class: center, middle, inverse, title-slide .title[ # Burnout Assessment Tool ] .subtitle[ ## Validity evidence for the workers secondary symptoms version and for the student short version ] .author[ ### Jorge Sinval, Wilmar B. Schaufeli, & Sílvia Silva ] .date[ ### 2024-04-04 ] --- exclude: true # BAT Symposium 2024 Map <iframe src = "assets/html/bat_symposium_2024_map.html" width = "150%" height = "100%" frameborder="0"></iframe> <style> .orange { color: #EB811B; } .white { color: #FFFFFF; } .red { color: #FF0000; } .green { color: #00FF00; } .kbd { display: inline-block; padding: .2em .5em; font-size: 0.75em; line-height: 1.75; color: #555; vertical-align: middle; background-color: #fcfcfc; border: solid 1px #ccc; border-bottom-color: #bbb; border-radius: 3px; box-shadow: inset 0 -1px 0 #bbb } </style>
--- exclude: true class: full-slide-fig layout: false --- class: inverse, center, middle # .white[Introduction] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- # Introduction: Burnout The Burnout Assessment Tool (BAT) is a recognized psychometric tool for measuring burnout. It introduces a novel approach to burnout as a multidimensional construct, consisting of two second-order dimensions — core and secondary symptoms. -- Previous studies have examined the psychometric properties of the BAT-23 and BAT-12 in Portugal. -- However, no research has yet explored the validity of the BAT-S (secondary symptoms version) in Portugal or the psychometric properties of the BAT-12 in Portuguese university students. --- # Introduction: Goal Assess the psychometric characteristics of the Portuguese versions of BAT-S in working professionals and BAT-12 in university students. -- More specifically, the study aims to: investigate the validity evidence based on the internal structure (dimensionality, reliability, and measurement invariance) as well as the validity evidence based on the relations to other variables. --- class: inverse, center, middle # .white[Method] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- # Method ## Sampling ### Students Full-time undergraduate medical students from a public university in Portugal were invited to participate in the study. ### Workers Workers of a Public Administration Organization and workers of various occupations (several companies). --- # Method ## Procedure ### Students Participants were invited via institutional emails to complete an online LimeSurvey containing sociodemographic, and academic questions. ### Workers Participants were invited completed an online LimeSurvey containing sociodemographic, and professional questions. --- # Method ## Psychometric instruments ### Students Burnout (BAT-12) (Schaufeli, Desart, and De Witte, 2020). DASS-21 (Lovibond and Lovibond, 1995). Compound Psychological Capital (CPC-12R) (Lorenz, Hagitte, and Prasath, 2022). University Student Engagement Inventory (USEI) (Marôco, Marôco, Campos, and Fredricks, 2016). FSozUK-6 (Kliem, Mö{ß}le, Rehbein, Hellmann, Zenger, and Brähler, 2015). Dropout Intention (Casanova, Gomes, Bernardo, Nú{n}ez, and Almeida, 2021). Satisfaction with Education (Casanova Gomes et al., 2021). ### Workers Burnout Assessment Tool — Secondary Symptoms (BAT-S) (Schaufeli Desart et al., 2020). Colleagues’ incivility (Matthews and Ritter, 2019). Clients’ incivility (Matthews and Ritter, 2019). Negative change from the Job Demands-Resources Questionnaire (Schaufeli, 2015). Bureaucracy (Red Tape) from the Job Demands-Resources Questionnaire (Schaufeli, 2015). ## Data Analysis Software: _R_ and _RStudio_ (R Core Team, 2023; Posit Team, 2023) CFA Reliability `\((\alpha; \omega; AVE)\)` Measurement invariance (MGCFA) Multidimensional polytomous Rasch model as a specific application of the multidimensional random coefficients multinomial logit model (MRCMLM) . Full SEM --- class: inverse, center, middle # .white[Results] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- class: inverse, center, middle # .white[Sample Characterization] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- class: inverse, center, middle # .white[Students] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- # Sample Characterization .scroll-box-26[ <table class="table" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;"> <caption>Medical Undergraduate Students</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:center;"> Female </th> <th style="text-align:center;"> Male </th> <th style="text-align:center;"> Overall </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> </td> <td style="text-align:center;"> (N=263) </td> <td style="text-align:center;"> (N=87) </td> <td style="text-align:center;"> (N=350) </td> </tr> <tr> <td style="text-align:left;"> Age (years) </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:left;"> Mean (SD) </td> <td style="text-align:center;"> 20.2 (4.17) </td> <td style="text-align:center;"> 20.3 (3.43) </td> <td style="text-align:center;"> 20.2 (3.99) </td> </tr> <tr> <td style="text-align:left;"> Median [Min, Max] </td> <td style="text-align:center;"> 19.0 [17.0, 49.0] </td> <td style="text-align:center;"> 19.0 [17.0, 34.0] </td> <td style="text-align:center;"> 19.0 [17.0, 49.0] </td> </tr> <tr> <td style="text-align:left;"> Moved from the city of origin </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:left;"> N </td> <td style="text-align:center;"> 155 (58.9%) </td> <td style="text-align:center;"> 53 (60.9%) </td> <td style="text-align:center;"> 208 (59.4%) </td> </tr> <tr> <td style="text-align:left;"> Y </td> <td style="text-align:center;"> 108 (41.1%) </td> <td style="text-align:center;"> 34 (39.1%) </td> <td style="text-align:center;"> 142 (40.6%) </td> </tr> </tbody> </table> ] --- class: inverse, center, middle # .white[Workers] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- # Sample Characterization ## Workers of a Public Administration Organization .scroll-box-20[ <table class="table" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;"> <caption>Workers of Public Administration Organization</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:center;"> Female </th> <th style="text-align:center;"> Male </th> <th style="text-align:center;"> Overall </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> </td> <td style="text-align:center;"> (N=263) </td> <td style="text-align:center;"> (N=104) </td> <td style="text-align:center;"> (N=367) </td> </tr> <tr> <td style="text-align:left;"> Age (years) </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:left;"> [20; 24] </td> <td style="text-align:center;"> 0 (0%) </td> <td style="text-align:center;"> 0 (0%) </td> <td style="text-align:center;"> 0 (0%) </td> </tr> <tr> <td style="text-align:left;"> [25; 29] </td> <td style="text-align:center;"> 4 (1.5%) </td> <td style="text-align:center;"> 1 (1.0%) </td> <td style="text-align:center;"> 5 (1.4%) </td> </tr> <tr> <td style="text-align:left;"> [30; 34] </td> <td style="text-align:center;"> 2 (0.8%) </td> <td style="text-align:center;"> 1 (1.0%) </td> <td style="text-align:center;"> 3 (0.8%) </td> </tr> <tr> <td style="text-align:left;"> [35; 39] </td> <td style="text-align:center;"> 18 (6.8%) </td> <td style="text-align:center;"> 10 (9.6%) </td> <td style="text-align:center;"> 28 (7.6%) </td> </tr> <tr> <td style="text-align:left;"> [40; 44] </td> <td style="text-align:center;"> 54 (20.5%) </td> <td style="text-align:center;"> 22 (21.2%) </td> <td style="text-align:center;"> 76 (20.7%) </td> </tr> <tr> <td style="text-align:left;"> [45; 49] </td> <td style="text-align:center;"> 80 (30.4%) </td> <td style="text-align:center;"> 31 (29.8%) </td> <td style="text-align:center;"> 111 (30.2%) </td> </tr> <tr> <td style="text-align:left;"> [50; 54] </td> <td style="text-align:center;"> 53 (20.2%) </td> <td style="text-align:center;"> 17 (16.3%) </td> <td style="text-align:center;"> 70 (19.1%) </td> </tr> <tr> <td style="text-align:left;"> [55; 59] </td> <td style="text-align:center;"> 30 (11.4%) </td> <td style="text-align:center;"> 9 (8.7%) </td> <td style="text-align:center;"> 39 (10.6%) </td> </tr> <tr> <td style="text-align:left;"> [60; 65] </td> <td style="text-align:center;"> 22 (8.4%) </td> <td style="text-align:center;"> 13 (12.5%) </td> <td style="text-align:center;"> 35 (9.5%) </td> </tr> <tr> <td style="text-align:left;"> Academic level </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:left;"> High school, vocational education or lower </td> <td style="text-align:center;"> 103 (39.2%) </td> <td style="text-align:center;"> 36 (34.6%) </td> <td style="text-align:center;"> 139 (37.9%) </td> </tr> <tr> <td style="text-align:left;"> Graduation </td> <td style="text-align:center;"> 41 (15.6%) </td> <td style="text-align:center;"> 12 (11.5%) </td> <td style="text-align:center;"> 53 (14.4%) </td> </tr> <tr> <td style="text-align:left;"> Post-graduation </td> <td style="text-align:center;"> 119 (45.2%) </td> <td style="text-align:center;"> 56 (53.8%) </td> <td style="text-align:center;"> 175 (47.7%) </td> </tr> <tr> <td style="text-align:left;"> Occupational group (ISCO-08) </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:left;"> Clerical Support Workers </td> <td style="text-align:center;"> 43 (16.3%) </td> <td style="text-align:center;"> 9 (8.7%) </td> <td style="text-align:center;"> 52 (14.2%) </td> </tr> <tr> <td style="text-align:left;"> Managers </td> <td style="text-align:center;"> 12 (4.6%) </td> <td style="text-align:center;"> 8 (7.7%) </td> <td style="text-align:center;"> 20 (5.4%) </td> </tr> <tr> <td style="text-align:left;"> Professionals </td> <td style="text-align:center;"> 206 (78.3%) </td> <td style="text-align:center;"> 84 (80.8%) </td> <td style="text-align:center;"> 290 (79.0%) </td> </tr> <tr> <td style="text-align:left;"> Technicians and Associate Professionals </td> <td style="text-align:center;"> 2 (0.8%) </td> <td style="text-align:center;"> 3 (2.9%) </td> <td style="text-align:center;"> 5 (1.4%) </td> </tr> </tbody> </table> ] --- # Sample Characterization ## Multi-Occupational Sample of Workers .scroll-box-20[ <table class="table" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;"> <caption>Other Samples</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:center;"> Female </th> <th style="text-align:center;"> Male </th> <th style="text-align:center;"> Overall </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> </td> <td style="text-align:center;"> (N=206) </td> <td style="text-align:center;"> (N=70) </td> <td style="text-align:center;"> (N=276) </td> </tr> <tr> <td style="text-align:left;"> Age (years) </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:left;"> Mean (SD) </td> <td style="text-align:center;"> 39.4 (10.9) </td> <td style="text-align:center;"> 37.0 (13.3) </td> <td style="text-align:center;"> 38.8 (11.6) </td> </tr> <tr> <td style="text-align:left;"> Median [Min, Max] </td> <td style="text-align:center;"> 41.0 [18.0, 63.0] </td> <td style="text-align:center;"> 37.5 [18.0, 68.0] </td> <td style="text-align:center;"> 40.0 [18.0, 68.0] </td> </tr> <tr> <td style="text-align:left;"> Academic level </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:left;"> High school, vocational education or lower </td> <td style="text-align:center;"> 60 (29.1%) </td> <td style="text-align:center;"> 18 (25.7%) </td> <td style="text-align:center;"> 78 (28.3%) </td> </tr> <tr> <td style="text-align:left;"> Graduation </td> <td style="text-align:center;"> 91 (44.2%) </td> <td style="text-align:center;"> 38 (54.3%) </td> <td style="text-align:center;"> 129 (46.7%) </td> </tr> <tr> <td style="text-align:left;"> Post-graduation </td> <td style="text-align:center;"> 55 (26.7%) </td> <td style="text-align:center;"> 14 (20.0%) </td> <td style="text-align:center;"> 69 (25.0%) </td> </tr> <tr> <td style="text-align:left;"> Occupational group (ISCO-08) </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:left;"> Clerical Support Workers </td> <td style="text-align:center;"> 64 (31.1%) </td> <td style="text-align:center;"> 11 (15.7%) </td> <td style="text-align:center;"> 75 (27.2%) </td> </tr> <tr> <td style="text-align:left;"> Craft and Related Trades Workers </td> <td style="text-align:center;"> 2 (1.0%) </td> <td style="text-align:center;"> 3 (4.3%) </td> <td style="text-align:center;"> 5 (1.8%) </td> </tr> <tr> <td style="text-align:left;"> Elementary Occupations </td> <td style="text-align:center;"> 1 (0.5%) </td> <td style="text-align:center;"> 3 (4.3%) </td> <td style="text-align:center;"> 4 (1.4%) </td> </tr> <tr> <td style="text-align:left;"> Managers </td> <td style="text-align:center;"> 23 (11.2%) </td> <td style="text-align:center;"> 19 (27.1%) </td> <td style="text-align:center;"> 42 (15.2%) </td> </tr> <tr> <td style="text-align:left;"> Plant and Machine Operators and Assemblers </td> <td style="text-align:center;"> 5 (2.4%) </td> <td style="text-align:center;"> 2 (2.9%) </td> <td style="text-align:center;"> 7 (2.5%) </td> </tr> <tr> <td style="text-align:left;"> Services and Sales Workers </td> <td style="text-align:center;"> 62 (30.1%) </td> <td style="text-align:center;"> 21 (30.0%) </td> <td style="text-align:center;"> 83 (30.1%) </td> </tr> <tr> <td style="text-align:left;"> Technicians and Associate Professionals </td> <td style="text-align:center;"> 49 (23.8%) </td> <td style="text-align:center;"> 11 (15.7%) </td> <td style="text-align:center;"> 60 (21.7%) </td> </tr> </tbody> </table> ] --- class: inverse, center, middle # .white[Validity Evidence Based on the Internal Structure] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- class: inverse, center, middle # .white[Students] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- # Items' distributional properties The distributional properties of the model's indicators are presented in the following table. Various summary measures, a histogram, kurtosis `\((ku)\)`, and skewness `\((sk)\)` for each of items are presented. The psychometric sensitivity and distributional properties of the items were analyzed with this information. Values of `\(|Ku|<7\)` and `\(|Sk|<3\)` were indicative of absense of severe violations of the univariate normality that would recommend against the use of structural equation modeling (Finney and DiStefano, 2013). --- # Items' distributional properties .font80[ <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Descriptives with histogram (\(n=484\))</caption> <thead> <tr> <th style="text-align:left;"> Item </th> <th style="text-align:right;"> \(N_{missing}\) </th> <th style="text-align:right;"> \(M\) </th> <th style="text-align:right;"> \(SD\) </th> <th style="text-align:right;"> \(Min\) </th> <th style="text-align:right;"> \(P_{25}\) </th> <th style="text-align:right;"> \(Mdn\) </th> <th style="text-align:right;"> \(P_{75}\) </th> <th style="text-align:right;"> \(Max\) </th> <th style="text-align:left;"> Histogram </th> <th style="text-align:right;"> \(SEM\) </th> <th style="text-align:right;"> \(CV\) </th> <th style="text-align:right;"> \(Mode\) </th> <th style="text-align:right;"> \(sk\) </th> <th style="text-align:right;"> \(ku\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Item 1 </td> <td style="text-align:right;"> 115 </td> <td style="text-align:right;"> 3.37 </td> <td style="text-align:right;"> 0.80 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 4 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▁▂▇▆▁ </td> <td style="text-align:right;"> 0.04 </td> <td style="text-align:right;"> 0.24 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> -0.09 </td> <td style="text-align:right;"> 0.05 </td> </tr> <tr> <td style="text-align:left;"> Item 2 </td> <td style="text-align:right;"> 115 </td> <td style="text-align:right;"> 3.31 </td> <td style="text-align:right;"> 0.93 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 4 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▁▂▇▆▂ </td> <td style="text-align:right;"> 0.05 </td> <td style="text-align:right;"> 0.28 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> -0.34 </td> <td style="text-align:right;"> 0.11 </td> </tr> <tr> <td style="text-align:left;"> Item 3 </td> <td style="text-align:right;"> 115 </td> <td style="text-align:right;"> 2.80 </td> <td style="text-align:right;"> 0.98 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▂▇▇▅▁ </td> <td style="text-align:right;"> 0.05 </td> <td style="text-align:right;"> 0.35 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 0.16 </td> <td style="text-align:right;"> -0.50 </td> </tr> <tr> <td style="text-align:left;"> Item 4 </td> <td style="text-align:right;"> 115 </td> <td style="text-align:right;"> 2.47 </td> <td style="text-align:right;"> 0.99 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▃▇▇▂▁ </td> <td style="text-align:right;"> 0.05 </td> <td style="text-align:right;"> 0.40 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.33 </td> <td style="text-align:right;"> -0.31 </td> </tr> <tr> <td style="text-align:left;"> Item 5 </td> <td style="text-align:right;"> 115 </td> <td style="text-align:right;"> 1.77 </td> <td style="text-align:right;"> 1.03 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▇▅▂▁▁ </td> <td style="text-align:right;"> 0.05 </td> <td style="text-align:right;"> 0.58 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1.47 </td> <td style="text-align:right;"> 1.67 </td> </tr> <tr> <td style="text-align:left;"> Item 6 </td> <td style="text-align:right;"> 115 </td> <td style="text-align:right;"> 1.93 </td> <td style="text-align:right;"> 1.11 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▇▅▃▁▁ </td> <td style="text-align:right;"> 0.06 </td> <td style="text-align:right;"> 0.57 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1.10 </td> <td style="text-align:right;"> 0.44 </td> </tr> <tr> <td style="text-align:left;"> Item 7 </td> <td style="text-align:right;"> 115 </td> <td style="text-align:right;"> 2.05 </td> <td style="text-align:right;"> 0.96 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▆▇▃▂▁ </td> <td style="text-align:right;"> 0.05 </td> <td style="text-align:right;"> 0.47 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.81 </td> <td style="text-align:right;"> 0.17 </td> </tr> <tr> <td style="text-align:left;"> Item 8 </td> <td style="text-align:right;"> 115 </td> <td style="text-align:right;"> 1.85 </td> <td style="text-align:right;"> 0.99 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▇▆▂▁▁ </td> <td style="text-align:right;"> 0.05 </td> <td style="text-align:right;"> 0.54 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1.18 </td> <td style="text-align:right;"> 1.00 </td> </tr> <tr> <td style="text-align:left;"> Item 9 </td> <td style="text-align:right;"> 115 </td> <td style="text-align:right;"> 1.97 </td> <td style="text-align:right;"> 0.94 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▇▇▅▁▁ </td> <td style="text-align:right;"> 0.05 </td> <td style="text-align:right;"> 0.47 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 0.68 </td> <td style="text-align:right;"> -0.18 </td> </tr> <tr> <td style="text-align:left;"> Item 10 </td> <td style="text-align:right;"> 115 </td> <td style="text-align:right;"> 2.80 </td> <td style="text-align:right;"> 0.93 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▂▅▇▃▁ </td> <td style="text-align:right;"> 0.05 </td> <td style="text-align:right;"> 0.33 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 0.12 </td> <td style="text-align:right;"> -0.13 </td> </tr> <tr> <td style="text-align:left;"> Item 11 </td> <td style="text-align:right;"> 115 </td> <td style="text-align:right;"> 2.79 </td> <td style="text-align:right;"> 0.93 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▂▆▇▃▁ </td> <td style="text-align:right;"> 0.05 </td> <td style="text-align:right;"> 0.33 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 0.18 </td> <td style="text-align:right;"> -0.16 </td> </tr> <tr> <td style="text-align:left;"> Item 12 </td> <td style="text-align:right;"> 115 </td> <td style="text-align:right;"> 2.77 </td> <td style="text-align:right;"> 1.01 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▂▇▇▅▁ </td> <td style="text-align:right;"> 0.05 </td> <td style="text-align:right;"> 0.36 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 0.17 </td> <td style="text-align:right;"> -0.44 </td> </tr> </tbody> </table> ] --- # Dimensionality <div class="pre-name">analysis.Rmd</div> ```r model_measurement <- " Ex =~ bat12.1._i + bat12.2._i + bat12.3._i MD =~ bat12.4._i + bat12.5._i + bat12.6._i CI =~ bat12.7._i + bat12.8._i + bat12.9._i EI =~ bat12.10._i + bat12.11._i + bat12.12._i Burn =~ Ex + MD + CI + EI " library(lavaan) fit_model <- cfa(model = model_measurement, data = ds_std, ordered = bat_std_items, estimator="wlsmv") ``` --- # Lambdas `\((\hat\lambda)\)` <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:left;"> Exhaustion </th> <th style="text-align:left;"> Mental Distance </th> <th style="text-align:left;"> Cognitive Impairment </th> <th style="text-align:left;"> Emotional Impairment </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> bat12.1._i </td> <td style="text-align:left;"> 0.819 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> bat12.2._i </td> <td style="text-align:left;"> 0.718 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> bat12.3._i </td> <td style="text-align:left;"> 0.841 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> bat12.4._i </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.923 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> bat12.5._i </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.834 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> bat12.6._i </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.625 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> bat12.7._i </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.828 </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> bat12.8._i </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.890 </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> bat12.9._i </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.733 </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> bat12.10._i </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.965 </td> </tr> <tr> <td style="text-align:left;"> bat12.11._i </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.938 </td> </tr> <tr> <td style="text-align:left;"> bat12.12._i </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.768 </td> </tr> </tbody> </table> --- # Gamma (\\(\hat\gamma\\)) The model's structural weights are presented in the following table. <br> <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:left;"> Burnout </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Exhaustion </td> <td style="text-align:left;"> 0.868 </td> </tr> <tr> <td style="text-align:left;"> Mental Distance </td> <td style="text-align:left;"> 0.825 </td> </tr> <tr> <td style="text-align:left;"> Cognitive Impairment </td> <td style="text-align:left;"> 0.728 </td> </tr> <tr> <td style="text-align:left;"> Emotional Impairment </td> <td style="text-align:left;"> 0.751 </td> </tr> </tbody> </table> --- # Goodness-of-fit ```r gof <- c("df.scaled", "chisq.scaled", "pvalue.scaled", "cfi.scaled", "nfi.scaled", "tli.scaled", "srmr", "rmsea.scaled", "rmsea.ci.lower.scaled", "rmsea.ci.upper.scaled", "rmsea.pvalue.scaled") gofs_model <- fitmeasures(object = fit_model, fit.measures = gof) %>% round(digits = 3) ``` The model presented the following goodness-of-fit indices `\((\chi^2_{scaled (50)}=196.24;p< .001;CFI_{scaled}=0.98;TLI_{scaled}=0.98;NFI_{scaled}=0.98;SRMR=0.05;RMSEA_{scaled}=0.09;p_{(rmsea \leq 0.05)}< .001; 90\%CI[0.08, 0.10])\)`. --- # Diagram The diagram showing the standardized estimates.
--- # Item Fit Note that there is much disagreement among measurement scholars about how to classify an infit our outfit statistic as “fitting” or "misfitting." However, you should be aware of commonly accepted rule-of-thumb values among Rasch researchers: > Expected value is about 1.00 when data fit the model > Less than 1.00: Responses are too predictable; they resemble a Guttman-like (deterministic) pattern ("muted") > More than 1.00: Responses are too haphazard ("noisy"); there is too much variation to suggest that the estimate is a good representation of the response pattern Some variation is expected, but noisy responses are usually more cause for concern than muted responses. Frequently used critical values for mean square fit statistics . | *Type of Instrument* | *"Acceptable Range"* | | :---: | :----: | | Multiple-choice test (high-stakes) | 0.80 – 1.20 | | Multiple-choice test (not high-stakes)| 0.70 – 1.30 | | .red[Rating scale] | .red[0.60 – 1.40] | | Clinical observation | 0.50 – 1.70 | | Judgment (when agreement is encouraged) | 0.40 – 1.20| --- # Item Fit .font80[.left-column[ <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Item Fit</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> \(Outfit\) </th> <th style="text-align:right;"> \(Infit\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> bat12.1._i </td> <td style="text-align:right;"> 0.925 </td> <td style="text-align:right;"> 0.930 </td> </tr> <tr> <td style="text-align:left;"> bat12.2._i </td> <td style="text-align:right;"> 1.133 </td> <td style="text-align:right;"> 1.123 </td> </tr> <tr> <td style="text-align:left;"> bat12.3._i </td> <td style="text-align:right;"> 0.977 </td> <td style="text-align:right;"> 0.980 </td> </tr> <tr> <td style="text-align:left;"> bat12.4._i </td> <td style="text-align:right;"> 0.861 </td> <td style="text-align:right;"> 0.873 </td> </tr> <tr> <td style="text-align:left;"> bat12.5._i </td> <td style="text-align:right;"> 0.801 </td> <td style="text-align:right;"> 0.893 </td> </tr> <tr> <td style="text-align:left;"> bat12.6._i </td> <td style="text-align:right;"> 1.361 </td> <td style="text-align:right;"> 1.290 </td> </tr> <tr> <td style="text-align:left;"> bat12.7._i </td> <td style="text-align:right;"> 0.917 </td> <td style="text-align:right;"> 0.927 </td> </tr> <tr> <td style="text-align:left;"> bat12.8._i </td> <td style="text-align:right;"> 0.870 </td> <td style="text-align:right;"> 0.924 </td> </tr> <tr> <td style="text-align:left;"> bat12.9._i </td> <td style="text-align:right;"> 1.020 </td> <td style="text-align:right;"> 1.036 </td> </tr> <tr> <td style="text-align:left;"> bat12.10._i </td> <td style="text-align:right;"> 0.826 </td> <td style="text-align:right;"> 0.830 </td> </tr> <tr> <td style="text-align:left;"> bat12.11._i </td> <td style="text-align:right;"> 0.850 </td> <td style="text-align:right;"> 0.855 </td> </tr> <tr> <td style="text-align:left;"> bat12.12._i </td> <td style="text-align:right;"> 1.179 </td> <td style="text-align:right;"> 1.183 </td> </tr> </tbody> </table> ] ] .font80[.right-column[ <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Item Fit</caption> <thead> <tr> <th style="text-align:left;"> Fit </th> <th style="text-align:right;"> \(M\) </th> <th style="text-align:right;"> \(SD\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Outfit </td> <td style="text-align:right;"> 0.977 </td> <td style="text-align:right;"> 0.169 </td> </tr> <tr> <td style="text-align:left;"> Infit </td> <td style="text-align:right;"> 0.987 </td> <td style="text-align:right;"> 0.143 </td> </tr> </tbody> </table> ] ] --- # Wright Map .center[ <img src="data:image/png;base64,#presentation_bat_symposium_files/figure-html/unnamed-chunk-16-1.png" width="80%" /> ] --- # Reliability: Internal consistency **First-order** The model's first-order internal consistency estimates are presented in the following table. <table class="table" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;"> <caption>Reliability estimates: First-order</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> Exhaustion </th> <th style="text-align:right;"> Mental Distance </th> <th style="text-align:right;"> Cognitive Impairment </th> <th style="text-align:right;"> Emotional Impairment </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> \(\alpha_{ord}\) </td> <td style="text-align:right;"> 0.83 </td> <td style="text-align:right;"> 0.83 </td> <td style="text-align:right;"> 0.86 </td> <td style="text-align:right;"> 0.88 </td> </tr> <tr> <td style="text-align:left;"> \(\omega_{ord}\) </td> <td style="text-align:right;"> 0.79 </td> <td style="text-align:right;"> 0.78 </td> <td style="text-align:right;"> 0.82 </td> <td style="text-align:right;"> 0.88 </td> </tr> <tr> <td style="text-align:left;"> \(AVE\) </td> <td style="text-align:right;"> 0.63 </td> <td style="text-align:right;"> 0.65 </td> <td style="text-align:right;"> 0.67 </td> <td style="text-align:right;"> 0.80 </td> </tr> </tbody> </table> --- # Reliability: Internal consistency **Second-order** The model's second-order internal consistency estimates are presented in the following table. <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Reliability estimates: Second-order</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> \(\omega_{L1}\) </th> <th style="text-align:right;"> \(\omega_{L2}\) </th> <th style="text-align:right;"> \(\omega_{Partial~L1}\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Burnout </td> <td style="text-align:right;"> 0.83 </td> <td style="text-align:right;"> 0.87 </td> <td style="text-align:right;"> 0.94 </td> </tr> </tbody> </table> --- class: inverse, center, middle # .white[Workers] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- # Items' distributional properties The distributional properties of the model's indicators are presented in the following table. Various summary measures, a histogram, kurtosis `\((ku)\)`, and skewness `\((sk)\)` for each of items are presented. The psychometric sensitivity and distributional properties of the items were analyzed with this information. Values of `\(|Ku|<7\)` and `\(|Sk|<3\)` were indicative of absense of severe violations of the univariate normality that would recommend against the use of structural equation modeling (Finney and DiStefano, 2013). --- # Items' distributional properties .scroll-box-26[ <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Descriptives with histogram (\(n=857\))</caption> <thead> <tr> <th style="text-align:left;"> Item </th> <th style="text-align:right;"> \(N_{missing}\) </th> <th style="text-align:right;"> \(M\) </th> <th style="text-align:right;"> \(SD\) </th> <th style="text-align:right;"> \(Min\) </th> <th style="text-align:right;"> \(P_{25}\) </th> <th style="text-align:right;"> \(Mdn\) </th> <th style="text-align:right;"> \(P_{75}\) </th> <th style="text-align:right;"> \(Max\) </th> <th style="text-align:left;"> Histogram </th> <th style="text-align:right;"> \(SEM\) </th> <th style="text-align:right;"> \(CV\) </th> <th style="text-align:right;"> \(Mode\) </th> <th style="text-align:right;"> \(sk\) </th> <th style="text-align:right;"> \(ku\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Item 1 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 3.22 </td> <td style="text-align:right;"> 0.86 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 4 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▁▂▇▅▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.27 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> -0.07 </td> <td style="text-align:right;"> 0.16 </td> </tr> <tr> <td style="text-align:left;"> Item 2 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 3.20 </td> <td style="text-align:right;"> 0.87 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 4 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▁▂▇▅▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.27 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> -0.03 </td> <td style="text-align:right;"> 0.05 </td> </tr> <tr> <td style="text-align:left;"> Item 3 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 3.09 </td> <td style="text-align:right;"> 0.93 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 4 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▁▃▇▅▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.30 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> -0.01 </td> <td style="text-align:right;"> -0.27 </td> </tr> <tr> <td style="text-align:left;"> Item 4 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2.84 </td> <td style="text-align:right;"> 0.92 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▁▆▇▃▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.32 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 0.17 </td> <td style="text-align:right;"> -0.27 </td> </tr> <tr> <td style="text-align:left;"> Item 5 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2.82 </td> <td style="text-align:right;"> 1.00 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▂▆▇▃▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.35 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 0.25 </td> <td style="text-align:right;"> -0.30 </td> </tr> <tr> <td style="text-align:left;"> Item 6 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2.47 </td> <td style="text-align:right;"> 0.91 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▂▇▆▂▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.37 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.47 </td> <td style="text-align:right;"> 0.04 </td> </tr> <tr> <td style="text-align:left;"> Item 7 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2.50 </td> <td style="text-align:right;"> 0.90 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▂▇▆▂▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.36 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.41 </td> <td style="text-align:right;"> -0.03 </td> </tr> <tr> <td style="text-align:left;"> Item 8 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 3.12 </td> <td style="text-align:right;"> 0.93 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 4 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▁▃▇▅▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.30 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 0.01 </td> <td style="text-align:right;"> -0.16 </td> </tr> <tr> <td style="text-align:left;"> Item 9 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2.75 </td> <td style="text-align:right;"> 1.00 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▂▆▇▃▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.36 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 0.24 </td> <td style="text-align:right;"> -0.27 </td> </tr> <tr> <td style="text-align:left;"> Item 10 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2.30 </td> <td style="text-align:right;"> 0.99 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▅▇▅▂▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.43 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.53 </td> <td style="text-align:right;"> -0.25 </td> </tr> <tr> <td style="text-align:left;"> Item 11 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2.04 </td> <td style="text-align:right;"> 1.03 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▇▇▅▂▁ </td> <td style="text-align:right;"> 0.04 </td> <td style="text-align:right;"> 0.51 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 0.79 </td> <td style="text-align:right;"> 0.00 </td> </tr> <tr> <td style="text-align:left;"> Item 12 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 1.86 </td> <td style="text-align:right;"> 0.97 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▇▆▃▁▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.52 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1.04 </td> <td style="text-align:right;"> 0.59 </td> </tr> <tr> <td style="text-align:left;"> Item 13 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 1.75 </td> <td style="text-align:right;"> 0.95 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▇▅▂▁▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.54 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1.19 </td> <td style="text-align:right;"> 0.80 </td> </tr> <tr> <td style="text-align:left;"> Item 14 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2.44 </td> <td style="text-align:right;"> 0.94 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▃▇▆▂▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.38 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.39 </td> <td style="text-align:right;"> -0.08 </td> </tr> <tr> <td style="text-align:left;"> Item 15 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2.75 </td> <td style="text-align:right;"> 1.11 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 4 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▃▇▇▅▂ </td> <td style="text-align:right;"> 0.04 </td> <td style="text-align:right;"> 0.40 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.32 </td> <td style="text-align:right;"> -0.62 </td> </tr> <tr> <td style="text-align:left;"> Item 16 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2.17 </td> <td style="text-align:right;"> 0.84 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▃▇▃▁▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.39 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.55 </td> <td style="text-align:right;"> 0.24 </td> </tr> <tr> <td style="text-align:left;"> Item 17 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2.45 </td> <td style="text-align:right;"> 0.88 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▂▇▇▂▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.36 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.42 </td> <td style="text-align:right;"> 0.25 </td> </tr> <tr> <td style="text-align:left;"> Item 18 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2.24 </td> <td style="text-align:right;"> 0.82 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▂▇▃▁▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.37 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.59 </td> <td style="text-align:right;"> 0.56 </td> </tr> <tr> <td style="text-align:left;"> Item 19 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2.09 </td> <td style="text-align:right;"> 0.82 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▃▇▃▁▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.39 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.72 </td> <td style="text-align:right;"> 1.00 </td> </tr> <tr> <td style="text-align:left;"> Item 20 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 1.88 </td> <td style="text-align:right;"> 0.88 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▇▇▃▁▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.47 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.96 </td> <td style="text-align:right;"> 0.80 </td> </tr> <tr> <td style="text-align:left;"> Item 21 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2.35 </td> <td style="text-align:right;"> 0.90 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▃▇▆▂▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.38 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.34 </td> <td style="text-align:right;"> -0.19 </td> </tr> <tr> <td style="text-align:left;"> Item 22 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2.00 </td> <td style="text-align:right;"> 0.95 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▇▇▃▁▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.47 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.77 </td> <td style="text-align:right;"> 0.10 </td> </tr> <tr> <td style="text-align:left;"> Item 23 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2.08 </td> <td style="text-align:right;"> 0.81 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▃▇▃▁▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.39 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.52 </td> <td style="text-align:right;"> 0.25 </td> </tr> <tr> <td style="text-align:left;"> Item 24 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2.85 </td> <td style="text-align:right;"> 1.06 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 4 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▂▇▇▆▂ </td> <td style="text-align:right;"> 0.04 </td> <td style="text-align:right;"> 0.37 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 0.08 </td> <td style="text-align:right;"> -0.65 </td> </tr> <tr> <td style="text-align:left;"> Item 25 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 3.47 </td> <td style="text-align:right;"> 0.90 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 4 </td> <td style="text-align:right;"> 4 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▁▂▇▇▂ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.26 </td> <td style="text-align:right;"> 4 </td> <td style="text-align:right;"> -0.31 </td> <td style="text-align:right;"> 0.00 </td> </tr> <tr> <td style="text-align:left;"> Item 26 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 3.32 </td> <td style="text-align:right;"> 0.90 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 4 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▁▃▇▇▂ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.27 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> -0.20 </td> <td style="text-align:right;"> -0.13 </td> </tr> <tr> <td style="text-align:left;"> Item 27 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2.29 </td> <td style="text-align:right;"> 1.07 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▇▇▇▃▁ </td> <td style="text-align:right;"> 0.04 </td> <td style="text-align:right;"> 0.47 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.44 </td> <td style="text-align:right;"> -0.62 </td> </tr> <tr> <td style="text-align:left;"> Item 28 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2.58 </td> <td style="text-align:right;"> 1.06 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▃▇▇▃▁ </td> <td style="text-align:right;"> 0.04 </td> <td style="text-align:right;"> 0.41 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.30 </td> <td style="text-align:right;"> -0.48 </td> </tr> <tr> <td style="text-align:left;"> Item 29 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 1.93 </td> <td style="text-align:right;"> 0.97 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▇▆▃▁▁ </td> <td style="text-align:right;"> 0.03 </td> <td style="text-align:right;"> 0.50 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 0.83 </td> <td style="text-align:right;"> -0.04 </td> </tr> <tr> <td style="text-align:left;"> Item 30 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2.25 </td> <td style="text-align:right;"> 1.12 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▇▇▆▃▁ </td> <td style="text-align:right;"> 0.04 </td> <td style="text-align:right;"> 0.50 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 0.54 </td> <td style="text-align:right;"> -0.67 </td> </tr> <tr> <td style="text-align:left;"> Item 31 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2.62 </td> <td style="text-align:right;"> 1.04 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▃▇▇▅▁ </td> <td style="text-align:right;"> 0.04 </td> <td style="text-align:right;"> 0.40 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.20 </td> <td style="text-align:right;"> -0.65 </td> </tr> <tr> <td style="text-align:left;"> Item 32 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 3.13 </td> <td style="text-align:right;"> 1.10 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> 4 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▂▆▇▇▂ </td> <td style="text-align:right;"> 0.04 </td> <td style="text-align:right;"> 0.35 </td> <td style="text-align:right;"> 3 </td> <td style="text-align:right;"> -0.15 </td> <td style="text-align:right;"> -0.71 </td> </tr> <tr> <td style="text-align:left;"> Item 33 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 2.04 </td> <td style="text-align:right;"> 0.72 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> ▂▇▂▁▁ </td> <td style="text-align:right;"> 0.02 </td> <td style="text-align:right;"> 0.35 </td> <td style="text-align:right;"> 2 </td> <td style="text-align:right;"> 0.80 </td> <td style="text-align:right;"> 1.66 </td> </tr> </tbody> </table> ] --- # Dimensionality <div class="pre-name">analysis.Rmd</div> ```r model_measurement <- " Ex =~ W_EX1+W_EX2+W_EX3+W_EX4+W_EX5+W_EX6+W_EX7+W_EX8 MD =~ W_MD1+W_MD2+W_MD3+W_MD4+W_MD5 CI =~ W_CC1+W_CC2+W_CC3+W_CC4+W_CC5 EI =~ W_EC1+W_EC2+W_EC3+W_EC4+W_EC5 PD =~ W_PD2+W_PD3+W_PD4+W_PD5+W_PD6 PC =~ W_PC1+W_PC2+W_PC3+W_PC4+W_PC5 Core =~ Ex+ MD + CI + EI Sec =~ PD+ PC " library(lavaan) fit_model <- cfa(model = model_measurement, data = ds, ordered = bat_wkr_items, estimator="wlsmv") ``` --- # Lambdas `\((\hat\lambda)\)` .scroll-box-26[ <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:left;"> Exhaustion </th> <th style="text-align:left;"> Mental Distance </th> <th style="text-align:left;"> Cognitive Impairment </th> <th style="text-align:left;"> Emotional Impairment </th> <th style="text-align:left;"> Psychological Distress </th> <th style="text-align:left;"> Psychosomatic Complaints </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> W_EX1 </td> <td style="text-align:left;"> 0.825 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_EX2 </td> <td style="text-align:left;"> 0.632 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_EX3 </td> <td style="text-align:left;"> 0.842 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_EX4 </td> <td style="text-align:left;"> 0.817 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_EX5 </td> <td style="text-align:left;"> 0.854 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_EX6 </td> <td style="text-align:left;"> 0.859 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_EX7 </td> <td style="text-align:left;"> 0.866 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_EX8 </td> <td style="text-align:left;"> 0.852 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_MD1 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.882 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_MD2 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.741 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_MD3 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.880 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_MD4 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.846 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_MD5 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.706 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_CC1 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.894 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_CC2 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.649 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_CC3 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.737 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_CC4 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.883 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_CC5 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.787 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_EC1 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.733 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_EC2 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.877 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_EC3 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.731 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_EC4 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.933 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_EC5 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.742 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_PD2 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.658 </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_PD3 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.774 </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_PD4 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.937 </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_PD5 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.813 </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_PD6 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.636 </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> W_PC1 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.801 </td> </tr> <tr> <td style="text-align:left;"> W_PC2 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.684 </td> </tr> <tr> <td style="text-align:left;"> W_PC3 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.666 </td> </tr> <tr> <td style="text-align:left;"> W_PC4 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.687 </td> </tr> <tr> <td style="text-align:left;"> W_PC5 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.661 </td> </tr> </tbody> </table> ] --- # Gamma (\\(\hat\gamma\\)) The model's structural weights are presented in the following table. <br> <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:left;"> Core </th> <th style="text-align:left;"> Secondary </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Exhaustion </td> <td style="text-align:left;"> 0.866 </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> Mental Distance </td> <td style="text-align:left;"> 0.866 </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> Cognitive Impairment </td> <td style="text-align:left;"> 0.795 </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> Emotional Impairment </td> <td style="text-align:left;"> 0.807 </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:left;"> Psychological Distress </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.983 </td> </tr> <tr> <td style="text-align:left;"> Psychosomatic Complaints </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.867 </td> </tr> </tbody> </table> --- # Goodness-of-fit The model presented the following goodness-of-fit indices `\((\chi^2_{scaled (488)}=3,233.96;p< .001;CFI_{scaled}=0.92;TLI_{scaled}=0.92;NFI_{scaled}=0.91;SRMR=0.06;RMSEA_{scaled}=0.08;p_{(rmsea \leq 0.05)}< .001; 90\%CI[0.08, 0.08])\)` --- # Diagram The diagram showing the standardized estimates.
--- # Item Fit Note that there is much disagreement among measurement scholars about how to classify an infit our outfit statistic as “fitting” or "misfitting." However, you should be aware of commonly accepted rule-of-thumb values among Rasch researchers: > Expected value is about 1.00 when data fit the model > Less than 1.00: Responses are too predictable; they resemble a Guttman-like (deterministic) pattern ("muted") > More than 1.00: Responses are too haphazard ("noisy"); there is too much variation to suggest that the estimate is a good representation of the response pattern Some variation is expected, but noisy responses are usually more cause for concern than muted responses. Frequently used critical values for mean square fit statistics . | *Type of Instrument* | *"Acceptable Range"* | | :---: | :----: | | Multiple-choice test (high-stakes) | 0.80 – 1.20 | | Multiple-choice test (not high-stakes)| 0.70 – 1.30 | | .red[Rating scale] | .red[0.60 – 1.40] | | Clinical observation | 0.50 – 1.70 | | Judgment (when agreement is encouraged) | 0.40 – 1.20| --- # Item Fit .scroll-box-26[.font60[.left-column[ <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Item Fit</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> \(Outfit\) </th> <th style="text-align:right;"> \(Infit\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> W_EX1 </td> <td style="text-align:right;"> 0.924 </td> <td style="text-align:right;"> 0.922 </td> </tr> <tr> <td style="text-align:left;"> W_EX2 </td> <td style="text-align:right;"> 1.339 </td> <td style="text-align:right;"> 1.330 </td> </tr> <tr> <td style="text-align:left;"> W_EX3 </td> <td style="text-align:right;"> 0.871 </td> <td style="text-align:right;"> 0.866 </td> </tr> <tr> <td style="text-align:left;"> W_EX4 </td> <td style="text-align:right;"> 0.901 </td> <td style="text-align:right;"> 0.907 </td> </tr> <tr> <td style="text-align:left;"> W_EX5 </td> <td style="text-align:right;"> 0.982 </td> <td style="text-align:right;"> 0.942 </td> </tr> <tr> <td style="text-align:left;"> W_EX6 </td> <td style="text-align:right;"> 0.972 </td> <td style="text-align:right;"> 0.964 </td> </tr> <tr> <td style="text-align:left;"> W_EX7 </td> <td style="text-align:right;"> 0.847 </td> <td style="text-align:right;"> 0.855 </td> </tr> <tr> <td style="text-align:left;"> W_EX8 </td> <td style="text-align:right;"> 0.865 </td> <td style="text-align:right;"> 0.872 </td> </tr> <tr> <td style="text-align:left;"> W_MD1 </td> <td style="text-align:right;"> 1.023 </td> <td style="text-align:right;"> 1.001 </td> </tr> <tr> <td style="text-align:left;"> W_MD2 </td> <td style="text-align:right;"> 1.166 </td> <td style="text-align:right;"> 1.169 </td> </tr> <tr> <td style="text-align:left;"> W_MD3 </td> <td style="text-align:right;"> 1.004 </td> <td style="text-align:right;"> 0.860 </td> </tr> <tr> <td style="text-align:left;"> W_MD4 </td> <td style="text-align:right;"> 0.769 </td> <td style="text-align:right;"> 0.874 </td> </tr> <tr> <td style="text-align:left;"> W_MD5 </td> <td style="text-align:right;"> 1.289 </td> <td style="text-align:right;"> 1.225 </td> </tr> <tr> <td style="text-align:left;"> W_CC1 </td> <td style="text-align:right;"> 0.807 </td> <td style="text-align:right;"> 0.810 </td> </tr> <tr> <td style="text-align:left;"> W_CC2 </td> <td style="text-align:right;"> 1.392 </td> <td style="text-align:right;"> 1.339 </td> </tr> <tr> <td style="text-align:left;"> W_CC3 </td> <td style="text-align:right;"> 0.962 </td> <td style="text-align:right;"> 0.967 </td> </tr> <tr> <td style="text-align:left;"> W_CC4 </td> <td style="text-align:right;"> 0.768 </td> <td style="text-align:right;"> 0.768 </td> </tr> <tr> <td style="text-align:left;"> W_CC5 </td> <td style="text-align:right;"> 0.924 </td> <td style="text-align:right;"> 0.940 </td> </tr> <tr> <td style="text-align:left;"> W_EC1 </td> <td style="text-align:right;"> 1.144 </td> <td style="text-align:right;"> 1.114 </td> </tr> <tr> <td style="text-align:left;"> W_EC2 </td> <td style="text-align:right;"> 0.829 </td> <td style="text-align:right;"> 0.847 </td> </tr> <tr> <td style="text-align:left;"> W_EC3 </td> <td style="text-align:right;"> 1.061 </td> <td style="text-align:right;"> 1.055 </td> </tr> <tr> <td style="text-align:left;"> W_EC4 </td> <td style="text-align:right;"> 0.846 </td> <td style="text-align:right;"> 0.881 </td> </tr> <tr> <td style="text-align:left;"> W_EC5 </td> <td style="text-align:right;"> 0.989 </td> <td style="text-align:right;"> 0.972 </td> </tr> <tr> <td style="text-align:left;"> W_PD2 </td> <td style="text-align:right;"> 1.154 </td> <td style="text-align:right;"> 1.148 </td> </tr> <tr> <td style="text-align:left;"> W_PD3 </td> <td style="text-align:right;"> 0.905 </td> <td style="text-align:right;"> 0.908 </td> </tr> <tr> <td style="text-align:left;"> W_PD4 </td> <td style="text-align:right;"> 0.713 </td> <td style="text-align:right;"> 0.715 </td> </tr> <tr> <td style="text-align:left;"> W_PD5 </td> <td style="text-align:right;"> 0.850 </td> <td style="text-align:right;"> 0.874 </td> </tr> <tr> <td style="text-align:left;"> W_PD6 </td> <td style="text-align:right;"> 1.280 </td> <td style="text-align:right;"> 1.221 </td> </tr> <tr> <td style="text-align:left;"> W_PC1 </td> <td style="text-align:right;"> 0.880 </td> <td style="text-align:right;"> 0.907 </td> </tr> <tr> <td style="text-align:left;"> W_PC2 </td> <td style="text-align:right;"> 1.262 </td> <td style="text-align:right;"> 1.114 </td> </tr> <tr> <td style="text-align:left;"> W_PC3 </td> <td style="text-align:right;"> 1.049 </td> <td style="text-align:right;"> 1.051 </td> </tr> <tr> <td style="text-align:left;"> W_PC4 </td> <td style="text-align:right;"> 1.065 </td> <td style="text-align:right;"> 1.063 </td> </tr> <tr> <td style="text-align:left;"> W_PC5 </td> <td style="text-align:right;"> 0.990 </td> <td style="text-align:right;"> 1.017 </td> </tr> </tbody> </table> ] ] .font80[.right-column[ <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Item Fit</caption> <thead> <tr> <th style="text-align:left;"> Fit </th> <th style="text-align:right;"> \(M\) </th> <th style="text-align:right;"> \(SD\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Outfit </td> <td style="text-align:right;"> 0.995 </td> <td style="text-align:right;"> 0.176 </td> </tr> <tr> <td style="text-align:left;"> Infit </td> <td style="text-align:right;"> 0.985 </td> <td style="text-align:right;"> 0.154 </td> </tr> </tbody> </table> ] ] ] --- # Wright Map .center[ <img src="data:image/png;base64,#presentation_bat_symposium_files/figure-html/unnamed-chunk-31-1.png" width="80%" /> ] --- # Reliability: Internal consistency **First-order** The model's first-order internal consistency estimates are presented in the following table. <table class="table" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;"> <caption>Reliability estimates: First-order</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> Exhaustion </th> <th style="text-align:right;"> Mental Distance </th> <th style="text-align:right;"> Cognitive Impairment </th> <th style="text-align:right;"> Emotional Impairment </th> <th style="text-align:right;"> Psychological Distress </th> <th style="text-align:right;"> Psychosomatic Complaints </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> \(\alpha_{ord}\) </td> <td style="text-align:right;"> 0.94 </td> <td style="text-align:right;"> 0.90 </td> <td style="text-align:right;"> 0.89 </td> <td style="text-align:right;"> 0.90 </td> <td style="text-align:right;"> 0.86 </td> <td style="text-align:right;"> 0.83 </td> </tr> <tr> <td style="text-align:left;"> \(\omega_{ord}\) </td> <td style="text-align:right;"> 0.92 </td> <td style="text-align:right;"> 0.88 </td> <td style="text-align:right;"> 0.86 </td> <td style="text-align:right;"> 0.87 </td> <td style="text-align:right;"> 0.84 </td> <td style="text-align:right;"> 0.79 </td> </tr> <tr> <td style="text-align:left;"> \(AVE\) </td> <td style="text-align:right;"> 0.68 </td> <td style="text-align:right;"> 0.66 </td> <td style="text-align:right;"> 0.63 </td> <td style="text-align:right;"> 0.65 </td> <td style="text-align:right;"> 0.60 </td> <td style="text-align:right;"> 0.49 </td> </tr> </tbody> </table> --- # Reliability: Internal consistency **Second-order** The model's second-order internal consistency estimates are presented in the following table. <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Reliability estimates: Second-order</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> \(\omega_{L1}\) </th> <th style="text-align:right;"> \(\omega_{L2}\) </th> <th style="text-align:right;"> \(\omega_{Partial~L1}\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Core </td> <td style="text-align:right;"> 0.88 </td> <td style="text-align:right;"> 0.9 </td> <td style="text-align:right;"> 0.97 </td> </tr> <tr> <td style="text-align:left;"> Secondary </td> <td style="text-align:right;"> 0.88 </td> <td style="text-align:right;"> 0.9 </td> <td style="text-align:right;"> 0.97 </td> </tr> </tbody> </table> --- class: inverse, center, middle # .white[Measurement Invariance] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- class: inverse, center, middle # .white[Students] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- # Longitudinal Measurement Invariance <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:left;"> \(\chi^2_{scaled}\) </th> <th style="text-align:right;"> \(df_{scaled}\) </th> <th style="text-align:left;"> \(p_{\Delta\chi^2}\) </th> <th style="text-align:left;"> \(CFI_{scaled}\) </th> <th style="text-align:left;"> \(\Delta CFI_{scaled}\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Configural </td> <td style="text-align:left;"> 272.758 </td> <td style="text-align:right;"> 100 </td> <td style="text-align:left;"> - </td> <td style="text-align:left;"> 0.982 </td> <td style="text-align:left;"> - </td> </tr> <tr> <td style="text-align:left;"> Thresholds </td> <td style="text-align:left;"> 283.431 </td> <td style="text-align:right;"> 121 </td> <td style="text-align:left;"> .751 </td> <td style="text-align:left;"> 0.983 </td> <td style="text-align:left;"> 0.001 </td> </tr> <tr> <td style="text-align:left;"> Factor loadings </td> <td style="text-align:left;"> 275.451 </td> <td style="text-align:right;"> 129 </td> <td style="text-align:left;"> .920 </td> <td style="text-align:left;"> 0.985 </td> <td style="text-align:left;"> 0.002 </td> </tr> <tr> <td style="text-align:left;"> Structural weights </td> <td style="text-align:left;"> 257.646 </td> <td style="text-align:right;"> 132 </td> <td style="text-align:left;"> .811 </td> <td style="text-align:left;"> 0.987 </td> <td style="text-align:left;"> 0.002 </td> </tr> <tr> <td style="text-align:left;"> Intercepts (first-order) </td> <td style="text-align:left;"> 272.873 </td> <td style="text-align:right;"> 144 </td> <td style="text-align:left;"> .108 </td> <td style="text-align:left;"> 0.986 </td> <td style="text-align:left;"> 0.000 </td> </tr> <tr> <td style="text-align:left;"> Latent means </td> <td style="text-align:left;"> 247.223 </td> <td style="text-align:right;"> 148 </td> <td style="text-align:left;"> .403 </td> <td style="text-align:left;"> 0.990 </td> <td style="text-align:left;"> 0.003 </td> </tr> <tr> <td style="text-align:left;"> Disturbances </td> <td style="text-align:left;"> 331.068 </td> <td style="text-align:right;"> 153 </td> <td style="text-align:left;"> < .001 </td> <td style="text-align:left;"> 0.981 </td> <td style="text-align:left;"> -0.008 </td> </tr> <tr> <td style="text-align:left;"> Residuals </td> <td style="text-align:left;"> 369.780 </td> <td style="text-align:right;"> 163 </td> <td style="text-align:left;"> < .001 </td> <td style="text-align:left;"> 0.978 </td> <td style="text-align:left;"> -0.003 </td> </tr> </tbody> <tfoot> <tr> <td style="padding: 0; border:0;" colspan="100%"> <sup>a</sup> The `\chi_{text{scaled}}^{2}` column contains the robust test. The `p_{Deltachi^2}` column contains the robust difference test which is a function of two standard (not robust) statistics.</td> </tr> </tfoot> </table> --- # Sex (wave 1) Measurement Invariance <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:left;"> \(\chi^2_{scaled}\) </th> <th style="text-align:right;"> \(df_{scaled}\) </th> <th style="text-align:left;"> \(p_{\Delta\chi^2}\) </th> <th style="text-align:left;"> \(CFI_{scaled}\) </th> <th style="text-align:left;"> \(\Delta CFI_{scaled}\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Configural </td> <td style="text-align:left;"> 243.121 </td> <td style="text-align:right;"> 100 </td> <td style="text-align:left;"> - </td> <td style="text-align:left;"> 0.982 </td> <td style="text-align:left;"> - </td> </tr> <tr> <td style="text-align:left;"> Thresholds </td> <td style="text-align:left;"> 268.723 </td> <td style="text-align:right;"> 120 </td> <td style="text-align:left;"> .049 </td> <td style="text-align:left;"> 0.981 </td> <td style="text-align:left;"> -0.001 </td> </tr> <tr> <td style="text-align:left;"> Factor loadings </td> <td style="text-align:left;"> 272.621 </td> <td style="text-align:right;"> 128 </td> <td style="text-align:left;"> .282 </td> <td style="text-align:left;"> 0.981 </td> <td style="text-align:left;"> 0.001 </td> </tr> <tr> <td style="text-align:left;"> Structural weights </td> <td style="text-align:left;"> 258.889 </td> <td style="text-align:right;"> 131 </td> <td style="text-align:left;"> .612 </td> <td style="text-align:left;"> 0.984 </td> <td style="text-align:left;"> 0.002 </td> </tr> <tr> <td style="text-align:left;"> Intercepts (first-order) </td> <td style="text-align:left;"> 276.824 </td> <td style="text-align:right;"> 143 </td> <td style="text-align:left;"> .026 </td> <td style="text-align:left;"> 0.983 </td> <td style="text-align:left;"> -0.001 </td> </tr> <tr> <td style="text-align:left;"> Latent means </td> <td style="text-align:left;"> 269.352 </td> <td style="text-align:right;"> 147 </td> <td style="text-align:left;"> .042 </td> <td style="text-align:left;"> 0.984 </td> <td style="text-align:left;"> 0.001 </td> </tr> <tr> <td style="text-align:left;"> Disturbances </td> <td style="text-align:left;"> 372.188 </td> <td style="text-align:right;"> 151 </td> <td style="text-align:left;"> < .001 </td> <td style="text-align:left;"> 0.972 </td> <td style="text-align:left;"> -0.013 </td> </tr> <tr> <td style="text-align:left;"> Residuals </td> <td style="text-align:left;"> 372.949 </td> <td style="text-align:right;"> 163 </td> <td style="text-align:left;"> .036 </td> <td style="text-align:left;"> 0.973 </td> <td style="text-align:left;"> 0.001 </td> </tr> </tbody> <tfoot> <tr> <td style="padding: 0; border:0;" colspan="100%"> <sup>a</sup> The `\chi_{text{scaled}}^{2}` column contains the robust test. The `p_{Deltachi^2}` column contains the robust difference test which is a function of two standard (not robust) statistics.</td> </tr> </tfoot> </table> --- class: inverse, center, middle # .white[Workers] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- # Sex Measurement Invariance <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:left;"> \(\chi^2_{scaled}\) </th> <th style="text-align:right;"> \(df_{scaled}\) </th> <th style="text-align:left;"> \(p_{\Delta\chi^2}\) </th> <th style="text-align:left;"> \(CFI_{scaled}\) </th> <th style="text-align:left;"> \(\Delta CFI_{scaled}\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Configural </td> <td style="text-align:left;"> 3,042.528 </td> <td style="text-align:right;"> 977 </td> <td style="text-align:left;"> - </td> <td style="text-align:left;"> 0.938 </td> <td style="text-align:left;"> - </td> </tr> <tr> <td style="text-align:left;"> Thresholds </td> <td style="text-align:left;"> 3,063.867 </td> <td style="text-align:right;"> 1037 </td> <td style="text-align:left;"> .174 </td> <td style="text-align:left;"> 0.940 </td> <td style="text-align:left;"> 0.001 </td> </tr> <tr> <td style="text-align:left;"> Factor loadings </td> <td style="text-align:left;"> 2,991.656 </td> <td style="text-align:right;"> 1064 </td> <td style="text-align:left;"> .715 </td> <td style="text-align:left;"> 0.943 </td> <td style="text-align:left;"> 0.003 </td> </tr> <tr> <td style="text-align:left;"> Structural weights </td> <td style="text-align:left;"> 2,936.027 </td> <td style="text-align:right;"> 1068 </td> <td style="text-align:left;"> .080 </td> <td style="text-align:left;"> 0.944 </td> <td style="text-align:left;"> 0.002 </td> </tr> <tr> <td style="text-align:left;"> Intercepts (first-order) </td> <td style="text-align:left;"> 2,990.975 </td> <td style="text-align:right;"> 1101 </td> <td style="text-align:left;"> < .001 </td> <td style="text-align:left;"> 0.944 </td> <td style="text-align:left;"> -0.001 </td> </tr> <tr> <td style="text-align:left;"> Latent means </td> <td style="text-align:left;"> 2,887.937 </td> <td style="text-align:right;"> 1107 </td> <td style="text-align:left;"> < .001 </td> <td style="text-align:left;"> 0.947 </td> <td style="text-align:left;"> 0.003 </td> </tr> <tr> <td style="text-align:left;"> Disturbances </td> <td style="text-align:left;"> 3,363.290 </td> <td style="text-align:right;"> 1112 </td> <td style="text-align:left;"> < .001 </td> <td style="text-align:left;"> 0.933 </td> <td style="text-align:left;"> -0.014 </td> </tr> <tr> <td style="text-align:left;"> Residuals </td> <td style="text-align:left;"> 2,931.484 </td> <td style="text-align:right;"> 1145 </td> <td style="text-align:left;"> < .001 </td> <td style="text-align:left;"> 0.947 </td> <td style="text-align:left;"> 0.014 </td> </tr> </tbody> <tfoot> <tr> <td style="padding: 0; border:0;" colspan="100%"> <sup>a</sup> The `\chi_{text{scaled}}^{2}` column contains the robust test. The `p_{Deltachi^2}` column contains the robust difference test which is a function of two standard (not robust) statistics.</td> </tr> </tfoot> </table> --- class: inverse, center, middle # .white[Validity Evidence based on the Relations to Other Variables] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- class: inverse, center, middle # .white[Students] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- # Latent Correlations The model presented the following goodness-of-fit indices `\((\chi^2_{scaled (2592)}=4,290.12;p< .001; CFI_{scaled}=0.925;\)` `\(TLI_{scaled}=0.922;NFI_{scaled}=0.831; SRMR=0.074;RMSEA_{scaled}=0.045;p_{(rmsea \leq 0.05)}> .999;\)` `\(90\%CI[0.043, 0.048])\)`. <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Latent Correlations</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> 1 </th> <th style="text-align:right;"> 2 </th> <th style="text-align:right;"> 3 </th> <th style="text-align:right;"> 4 </th> <th style="text-align:right;"> 5 </th> <th style="text-align:right;"> 6 </th> <th style="text-align:left;"> 7 </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Burnout (1) </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> -.77 </td> <td style="text-align:right;"> -.71 </td> <td style="text-align:right;"> -.77 </td> <td style="text-align:right;"> .86 </td> <td style="text-align:right;"> -.57 </td> <td style="text-align:left;"> .68 </td> </tr> <tr> <td style="text-align:left;"> Academic Engagement (2) </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> .69 </td> <td style="text-align:right;"> .62 </td> <td style="text-align:right;"> -.43 </td> <td style="text-align:right;"> .53 </td> <td style="text-align:left;"> -.55 </td> </tr> <tr> <td style="text-align:left;"> Satisfaction with Education (3) </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> .65 </td> <td style="text-align:right;"> -.41 </td> <td style="text-align:right;"> .45 </td> <td style="text-align:left;"> -.61 </td> </tr> <tr> <td style="text-align:left;"> Psychological Capital (4) </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> -.72 </td> <td style="text-align:right;"> .48 </td> <td style="text-align:left;"> -.62 </td> </tr> <tr> <td style="text-align:left;"> General Distress (5) </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> -.52 </td> <td style="text-align:left;"> .51 </td> </tr> <tr> <td style="text-align:left;"> Social Support (6) </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:left;"> -.39 </td> </tr> <tr> <td style="text-align:left;"> Dropout Intention (7) </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:left;"> </td> </tr> </tbody> </table> --- # Reliabillity ## First-order The model's first-order internal consistency estimates are presented in the following table. <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Reliability estimates: First-order</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> Ex </th> <th style="text-align:right;"> Md </th> <th style="text-align:right;"> Ci </th> <th style="text-align:right;"> Ei </th> <th style="text-align:right;"> B </th> <th style="text-align:right;"> E </th> <th style="text-align:right;"> C </th> <th style="text-align:right;"> Satedu </th> <th style="text-align:right;"> H </th> <th style="text-align:right;"> R </th> <th style="text-align:right;"> O </th> <th style="text-align:right;"> D </th> <th style="text-align:right;"> A </th> <th style="text-align:right;"> S </th> <th style="text-align:right;"> Socsup </th> <th style="text-align:right;"> Dropint </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> \(\omega_{ord}\) </td> <td style="text-align:right;"> 0.78 </td> <td style="text-align:right;"> 0.79 </td> <td style="text-align:right;"> 0.81 </td> <td style="text-align:right;"> 0.9 </td> <td style="text-align:right;"> 0.73 </td> <td style="text-align:right;"> 0.8 </td> <td style="text-align:right;"> 0.78 </td> <td style="text-align:right;"> 0.79 </td> <td style="text-align:right;"> 0.77 </td> <td style="text-align:right;"> 0.77 </td> <td style="text-align:right;"> 0.83 </td> <td style="text-align:right;"> 0.9 </td> <td style="text-align:right;"> 0.88 </td> <td style="text-align:right;"> 0.88 </td> <td style="text-align:right;"> 0.85 </td> <td style="text-align:right;"> 0.91 </td> </tr> </tbody> </table> ## Second-order The model's second-order internal consistency estimates are presented in the following table. <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Reliability estimates: Second-order</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> \(\omega_{L1}\) </th> <th style="text-align:right;"> \(\omega_{L2}\) </th> <th style="text-align:right;"> \(\omega_{Partial~L1}\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Burnout </td> <td style="text-align:right;"> 0.82 </td> <td style="text-align:right;"> 0.87 </td> <td style="text-align:right;"> 0.94 </td> </tr> </tbody> </table> --- class: inverse, center, middle # .white[Workers] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- # Latent Correlations The model presented the following goodness-of-fit indices `\((\chi^2_{scaled (1059)}=2,383.17;p< .001; CFI_{scaled}=0.954;\)` `\(TLI_{scaled}=0.951;NFI_{scaled}=0.920; SRMR=0.064;RMSEA_{scaled}=0.061; p_{(rmsea \leq 0.05)}< .001;\)` `\(90\%CI[0.058, 0.064])\)`. <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Latent Correlations</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> 1 </th> <th style="text-align:right;"> 2 </th> <th style="text-align:right;"> 3 </th> <th style="text-align:right;"> 4 </th> <th style="text-align:right;"> 5 </th> <th style="text-align:right;"> 6 </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Core (1) </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> </tr> <tr> <td style="text-align:left;"> Secondary (2) </td> <td style="text-align:right;"> .80 </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> </tr> <tr> <td style="text-align:left;"> Colleagues Incivility (3) </td> <td style="text-align:right;"> .47 </td> <td style="text-align:right;"> .32 </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> </tr> <tr> <td style="text-align:left;"> Clients Incivility (4) </td> <td style="text-align:right;"> .47 </td> <td style="text-align:right;"> .41 </td> <td style="text-align:right;"> .35 </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> </tr> <tr> <td style="text-align:left;"> Negative Change (5) </td> <td style="text-align:right;"> -.52 </td> <td style="text-align:right;"> -.34 </td> <td style="text-align:right;"> -.39 </td> <td style="text-align:right;"> -.32 </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> </td> </tr> <tr> <td style="text-align:left;"> Bureaucracy (6) </td> <td style="text-align:right;"> .58 </td> <td style="text-align:right;"> .39 </td> <td style="text-align:right;"> .39 </td> <td style="text-align:right;"> .34 </td> <td style="text-align:right;"> -.59 </td> <td style="text-align:right;"> </td> </tr> </tbody> </table> --- # Reliability ## First-order The model's first-order internal consistency estimates are presented in the following table. <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Reliability estimates: First-order</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> Ex </th> <th style="text-align:right;"> Md </th> <th style="text-align:right;"> Ci </th> <th style="text-align:right;"> Ei </th> <th style="text-align:right;"> Pd </th> <th style="text-align:right;"> Pc </th> <th style="text-align:right;"> Inc_col </th> <th style="text-align:right;"> Inc_cli </th> <th style="text-align:right;"> Nc </th> <th style="text-align:right;"> Bur </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> \(\omega_{ord}\) </td> <td style="text-align:right;"> 0.96 </td> <td style="text-align:right;"> 0.9 </td> <td style="text-align:right;"> 0.88 </td> <td style="text-align:right;"> 0.9 </td> <td style="text-align:right;"> 0.89 </td> <td style="text-align:right;"> 0.83 </td> <td style="text-align:right;"> 0.91 </td> <td style="text-align:right;"> 0.88 </td> <td style="text-align:right;"> 0.39 </td> <td style="text-align:right;"> 0.72 </td> </tr> </tbody> </table> ## Second-order The model's second-order internal consistency estimates are presented in the following table. <table class="table" style="color: black; margin-left: auto; margin-right: auto;"> <caption>Reliability estimates: Second-order</caption> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> \(\omega_{L1}\) </th> <th style="text-align:right;"> \(\omega_{L2}\) </th> <th style="text-align:right;"> \(\omega_{Partial~L1}\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Core </td> <td style="text-align:right;"> 0.90 </td> <td style="text-align:right;"> 0.93 </td> <td style="text-align:right;"> 0.98 </td> </tr> <tr> <td style="text-align:left;"> Secondary </td> <td style="text-align:right;"> 0.89 </td> <td style="text-align:right;"> 0.94 </td> <td style="text-align:right;"> 0.94 </td> </tr> </tbody> </table> --- class: inverse, center, middle # .white[Discussion] <html><div style='float:left'></div><hr color='#EB811B' size=1px width=800px></html> --- # Discussion ## BAT-12 Student's Version Original dimensionality ✅ Internal consistency `\((\omega_i \geq .78)\)` ✅ Measurement invariance across sex and longitudinal measurements ✅ Strong negative latent correlations with academic engagement, satisfaction with education, psychological capital, and social support while revealing strong positive latent correlations with psychological distress and dropout intention. ✅ --- # Discussion ## BAT-S Workers's Version Original dimensionality ✅ Items' mean square fit statistics `\((M_{infit} = 0.99; SD_{infit} = 0.18; M_{outfit} = 0.98; SD_{outfit} = 0.15)\)` ✅ Internal consistency `\((\omega_i \geq .79)\)` ✅ Measurement invariance across sex ✅ Core symptoms exhibited moderate/strong correlations with colleagues’ incivility, clients’ incivility, negative change, and bureaucracy, while the secondary symptoms presented weaker correlations with the same variables. ✅ --- # Conclusion Once again BAT presents good psychometric properties. -- The samples are not representative of either the Portuguese population of workers or university students. --- # References Casanova, J. R., C. M. A. Gomes, et al. (2021). "Dimensionality and reliability of a screening instrument for students at-risk of dropping out from higher education". In: _Studies in Educational Evaluation_ 68, p. 100957. ISSN: 0191491X. DOI: [10.1016/j.stueduc.2020.100957](https://doi.org/10.1016%2Fj.stueduc.2020.100957). URL: [https://linkinghub.elsevier.com/retrieve/pii/S0191491X20302054](https://linkinghub.elsevier.com/retrieve/pii/S0191491X20302054). Finney, S. J. and C. DiStefano (2013). "Non-normal and categorical data in structural equation modeling". In: _Structural equation modeling: A second course_. Ed. by G. R. Hancock and R. O. Mueller. 2nd ed. Charlotte, NC: Information Age Publishing. Chap. 11, pp. 439-492. Kliem, S., T. Mößle, et al. (2015). "A brief form of the Perceived Social Support Questionnaire (F-SozU) was developed, validated, and standardized". In: _Journal of Clinical Epidemiology_ 68.5, pp. 551-562. ISSN: 08954356. DOI: [10.1016/j.jclinepi.2014.11.003](https://doi.org/10.1016%2Fj.jclinepi.2014.11.003). URL: [https://linkinghub.elsevier.com/retrieve/pii/S0895435614004508](https://linkinghub.elsevier.com/retrieve/pii/S0895435614004508). Lorenz, T., L. Hagitte, et al. (2022). "Validation of the revised Compound PsyCap Scale (CPC-12R) and its measurement invariance across the US and Germany". In: _Frontiers in Psychology_ 13. ISSN: 1664-1078. DOI: [10.3389/fpsyg.2022.1075031](https://doi.org/10.3389%2Ffpsyg.2022.1075031). URL: [https://www.frontiersin.org/articles/10.3389/fpsyg.2022.1075031/full](https://www.frontiersin.org/articles/10.3389/fpsyg.2022.1075031/full). Lovibond, P. and S. Lovibond (1995). "The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories". In: _Behaviour Research and Therapy_ 33.3, pp. 335-343. ISSN: 00057967. DOI: [10.1016/0005-7967(94)00075-U](https://doi.org/10.1016%2F0005-7967%2894%2900075-U). URL: [https://linkinghub.elsevier.com/retrieve/pii/000579679400075U](https://linkinghub.elsevier.com/retrieve/pii/000579679400075U). --- # References Marôco, J., A. L. Marôco, et al. (2016). "University student's engagement: Development of the University Student Engagement Inventory (USEI)". In: _Psicologia: Reflex~ao e Cr\'itica_ 29.21, pp. 1-12. ISSN: 1678-7153. DOI: [10.1186/s41155-016-0042-8](https://doi.org/10.1186%2Fs41155-016-0042-8). URL: [http://prc.springeropen.com/articles/10.1186/s41155-016-0042-8](http://prc.springeropen.com/articles/10.1186/s41155-016-0042-8). Matthews, R. A. and K. Ritter (2019). "Applying adaptation theory to understand experienced incivility processes: Testing the repeated exposure hypothesis.". In: _Journal of Occupational Health Psychology_ 24.2, pp. 270-285. ISSN: 1939-1307. DOI: [10.1037/ocp0000123](https://doi.org/10.1037%2Focp0000123). URL: [https://doi.apa.org/doi/10.1037/ocp0000123](https://doi.apa.org/doi/10.1037/ocp0000123). Posit Team (2023). _RStudio: Integrated development for R (version 2023.3.0.386) [Computer software]_. Boston, MA. URL: [http://www.posit.co/](http://www.posit.co/). R Core Team (2023). _R: A language and environment for statistical computing (version 4.3.1) [Computer software]_. Vienna. URL: [https://www.r-project.org/](https://www.r-project.org/). Schaufeli, W. B. (2015). "Engaging leadership in the job demands-resources model". In: _Career Development International_ 20.5, pp. 446-463. ISSN: 13620436. DOI: [10.1108/CDI-02-2015-0025](https://doi.org/10.1108%2FCDI-02-2015-0025). eprint: A luxury brand management framework built from historical review and case study analysis. URL: [http://www.emeraldinsight.com/doi/10.1108/CDI-02-2015-0025](http://www.emeraldinsight.com/doi/10.1108/CDI-02-2015-0025). --- # References Schaufeli, W. B., S. Desart, et al. (2020). "Burnout Assessment Tool (BAT)—Development, validity, and reliability". In: _International Journal of Environmental Research and Public Health_ 17.24, pp. 1-21. ISSN: 1660-4601. DOI: [10.3390/ijerph17249495](https://doi.org/10.3390%2Fijerph17249495). URL: [https://www.mdpi.com/1660-4601/17/24/9495](https://www.mdpi.com/1660-4601/17/24/9495). --- # Questions/comments .can-edit.key-measurement[ - ... ]