Cell Line L7 Analysis

1. load libraries

2. Load Seurat Object

#Load Seurat Object L7
load("../Documents/1-SS-STeps/4-Analysis_and_Robj_Marie/analyse juillet 2023/ObjetsR/L7.Robj")


L7
## An object of class Seurat 
## 36629 features across 5331 samples within 2 assays 
## Active assay: RNA (36601 features, 0 variable features)
##  2 layers present: counts, data
##  1 other assay present: ADT

3. QC

# Set identity classes to an existing column in meta data
Idents(object = L7) <- "cell_line"

L7[["percent.rb"]] <- PercentageFeatureSet(L7, pattern = "^RP[SL]")

VlnPlot(L7, features = c("nFeature_RNA", 
                                         "nCount_RNA", 
                                         "percent.mito",
                                         "percent.rb"), 
                            ncol = 4, pt.size = 0.1) & 
              theme(plot.title = element_text(size=10))

FeatureScatter(L7, feature1 = "percent.mito", 
                                  feature2 = "percent.rb")

VlnPlot(L7, features = c("nFeature_RNA", 
                                    "nCount_RNA", 
                                    "percent.mito"), 
                                      ncol = 3)

FeatureScatter(L7, 
               feature1 = "percent.mito", 
               feature2 = "percent.rb") +
        geom_smooth(method = 'lm')
## `geom_smooth()` using formula = 'y ~ x'

FeatureScatter(L7, 
               feature1 = "nCount_RNA", 
               feature2 = "nFeature_RNA") +
        geom_smooth(method = 'lm')
## `geom_smooth()` using formula = 'y ~ x'

##FeatureScatter is typically used to visualize feature-feature relationships ##for anything calculated by the object, ##i.e. columns in object metadata, PC scores etc.

FeatureScatter(L7, 
               feature1 = "nCount_RNA", 
               feature2 = "percent.mito")+
  geom_smooth(method = 'lm')
## `geom_smooth()` using formula = 'y ~ x'

FeatureScatter(L7, 
               feature1 = "nCount_RNA", 
               feature2 = "nFeature_RNA")+
  geom_smooth(method = 'lm')
## `geom_smooth()` using formula = 'y ~ x'

## Assign Cell-Cycle Scores

## Running SCTransform on assay: RNA
## vst.flavor='v2' set. Using model with fixed slope and excluding poisson genes.
## Calculating cell attributes from input UMI matrix: log_umi
## Variance stabilizing transformation of count matrix of size 18407 by 5331
## Model formula is y ~ log_umi
## Get Negative Binomial regression parameters per gene
## Using 2000 genes, 5000 cells
## Found 112 outliers - those will be ignored in fitting/regularization step
## Second step: Get residuals using fitted parameters for 18407 genes
## Computing corrected count matrix for 18407 genes
## Calculating gene attributes
## Wall clock passed: Time difference of 22.08922 secs
## Determine variable features
## Place corrected count matrix in counts slot
## Set default assay to SCT
## Warning: The following features are not present in the object: MLF1IP, not
## searching for symbol synonyms
## Warning: The following features are not present in the object: FAM64A, HN1, not
## searching for symbol synonyms

4. Normalize data

# Apply SCTransform
L7 <- SCTransform(L7, vars.to.regress = c("percent.rb","percent.mito", "CC.Difference"), 
                  do.scale=TRUE, 
                  do.center=TRUE, 
                  verbose = TRUE)
## Running SCTransform on assay: RNA
## vst.flavor='v2' set. Using model with fixed slope and excluding poisson genes.
## Calculating cell attributes from input UMI matrix: log_umi
## Variance stabilizing transformation of count matrix of size 18407 by 5331
## Model formula is y ~ log_umi
## Get Negative Binomial regression parameters per gene
## Using 2000 genes, 5000 cells
## Found 112 outliers - those will be ignored in fitting/regularization step
## Second step: Get residuals using fitted parameters for 18407 genes
## Computing corrected count matrix for 18407 genes
## Calculating gene attributes
## Wall clock passed: Time difference of 17.75149 secs
## Determine variable features
## Regressing out percent.rb, percent.mito, CC.Difference
## Centering and scaling data matrix
## Place corrected count matrix in counts slot
## Set default assay to SCT

5. Perform PCA

Variables_genes <- L7@assays$SCT@var.features

# Exclude genes starting with "HLA-" AND "Xist" AND "TRBV, TRAV"
Variables_genes_after_exclusion <- Variables_genes[!grepl("^HLA-|^XIST|^TRBV|^TRAV", Variables_genes)]


# These are now standard steps in the Seurat workflow for visualization and clustering
L7 <- RunPCA(L7,
             features = Variables_genes_after_exclusion,
             do.print = TRUE, 
             pcs.print = 1:5, 
             genes.print = 15,
             npcs = 50)
## PC_ 1 
## Positive:  HSP90AB1, NPM1, HSPD1, HSPE1, NCL, HSP90AA1, HSPA9, SRM, HMGA1, PPP1R14B 
##     CHCHD10, EIF4G1, NME1, NME2, CANX, RPL23, C1QBP, FCER2, ATP5F1B, PABPC1 
##     PPBP, MIR155HG, LRPPRC, CCT5, TOMM40, RPL35A, PPP2R2B, HNRNPAB, MTDH, RPL22L1 
## Negative:  S100A4, IL32, S100A6, SH3BGRL3, S100A11, LAPTM5, ARHGDIB, TMSB4X, FXYD5, B2M 
##     CRIP1, CD52, IFITM2, LGALS1, LGALS3, GMFG, CORO1A, COTL1, LCK, EMP3 
##     RAC2, LSP1, S1PR4, ACTB, CNN2, TMSB10, ITM2B, CD99, IFITM1, EVL 
## PC_ 2 
## Positive:  PDE4D, DENND4A, MBNL1, RABGAP1L, NCALD, GRAMD1B, WWOX, MACROD2, ELMO1, NEAT1 
##     SPOCK1, RAD51B, CDKAL1, ARHGAP15, MSC-AS1, PDE7A, LRBA, TRIO, RPS6KA5, INPP4B 
##     PVT1, AHR, EXT1, ATP8B4, PDE3B, MACF1, SOS1, DOCK2, CASK, FTX 
## Negative:  TUBA1B, UBE2S, JPT1, HSPE1, PRELID1, CYCS, PTMA, H2AFZ, ATP5MC3, HSP90AA1 
##     NDUFAB1, HMGB1, RPL35, TUBB4B, TOMM40, RANBP1, EIF5A, PPIB, MRPL12, CYC1 
##     HNRNPAB, TXN, NOP16, NME1, CDC20, RPL7, ATP5F1B, PPP1R14B, DYNLL1, EIF5 
## PC_ 3 
## Positive:  IQCG, CSF2, TNFSF9, IL2RG, SRGN, IFNG, IL32, PHLDA1, CD2, PGK1 
##     CCL3, BNIP3, PKM, PGAM1, LINC01480, CCL1, CD40LG, PLIN2, CCL4, FAM162A 
##     RGCC, GADD45G, ZFP36L1, KLF6, SLC16A3, C4orf3, CD82, DUSP4, LDHA, SH3BGRL3 
## Negative:  RRM2, TYMS, STMN1, HIST1H4C, SMC4, TUBB, TUBA1B, HIST1H1E, ATAD2, MKI67 
##     H2AFZ, HIST1H1C, HMGB2, LMNB1, HIST1H1D, PCLAF, PKMYT1, NUSAP1, TOP2A, TK1 
##     PCNA, KIFC1, H2AFX, DHFR, DUT, HIST2H2AC, ESCO2, CDCA2, ASF1B, ZWINT 
## PC_ 4 
## Positive:  CCR7, CD74, KRT7, DNAJC5B, CYP1B1, EBI3, MT2A, AC099552.1, CD44, AC097518.2 
##     BIRC3, PRDX1, AC011990.1, NFKB2, BATF3, KCNMA1, ITPR1, IGFBP4, LINC02341, AC114977.1 
##     BLK, AKR1A1, CSF2, CBR3, NFKBIA, CCL5, LTA, CCL1, CD82, TNFSF11 
## Negative:  BNIP3, FAM162A, LDHA, PLIN2, PGK1, ENO1, GPI, GAPDH, UBALD2, TPI1 
##     BNIP3L, HILPDA, MIF, PTPRR, PFKFB4, SLC2A3, MXI1, CYTIP, INSIG2, ALDOA 
##     AK4, KIF2A, NMU, PGAM1, RIMKLA, PLAAT3, SLC16A3, C4orf3, PHF19, P4HA1 
## PC_ 5 
## Positive:  CDC20, MRPS12, RNF213, UBE2S, YWHAZ, CCNB1, DANCR, EFHD2, S100A11, CAPN2 
##     SFPQ, NOP16, IQGAP2, SLC9A3R1, BAK1, ITGA4, CELF2, NMU, LMNA, DYNLL1 
##     SYNCRIP, TENM3, SH3BP1, FUT7, PTTG1, PLK1, CCND2, ARL6IP1, HSPH1, INPP4A 
## Negative:  CD74, HIST1H4C, HIST1H1E, LDHA, ARID5A, FAM162A, HIST1H1C, GAPDH, BNIP3, PKM 
##     CCR7, RRM2, TUBB, CD70, HILPDA, MT2A, PGK1, MIF, TRAF1, BNIP3L 
##     EEF1A1, CCL5, ENO1, KIF2A, DUT, PMAIP1, ALDOC, TYMS, PFKFB4, STAT1
# determine dimensionality of the data
ElbowPlot(L7, ndims =50)

# Perform PCA TEST

library(ggplot2)
library(RColorBrewer)  

# Assuming you have 10 different cell lines, generating a color palette with 10 colors
cell_line_colors <- brewer.pal(10, "Set3")

# Assuming L7$cell_line is a factor or character vector containing cell line names
data <- as.data.frame(table(L7$cell_line))
colnames(data) <- c("cell_line", "nUMI")  # Change column name to nUMI

ncells <- ggplot(data, aes(x = cell_line, y = nUMI, fill = cell_line)) + 
  geom_col() +
  theme_classic() +
  geom_text(aes(label = nUMI), 
            position = position_dodge(width = 0.9), 
            vjust = -0.25) +
  scale_fill_manual(values = cell_line_colors) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1),
        plot.title = element_text(hjust = 0.5)) +  # Adjust the title position
  ggtitle("Filtered cells per sample") +
  xlab("Cell lines") +  # Adjust x-axis label
  ylab("Frequency")    # Adjust y-axis label

print(ncells)

# TEST-1
# given that the output of RunPCA is "pca"
# replace "so" by the name of your seurat object

pct <- L7[["pca"]]@stdev / sum(L7[["pca"]]@stdev) * 100
cumu <- cumsum(pct) # Calculate cumulative percents for each PC
# Determine the difference between variation of PC and subsequent PC
co2 <- sort(which((pct[-length(pct)] - pct[-1]) > 0.1), decreasing = T)[1] + 1
# last point where change of % of variation is more than 0.1%. -> co2
co2
## [1] 16
# TEST-2
# get significant PCs
stdv <- L7[["pca"]]@stdev
sum.stdv <- sum(L7[["pca"]]@stdev)
percent.stdv <- (stdv / sum.stdv) * 100
cumulative <- cumsum(percent.stdv)
co1 <- which(cumulative > 90 & percent.stdv < 5)[1]
co2 <- sort(which((percent.stdv[1:length(percent.stdv) - 1] - 
                       percent.stdv[2:length(percent.stdv)]) > 0.1), 
              decreasing = T)[1] + 1
min.pc <- min(co1, co2)
min.pc
## [1] 16
# Create a dataframe with values
plot_df <- data.frame(pct = percent.stdv, 
           cumu = cumulative, 
           rank = 1:length(percent.stdv))

# Elbow plot to visualize 
  ggplot(plot_df, aes(cumulative, percent.stdv, label = rank, color = rank > min.pc)) + 
  geom_text() + 
  geom_vline(xintercept = 90, color = "grey") + 
  geom_hline(yintercept = min(percent.stdv[percent.stdv > 5]), color = "grey") +
  theme_bw()

6. Clustering

L7 <- FindNeighbors(L7, 
                    dims = 1:min.pc, 
                    verbose = FALSE)

# understanding resolution
L7 <- FindClusters(L7, 
                  resolution = c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
                                0.7,0.8, 0.9, 1, 1.1, 1.2))
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 5331
## Number of edges: 182548
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9247
## Number of communities: 4
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 5331
## Number of edges: 182548
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8913
## Number of communities: 7
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 5331
## Number of edges: 182548
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8692
## Number of communities: 8
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 5331
## Number of edges: 182548
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8478
## Number of communities: 9
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 5331
## Number of edges: 182548
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8274
## Number of communities: 10
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 5331
## Number of edges: 182548
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8137
## Number of communities: 10
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 5331
## Number of edges: 182548
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.7992
## Number of communities: 10
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 5331
## Number of edges: 182548
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.7850
## Number of communities: 11
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 5331
## Number of edges: 182548
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.7726
## Number of communities: 12
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 5331
## Number of edges: 182548
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.7612
## Number of communities: 14
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 5331
## Number of edges: 182548
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.7510
## Number of communities: 13
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 5331
## Number of edges: 182548
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.7426
## Number of communities: 15
## Elapsed time: 0 seconds
# non-linear dimensionality reduction --------------
L7 <- RunUMAP(L7, 
              dims = 1:min.pc,
              verbose = FALSE)
## Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
## To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
## This message will be shown once per session
# note that you can set `label = TRUE` or use the Label Clusters function to help label
# individual clusters
DimPlot(L7,group.by = "cell_line", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L7,
        group.by = "SCT_snn_res.0.1", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L7,
        group.by = "SCT_snn_res.0.2", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L7,
        group.by = "SCT_snn_res.0.3", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L7,
        group.by = "SCT_snn_res.0.4", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L7,
        group.by = "SCT_snn_res.0.5", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L7,
        group.by = "SCT_snn_res.0.6", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L7,
        group.by = "SCT_snn_res.0.7", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L7,
        group.by = "SCT_snn_res.0.8", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L7,
        group.by = "SCT_snn_res.0.9", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L7,
        group.by = "SCT_snn_res.1", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L7,
        group.by = "SCT_snn_res.1.1", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L7,
        group.by = "SCT_snn_res.1.2", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

7. Azimuth Annotation

InstallData("pbmcref")
## Warning: The following packages are already installed and will not be
## reinstalled: pbmcref
# The RunAzimuth function can take a Seurat object as input
L7 <- RunAzimuth(L7, reference = "pbmcref")
## Warning: Overwriting miscellanous data for model
## Warning: Adding a dimensional reduction (refUMAP) without the associated assay
## being present
## Warning: Adding a dimensional reduction (refUMAP) without the associated assay
## being present
## detected inputs from HUMAN with id type Gene.name
## reference rownames detected HUMAN with id type Gene.name
## Normalizing query using reference SCT model
## Warning: 113 features of the features specified were not present in both the reference query assays. 
## Continuing with remaining 4887 features.
## Projecting cell embeddings
## Finding query neighbors
## Finding neighborhoods
## Finding anchors
##  Found 210 anchors
## Finding integration vectors
## Finding integration vector weights
## Predicting cell labels
## Predicting cell labels
## Warning: Feature names cannot have underscores ('_'), replacing with dashes
## ('-')
## Predicting cell labels
## Warning: Feature names cannot have underscores ('_'), replacing with dashes
## ('-')
## 
## Integrating dataset 2 with reference dataset
## Finding integration vectors
## Integrating data
## Warning: Keys should be one or more alphanumeric characters followed by an
## underscore, setting key from integrated_dr_ to integrateddr_
## Computing nearest neighbors
## Running UMAP projection
## Warning in RunUMAP.default(object = neighborlist, reduction.model =
## reduction.model, : Number of neighbors between query and reference is not equal
## to the number of neighbors within reference
## 16:39:16 Read 5331 rows
## 16:39:16 Processing block 1 of 1
## 16:39:16 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 20
## 16:39:16 Initializing by weighted average of neighbor coordinates using 1 thread
## 16:39:16 Commencing optimization for 67 epochs, with 106620 positive edges
## 16:39:16 Finished
## Warning: No assay specified, setting assay as RNA by default.
## Projecting reference PCA onto query
## Finding integration vector weights
## Projecting back the query cells into original PCA space
## Finding integration vector weights
## Computing scores:
##     Finding neighbors of original query cells
##     Finding neighbors of transformed query cells
##     Computing query SNN
##     Determining bandwidth and computing transition probabilities
## Total elapsed time: 1.81497502326965
DimPlot(L7, group.by = "predicted.celltype.l2", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = F)

DimPlot (L7, group.by = "predicted.celltype.l2", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T)

8. Cell type annotation using ProjectTils

#Load reference atlas and query data
ref <- readRDS(file = "CD4T_human_ref_v1.rds")

#Run Projection algorithm
query.projected <- Run.ProjecTILs(L7, ref = ref)
##   |                                                                              |                                                                      |   0%[1] "Using assay SCT for query"
## Pre-filtering cells with scGate...
## 
## ### Detected a total of 1406 pure 'Target' cells (26.37% of total)
## [1] "3925 out of 5331 ( 74% ) non-pure cells removed. Use filter.cells=FALSE to avoid pre-filtering"
## [1] "Aligning query to reference map for batch-correction..."
## Warning: Layer counts isn't present in the assay object[[assay]]; returning
## NULL
## Preparing PCA embeddings for objects...
## Warning: Number of dimensions changing from 50 to 20
## 
## Projecting corrected query onto Reference PCA space
## 
## Projecting corrected query onto Reference UMAP space
## Warning: Not all features provided are in this Assay object, removing the
## following feature(s): CXCL13, GZMK, MT1G, CD177, CCL22, G0S2, IGFL2, GZMH,
## TRDC, CH25H, FOXP3, IL10, IL1RL1, IL1R2, ACTG2, KLRB1, DIRAS3, KLRD1, THBS1,
## NPPC, IL17RB, COCH, FXYD2, CD200, HOPX, MS4A6A, LAYN, TYROBP, TUBA3D, IL2,
## FCER1G, PVALB, EOMES, MRC1, TASL, H1-4, METTL7A, ZNF80, LRRC32, H2AZ1, ACP5,
## GPR25, ELAPOR1, CCL3L3, POLR1F, CXCR5, MMP9, FCRL3, ADTRP, IL1R1, PECAM1, AHSP,
## CCR2, GIMAP4, HTRA1, LIMS2, H1-2, H1-0, FLT1, WARS1, H1-3, CAMK1, ASCL2, DTHD1,
## H2BC11, NELL2, GPX1, STAC, H2AC6, IRAG2, H1-10, SCML1, PTGIR, CLEC7A, DAPK2,
## PON2, H3C10, HS3ST3B1, FBLN7, TRIM2, FGFBP2, IL22, KRT81, SLC28A3, IL13, ECEL1,
## HES1, HSD11B1, CPE, ARC, NLRP3, NT5E, H4C3, HS3ST1, GSTM2
##   |                                                                              |======================================================================| 100%
## Creating slots functional.cluster and functional.cluster.conf in query object
#reference atlas
DimPlot(ref, label = T)

#Visualize projection
plot.projection(ref, query.projected, linesize = 0.5, pointsize = 0.5)

#Plot the predicted composition of the query in terms of reference T cell subtypes
plot.statepred.composition(ref, query.projected, metric = "Percent")

L7 <- ProjecTILs.classifier(query = L7, ref = ref)
##   |                                                                              |                                                                      |   0%[1] "Using assay SCT for query"
## Pre-filtering cells with scGate...
## 
## ### Detected a total of 1406 pure 'Target' cells (26.37% of total)
## [1] "3925 out of 5331 ( 74% ) non-pure cells removed. Use filter.cells=FALSE to avoid pre-filtering"
## [1] "Aligning query to reference map for batch-correction..."
## Warning: Layer counts isn't present in the assay object[[assay]]; returning
## NULL
## Preparing PCA embeddings for objects...
## Warning: Number of dimensions changing from 50 to 20
## 
## Projecting corrected query onto Reference PCA space
## 
## Projecting corrected query onto Reference UMAP space
## Warning: Not all features provided are in this Assay object, removing the
## following feature(s): CXCL13, GZMK, MT1G, CD177, CCL22, G0S2, IGFL2, GZMH,
## TRDC, CH25H, FOXP3, IL10, IL1RL1, IL1R2, ACTG2, KLRB1, DIRAS3, KLRD1, THBS1,
## NPPC, IL17RB, COCH, FXYD2, CD200, HOPX, MS4A6A, LAYN, TYROBP, TUBA3D, IL2,
## FCER1G, PVALB, EOMES, MRC1, TASL, H1-4, METTL7A, ZNF80, LRRC32, H2AZ1, ACP5,
## GPR25, ELAPOR1, CCL3L3, POLR1F, CXCR5, MMP9, FCRL3, ADTRP, IL1R1, PECAM1, AHSP,
## CCR2, GIMAP4, HTRA1, LIMS2, H1-2, H1-0, FLT1, WARS1, H1-3, CAMK1, ASCL2, DTHD1,
## H2BC11, NELL2, GPX1, STAC, H2AC6, IRAG2, H1-10, SCML1, PTGIR, CLEC7A, DAPK2,
## PON2, H3C10, HS3ST3B1, FBLN7, TRIM2, FGFBP2, IL22, KRT81, SLC28A3, IL13, ECEL1,
## HES1, HSD11B1, CPE, ARC, NLRP3, NT5E, H4C3, HS3ST1, GSTM2
##   |                                                                              |======================================================================| 100%
## Creating slots functional.cluster and functional.cluster.conf in query object
UMAPPlot(L7, group.by = "functional.cluster", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T)

9.Cell type annotation using SingleR

#get reference datasets from celldex package

monaco.ref <- celldex::MonacoImmuneData()
## see ?celldex and browseVignettes('celldex') for documentation
## loading from cache
## see ?celldex and browseVignettes('celldex') for documentation
## loading from cache
hpca.ref <- celldex::HumanPrimaryCellAtlasData()
## see ?celldex and browseVignettes('celldex') for documentation
## loading from cache
## see ?celldex and browseVignettes('celldex') for documentation
## loading from cache
dice.ref <- celldex::DatabaseImmuneCellExpressionData()
## see ?celldex and browseVignettes('celldex') for documentation
## loading from cache
## see ?celldex and browseVignettes('celldex') for documentation
## loading from cache
bpe.ref <- celldex::BlueprintEncodeData()
## see ?celldex and browseVignettes('celldex') for documentation
## loading from cache
## see ?celldex and browseVignettes('celldex') for documentation
## loading from cache
#convert our Seurat object to single cell experiment (SCE)
sce <- as.SingleCellExperiment(DietSeurat(L7))

#using SingleR
monaco.main <- SingleR(test = sce,assay.type.test = 1,ref = monaco.ref,labels = monaco.ref$label.main)
monaco.fine <- SingleR(test = sce,assay.type.test = 1,ref = monaco.ref,labels = monaco.ref$label.fine)
hpca.main <- SingleR(test = sce,assay.type.test = 1,ref = hpca.ref,labels = hpca.ref$label.main)
hpca.fine <- SingleR(test = sce,assay.type.test = 1,ref = hpca.ref,labels = hpca.ref$label.fine)
dice.main <- SingleR(test = sce,assay.type.test = 1,ref = dice.ref,labels = dice.ref$label.main)
dice.fine <- SingleR(test = sce,assay.type.test = 1,ref = dice.ref,labels = dice.ref$label.fine)
bpe.main <- SingleR(test = sce,assay.type.test = 1,ref = bpe.ref,labels = bpe.ref$label.main)
bpe.fine <- SingleR(test = sce,assay.type.test = 1,ref = bpe.ref,labels = bpe.ref$label.fine)


#summary of general cell type annotations

#table(monaco.main$pruned.labels)
#table(hpca.main$pruned.labels)
#table(dice.main$pruned.labels)
#table(bpe.main$pruned.labels)

#The finer cell types annotations are you after, the harder they are to get reliably. 
#This is where comparing many databases, as well as using individual markers from literature, 
#would all be very valuable.

#table(monaco.fine$pruned.labels)
#table(hpca.fine$pruned.labels)
#table(dice.fine$pruned.labels)
#table(bpe.fine$pruned.labels)



#add the annotations to the Seurat object metadata
L7@meta.data$monaco.main <- monaco.main$pruned.labels
L7@meta.data$monaco.fine <- monaco.fine$pruned.labels
#
L7@meta.data$hpca.main   <- hpca.main$pruned.labels
L7@meta.data$hpca.fine   <- hpca.fine$pruned.labels
#  
L7@meta.data$dice.main   <- dice.main$pruned.labels
L7@meta.data$dice.fine   <- dice.fine$pruned.labels
# 
L7@meta.data$bpe.main   <- bpe.main$pruned.labels
L7@meta.data$bpe.fine   <- bpe.fine$pruned.labels

# Monaco Annotations
DimPlot(L7, group.by = "monaco.main", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = F)

DimPlot(L7, group.by = "monaco.main", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L7, group.by = "monaco.fine", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = F)

DimPlot(L7, group.by = "monaco.fine", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)
## Warning: ggrepel: 1 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

# HPCA Annotations
DimPlot(L7, group.by = "hpca.main", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)
## Warning: ggrepel: 2 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

DimPlot(L7, group.by = "hpca.fine", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = F)

DimPlot(L7, group.by = "hpca.fine", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

# DICE Annotations
DimPlot(L7, group.by = "dice.main", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L7, group.by = "dice.fine", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = F)

DimPlot(L7, group.by = "dice.fine", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

# BPE Annotations
DimPlot(L7, group.by = "bpe.main", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L7, group.by = "bpe.fine", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = F)

DimPlot(L7, group.by = "bpe.fine", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

10. clusTree

library(clustree)
## Loading required package: ggraph
## 
## Attaching package: 'ggraph'
## The following object is masked from 'package:sp':
## 
##     geometry
clustree(L7, prefix = "SCT_snn_res.")

11.Save the Seurat object as an Robj file

save(L7, file = "L7_Analysis.Robj")

```