##   cDC2               456    0    1    0  827   36  201   84   95  435    7    0
##   dnT                  0    0    3   26    0    0    0    0    0    0    0    3
##   gdT                  0    0    0    0    0    0    0    0    0    0    0   13
##   HSPC                40    0    1    3  180    0  646  424  395    0    1    0
##   ILC                  0    0    0    1    0    0    0    0    0    0    0    0
##   MAIT                 0    0    0   12    0    0    0    0    0    0    0   46
##   NK                   0    0    0    0    0    0    0    0    0    0    0   91
##   NK Proliferating     4 2725   17    0  207   38   11    8    1   21    5    0
##   Platelet             0    0    0    1    0    0    0    0    0    0    0    0
##   Treg                 0    0    1  159    0    0    0    0    0    0    0    0
##                    
##                       12   13   14   15   16
##   ASDC                 0    0    0    3    0
##   B intermediate       5   35    1    1    1
##   B memory             0    1    0    0    0
##   CD4 CTL              0    0    0    0    0
##   CD4 Naive            0    5    0    0    0
##   CD4 Proliferating  355  124  230  152   87
##   CD4 TCM              3  126    1    7   79
##   CD4 TEM              0    0    0    0    0
##   CD8 Naive            0    3    1    1    0
##   CD8 Proliferating    0    1    0    0    0
##   CD8 TCM              0    1    0    0   17
##   CD8 TEM              0    0    0    0    0
##   cDC2                75    9    7   36   13
##   dnT                  0   22    0    0    0
##   gdT                  0    0    0    0    0
##   HSPC                46    4    0    2    0
##   ILC                  0    0    0    0    0
##   MAIT                 0    0    0    0    0
##   NK                   0    1    0    0    0
##   NK Proliferating    10   22    0    1    0
##   Platelet             0    1    0    0    0
##   Treg                 0   33    0    1    0

10.Save the Seurat object as an Robj file