Cell Line L5 Analysis
1. load libraries
2. Load Seurat Object
#Load Seurat Object L5
load("../Documents/1-SS-STeps/4-Analysis_and_Robj_Marie/analyse juillet 2023/ObjetsR/L5.Robj")
L5
## An object of class Seurat
## 36629 features across 6022 samples within 2 assays
## Active assay: RNA (36601 features, 0 variable features)
## 2 layers present: counts, data
## 1 other assay present: ADT
3. QC
# Set identity classes to an existing column in meta data
Idents(object = L5) <- "cell_line"
L5[["percent.rb"]] <- PercentageFeatureSet(L5, pattern = "^RP[SL]")
VlnPlot(L5, features = c("nFeature_RNA",
"nCount_RNA",
"percent.mito",
"percent.rb"),
ncol = 4, pt.size = 0.1) &
theme(plot.title = element_text(size=10))
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
##FeatureScatter is typically used to visualize feature-feature
relationships ##for anything calculated by the object, ##i.e. columns in
object metadata, PC scores etc.
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## Assign
Cell-Cycle Scores
## Running SCTransform on assay: RNA
## vst.flavor='v2' set. Using model with fixed slope and excluding poisson genes.
## Calculating cell attributes from input UMI matrix: log_umi
## Variance stabilizing transformation of count matrix of size 18690 by 6022
## Model formula is y ~ log_umi
## Get Negative Binomial regression parameters per gene
## Using 2000 genes, 5000 cells
## Found 117 outliers - those will be ignored in fitting/regularization step
## Second step: Get residuals using fitted parameters for 18690 genes
## Computing corrected count matrix for 18690 genes
## Calculating gene attributes
## Wall clock passed: Time difference of 23.86308 secs
## Determine variable features
## Place corrected count matrix in counts slot
## Set default assay to SCT
## Warning: The following features are not present in the object: MLF1IP, not
## searching for symbol synonyms
## Warning: The following features are not present in the object: FAM64A, HN1, not
## searching for symbol synonyms
4. Normalize data
# Apply SCTransform
L5 <- SCTransform(L5, vars.to.regress = c("percent.rb","percent.mito", "CC.Difference"),
do.scale=TRUE,
do.center=TRUE,
verbose = TRUE)
## Running SCTransform on assay: RNA
## vst.flavor='v2' set. Using model with fixed slope and excluding poisson genes.
## Calculating cell attributes from input UMI matrix: log_umi
## Variance stabilizing transformation of count matrix of size 18690 by 6022
## Model formula is y ~ log_umi
## Get Negative Binomial regression parameters per gene
## Using 2000 genes, 5000 cells
## Found 117 outliers - those will be ignored in fitting/regularization step
## Second step: Get residuals using fitted parameters for 18690 genes
## Computing corrected count matrix for 18690 genes
## Calculating gene attributes
## Wall clock passed: Time difference of 18.53435 secs
## Determine variable features
## Regressing out percent.rb, percent.mito, CC.Difference
## Centering and scaling data matrix
## Place corrected count matrix in counts slot
## Set default assay to SCT
5. Perform PCA
Variables_genes <- L5@assays$SCT@var.features
# Exclude genes starting with "HLA-" AND "Xist" AND "TRBV, TRAV"
Variables_genes_after_exclusion <- Variables_genes[!grepl("^HLA-|^XIST|^TRBV|^TRAV", Variables_genes)]
# These are now standard steps in the Seurat workflow for visualization and clustering
L5 <- RunPCA(L5,
features = Variables_genes_after_exclusion,
do.print = TRUE,
pcs.print = 1:5,
genes.print = 15,
npcs = 50)
## PC_ 1
## Positive: C1QBP, RPL26, GSTP1, EIF5A, EIF4A1, PFN1, BATF3, MGST3, TPRG1, ALOX5AP
## PDE4DIP, LTB, CYC1, NAA38, TXNDC17, YWHAE, C1orf162, PSMB6, NUDT8, NPDC1
## HSP90B1, HMGN5, SNHG29, ACADVL, CAVIN3, PRDX1, MRPL47, TESC, NDUFAF3, PHGDH
## Negative: RPL35A, RPS23, RPS14, RACK1, RPL37, HINT1, AC097518.2, SERP1, MALAT1, MACROD2
## SIAH2, COX7C, GPR160, PIM2, ITGA4, PCSK1N, AC104365.1, SUB1, UBE2D2, FTL
## CD70, LGALS3, LRP1B, AHNAK, AGMO, EIF2A, TNFSF10, ANXA5, RPL10, MARCKS
## PC_ 2
## Positive: NPM1, HNRNPAB, HSP90AB1, NCL, RPL23, HSPA9, CCT5, HSPD1, HSPE1, EIF4G1
## NME1, PABPC1, ODC1, MTDH, DANCR, TCP1, HNRNPU, NOP16, SFPQ, PPID
## HSP90AA1, SRM, NME2, SERBP1, CCT6A, KPNB1, HSPA4, UBE2S, CANX, EIF3B
## Negative: B2M, S100A11, S100A6, IL32, LGALS1, IL2RG, TMSB10, S1PR4, S100A10, LSP1
## ISG20, TMSB4X, RNASEK, EMP3, S100A4, TAGLN2, HPGD, VIM, S100P, FXYD5
## DDIT4, GABARAP, CRIP1, CYBA, PLAAT4, PNRC1, BTG1, PFN1, C12orf75, KLF2
## PC_ 3
## Positive: H3F3A, KLF2, TUBA1B, IL32, ARHGDIB, S1PR4, S100A4, SLC9A3R1, TUBA4A, MT-CO3
## RPL17, H2AFZ, HMGB1, HPGD, S100P, IFITM2, CORO1A, TNFRSF18, MRPS12, GMFG
## NQO1, IFITM1, CRIP1, STMN1, PSMB8, S100A6, RPL6, RPS7, CALM1, H2AFX
## Negative: CCR7, PMAIP1, HERC5, OASL, SPAG9, ZC3HAV1, IFIT2, TRAF1, IFIT3, TNFAIP3
## ISG15, CCL5, DENND4A, GRAMD1B, PARP14, PELI1, CAMK4, UBE2Z, TNFSF9, ANKRD33B
## EPS15, NCF2, TP63, CXCL10, SAR1A, PLCG2, STAT3, RABGAP1L, GAS5, IFIH1
## PC_ 4
## Positive: ISG15, PPA1, OASL, CCL5, IFIT3, LTA, HERC5, ZBTB32, IFIT2, CDC20
## SAR1A, DNAJA1, CSAG3, DYNLL1, TNFSF9, PMAIP1, CCR7, PRDX1, HSPA8, CD70
## PRR13, CXCL10, CCNB1, DHX58, TNF, ZC3HAV1, NOP16, NCF2, JPT1, IL4I1
## Negative: HIST1H1E, HIST1H4C, HIST1H1B, HIST1H1C, MKI67, MTHFD2, RRM2, CEP128, HIST1H1A, PSAT1
## HIST1H1D, ATAD2, SMC1A, PRKDC, MYH9, AARS, MT-ND6, TOP2A, RDH10, NSD2
## CTH, GARS, NEIL3, TYMS, LMNB1, SLC7A11, RNF213, HIST1H2AE, SMC4, KIF21B
## PC_ 5
## Positive: HIST1H4C, IFIT3, HERC5, IFIT2, HIST1H1E, OASL, ISG15, H2AFZ, PMAIP1, RRM2
## CTH, PSAT1, WARS, UBE2Z, RHEBL1, ZC3HAV1, HIST1H1B, NCF2, CCL5, CD74
## ZBTB32, MTHFD2, PARP14, HIST1H1C, CHAC1, DHX58, PCK2, IFIH1, PKMYT1, DNAJC12
## Negative: ANKRD37, SLC2A3, LDHA, BNIP3, PGK1, PLIN2, MIF, KIF2A, GPI, HSPA8
## GDE1, FABP5, DEGS1, C4orf3, GAPDH, PRDM1, HILPDA, BNIP3L, TPI1, PGAM1
## GLUL, ENO1, HIF1A-AS3, UBE2S, PRELID3B, CYTIP, CDC20, ENPP2, AK4, MXI1
# Perform
PCA TEST
library(ggplot2)
library(RColorBrewer)
# Assuming you have 10 different cell lines, generating a color palette with 10 colors
cell_line_colors <- brewer.pal(10, "Set3")
# Assuming L5$cell_line is a factor or character vector containing cell line names
data <- as.data.frame(table(L5$cell_line))
colnames(data) <- c("cell_line", "nUMI") # Change column name to nUMI
ncells <- ggplot(data, aes(x = cell_line, y = nUMI, fill = cell_line)) +
geom_col() +
theme_classic() +
geom_text(aes(label = nUMI),
position = position_dodge(width = 0.9),
vjust = -0.25) +
scale_fill_manual(values = cell_line_colors) +
theme(axis.text.x = element_text(angle = 45, hjust = 1),
plot.title = element_text(hjust = 0.5)) + # Adjust the title position
ggtitle("Filtered cells per sample") +
xlab("Cell lines") + # Adjust x-axis label
ylab("Frequency") # Adjust y-axis label
print(ncells)
# TEST-1
# given that the output of RunPCA is "pca"
# replace "so" by the name of your seurat object
pct <- L5[["pca"]]@stdev / sum(L5[["pca"]]@stdev) * 100
cumu <- cumsum(pct) # Calculate cumulative percents for each PC
# Determine the difference between variation of PC and subsequent PC
co2 <- sort(which((pct[-length(pct)] - pct[-1]) > 0.1), decreasing = T)[1] + 1
# last point where change of % of variation is more than 0.1%. -> co2
co2
## [1] 11
# TEST-2
# get significant PCs
stdv <- L5[["pca"]]@stdev
sum.stdv <- sum(L5[["pca"]]@stdev)
percent.stdv <- (stdv / sum.stdv) * 100
cumulative <- cumsum(percent.stdv)
co1 <- which(cumulative > 90 & percent.stdv < 5)[1]
co2 <- sort(which((percent.stdv[1:length(percent.stdv) - 1] -
percent.stdv[2:length(percent.stdv)]) > 0.1),
decreasing = T)[1] + 1
min.pc <- min(co1, co2)
min.pc
## [1] 11
# Create a dataframe with values
plot_df <- data.frame(pct = percent.stdv,
cumu = cumulative,
rank = 1:length(percent.stdv))
# Elbow plot to visualize
ggplot(plot_df, aes(cumulative, percent.stdv, label = rank, color = rank > min.pc)) +
geom_text() +
geom_vline(xintercept = 90, color = "grey") +
geom_hline(yintercept = min(percent.stdv[percent.stdv > 5]), color = "grey") +
theme_bw()
6. Clustering
L5 <- FindNeighbors(L5,
dims = 1:min.pc,
verbose = FALSE)
# understanding resolution
L5 <- FindClusters(L5,
resolution = c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7,0.8, 0.9, 1, 1.1, 1.2))
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 6022
## Number of edges: 198822
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9363
## Number of communities: 3
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 6022
## Number of edges: 198822
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9001
## Number of communities: 5
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 6022
## Number of edges: 198822
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8723
## Number of communities: 6
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 6022
## Number of edges: 198822
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8475
## Number of communities: 7
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 6022
## Number of edges: 198822
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8280
## Number of communities: 7
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 6022
## Number of edges: 198822
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8088
## Number of communities: 8
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 6022
## Number of edges: 198822
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.7946
## Number of communities: 9
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 6022
## Number of edges: 198822
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.7812
## Number of communities: 9
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 6022
## Number of edges: 198822
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.7687
## Number of communities: 9
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 6022
## Number of edges: 198822
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.7574
## Number of communities: 10
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 6022
## Number of edges: 198822
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.7450
## Number of communities: 12
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 6022
## Number of edges: 198822
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.7358
## Number of communities: 11
## Elapsed time: 0 seconds
# non-linear dimensionality reduction --------------
L5 <- RunUMAP(L5,
dims = 1:min.pc,
verbose = FALSE)
## Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
## To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
## This message will be shown once per session
# note that you can set `label = TRUE` or use the Label Clusters function to help label
# individual clusters
DimPlot(L5,group.by = "cell_line",
reduction = "umap",
label.size = 3,
repel = T,
label = T, label.box = T)
DimPlot(L5,
group.by = "SCT_snn_res.0.1",
reduction = "umap",
label.size = 3,
repel = T,
label = T, label.box = T)
DimPlot(L5,
group.by = "SCT_snn_res.0.2",
reduction = "umap",
label.size = 3,
repel = T,
label = T, label.box = T)
DimPlot(L5,
group.by = "SCT_snn_res.0.3",
reduction = "umap",
label.size = 3,
repel = T,
label = T, label.box = T)
DimPlot(L5,
group.by = "SCT_snn_res.0.4",
reduction = "umap",
label.size = 3,
repel = T,
label = T, label.box = T)
DimPlot(L5,
group.by = "SCT_snn_res.0.5",
reduction = "umap",
label.size = 3,
repel = T,
label = T, label.box = T)
DimPlot(L5,
group.by = "SCT_snn_res.0.6",
reduction = "umap",
label.size = 3,
repel = T,
label = T, label.box = T)
DimPlot(L5,
group.by = "SCT_snn_res.0.7",
reduction = "umap",
label.size = 3,
repel = T,
label = T, label.box = T)
DimPlot(L5,
group.by = "SCT_snn_res.0.8",
reduction = "umap",
label.size = 3,
repel = T,
label = T, label.box = T)
DimPlot(L5,
group.by = "SCT_snn_res.0.9",
reduction = "umap",
label.size = 3,
repel = T,
label = T, label.box = T)
DimPlot(L5,
group.by = "SCT_snn_res.1",
reduction = "umap",
label.size = 3,
repel = T,
label = T, label.box = T)
DimPlot(L5,
group.by = "SCT_snn_res.1.1",
reduction = "umap",
label.size = 3,
repel = T,
label = T, label.box = T)
DimPlot(L5,
group.by = "SCT_snn_res.1.2",
reduction = "umap",
label.size = 3,
repel = T,
label = T, label.box = T)
7. Azimuth Annotation
## Warning: The following packages are already installed and will not be
## reinstalled: pbmcref
# The RunAzimuth function can take a Seurat object as input
L5 <- RunAzimuth(L5, reference = "pbmcref")
## Warning: Overwriting miscellanous data for model
## Warning: Adding a dimensional reduction (refUMAP) without the associated assay
## being present
## Warning: Adding a dimensional reduction (refUMAP) without the associated assay
## being present
## detected inputs from HUMAN with id type Gene.name
## reference rownames detected HUMAN with id type Gene.name
## Normalizing query using reference SCT model
## Warning: 113 features of the features specified were not present in both the reference query assays.
## Continuing with remaining 4887 features.
## Projecting cell embeddings
## Finding query neighbors
## Finding neighborhoods
## Finding anchors
## Found 204 anchors
## Finding integration vectors
## Finding integration vector weights
## Predicting cell labels
## Predicting cell labels
## Warning: Feature names cannot have underscores ('_'), replacing with dashes
## ('-')
## Predicting cell labels
## Warning: Feature names cannot have underscores ('_'), replacing with dashes
## ('-')
##
## Integrating dataset 2 with reference dataset
## Finding integration vectors
## Integrating data
## Warning: Keys should be one or more alphanumeric characters followed by an
## underscore, setting key from integrated_dr_ to integrateddr_
## Computing nearest neighbors
## Running UMAP projection
## Warning in RunUMAP.default(object = neighborlist, reduction.model =
## reduction.model, : Number of neighbors between query and reference is not equal
## to the number of neighbors within reference
## 16:07:42 Read 6022 rows
## 16:07:42 Processing block 1 of 1
## 16:07:42 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 20
## 16:07:42 Initializing by weighted average of neighbor coordinates using 1 thread
## 16:07:42 Commencing optimization for 67 epochs, with 120440 positive edges
## 16:07:42 Finished
## Warning: No assay specified, setting assay as RNA by default.
## Projecting reference PCA onto query
## Finding integration vector weights
## Projecting back the query cells into original PCA space
## Finding integration vector weights
## Computing scores:
## Finding neighbors of original query cells
## Finding neighbors of transformed query cells
## Computing query SNN
## Determining bandwidth and computing transition probabilities
## Total elapsed time: 2.09838366508484
DimPlot(L5, group.by = "predicted.celltype.l2",
reduction = "umap",
label.size = 3,
repel = T,
label = F)
DimPlot (L5, group.by = "predicted.celltype.l2",
reduction = "umap",
label.size = 3,
repel = T,
label = T)
8. Cell type annotation using ProjectTils
#Load reference atlas and query data
ref <- readRDS(file = "CD4T_human_ref_v1.rds")
#Run Projection algorithm
query.projected <- Run.ProjecTILs(L5, ref = ref)
## | | | 0%[1] "Using assay SCT for query"
## Pre-filtering cells with scGate...
##
## ### Detected a total of 456 pure 'Target' cells (7.57% of total)
## [1] "5566 out of 6022 ( 92% ) non-pure cells removed. Use filter.cells=FALSE to avoid pre-filtering"
## [1] "Aligning query to reference map for batch-correction..."
## Warning: Layer counts isn't present in the assay object[[assay]]; returning
## NULL
## Preparing PCA embeddings for objects...
## Warning: Number of dimensions changing from 50 to 20
##
## Projecting corrected query onto Reference PCA space
##
## Projecting corrected query onto Reference UMAP space
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## Warning: Not all features provided are in this Assay object, removing the
## following feature(s): GZMK, CCL20, CD177, CCL22, CGA, G0S2, IL17A, CCL4L2,
## XCL1, IGFL2, GZMH, TRDC, CSF2, FOXP3, XCL2, IL10, IL1RL1, IL1R2, ACTG2, KLRB1,
## DIRAS3, NPPC, IL17RB, ZBED2, CD7, CD200, CXCR6, HOPX, MS4A6A, LAYN, TYROBP,
## CTSL, TUBA3D, IL2, CRTAM, FCER1G, CST7, PVALB, EOMES, MRC1, TASL, EGR2, CPM,
## TMIGD2, H1-4, METTL7A, ZNF80, IL26, LRRC32, H2AZ1, ACP5, GPR25, TNFSF8, TNS3,
## ELAPOR1, CCL3L3, POLR1F, PDCD1, CXCR5, EGR3, FCRL3, ADTRP, F5, IL1R1, PECAM1,
## AHSP, FAIM2, GIMAP4, HTRA1, CCND1, LIMS2, H1-2, CYSLTR1, H1-0, FLT1, WARS1,
## MATK, H1-3, CAMK1, ASCL2, SIRPG, DTHD1, H2BC11, NELL2, GPX1, STAC, H2AC6,
## IRAG2, CYP7B1, H1-10, MYO7A, FASLG, VAV3, SCML1, CLEC7A, PON2, H3C10, FBLN7,
## FGFBP2, IL22, SLC28A3, PDLIM4, ZNF683, ECEL1, CPE, ARC, NLRP3, H4C3, RORC,
## AUTS2, HS3ST1
## | |======================================================================| 100%
## Creating slots functional.cluster and functional.cluster.conf in query object
#Plot the predicted composition of the query in terms of reference T cell subtypes
plot.statepred.composition(ref, query.projected, metric = "Percent")
## | | | 0%[1] "Using assay SCT for query"
## Pre-filtering cells with scGate...
##
## ### Detected a total of 456 pure 'Target' cells (7.57% of total)
## [1] "5566 out of 6022 ( 92% ) non-pure cells removed. Use filter.cells=FALSE to avoid pre-filtering"
## [1] "Aligning query to reference map for batch-correction..."
## Warning: Layer counts isn't present in the assay object[[assay]]; returning
## NULL
## Preparing PCA embeddings for objects...
## Warning: Number of dimensions changing from 50 to 20
##
## Projecting corrected query onto Reference PCA space
##
## Projecting corrected query onto Reference UMAP space
## Warning: Not all features provided are in this Assay object, removing the
## following feature(s): GZMK, CCL20, CD177, CCL22, CGA, G0S2, IL17A, CCL4L2,
## XCL1, IGFL2, GZMH, TRDC, CSF2, FOXP3, XCL2, IL10, IL1RL1, IL1R2, ACTG2, KLRB1,
## DIRAS3, NPPC, IL17RB, ZBED2, CD7, CD200, CXCR6, HOPX, MS4A6A, LAYN, TYROBP,
## CTSL, TUBA3D, IL2, CRTAM, FCER1G, CST7, PVALB, EOMES, MRC1, TASL, EGR2, CPM,
## TMIGD2, H1-4, METTL7A, ZNF80, IL26, LRRC32, H2AZ1, ACP5, GPR25, TNFSF8, TNS3,
## ELAPOR1, CCL3L3, POLR1F, PDCD1, CXCR5, EGR3, FCRL3, ADTRP, F5, IL1R1, PECAM1,
## AHSP, FAIM2, GIMAP4, HTRA1, CCND1, LIMS2, H1-2, CYSLTR1, H1-0, FLT1, WARS1,
## MATK, H1-3, CAMK1, ASCL2, SIRPG, DTHD1, H2BC11, NELL2, GPX1, STAC, H2AC6,
## IRAG2, CYP7B1, H1-10, MYO7A, FASLG, VAV3, SCML1, CLEC7A, PON2, H3C10, FBLN7,
## FGFBP2, IL22, SLC28A3, PDLIM4, ZNF683, ECEL1, CPE, ARC, NLRP3, H4C3, RORC,
## AUTS2, HS3ST1
## | |======================================================================| 100%
## Creating slots functional.cluster and functional.cluster.conf in query object
DimPlot(L5, group.by = "functional.cluster",
reduction = "umap",
label.size = 3,
repel = T,
label = T)
9.Cell type annotation using SingleR
## see ?celldex and browseVignettes('celldex') for documentation
## loading from cache
## see ?celldex and browseVignettes('celldex') for documentation
## loading from cache
## see ?celldex and browseVignettes('celldex') for documentation
## loading from cache
## see ?celldex and browseVignettes('celldex') for documentation
## loading from cache
## see ?celldex and browseVignettes('celldex') for documentation
## loading from cache
## see ?celldex and browseVignettes('celldex') for documentation
## loading from cache
## see ?celldex and browseVignettes('celldex') for documentation
## loading from cache
## see ?celldex and browseVignettes('celldex') for documentation
## loading from cache
#convert our Seurat object to single cell experiment (SCE)
sce <- as.SingleCellExperiment(DietSeurat(L5))
#using SingleR
monaco.main <- SingleR(test = sce,assay.type.test = 1,ref = monaco.ref,labels = monaco.ref$label.main)
monaco.fine <- SingleR(test = sce,assay.type.test = 1,ref = monaco.ref,labels = monaco.ref$label.fine)
hpca.main <- SingleR(test = sce,assay.type.test = 1,ref = hpca.ref,labels = hpca.ref$label.main)
hpca.fine <- SingleR(test = sce,assay.type.test = 1,ref = hpca.ref,labels = hpca.ref$label.fine)
dice.main <- SingleR(test = sce,assay.type.test = 1,ref = dice.ref,labels = dice.ref$label.main)
dice.fine <- SingleR(test = sce,assay.type.test = 1,ref = dice.ref,labels = dice.ref$label.fine)
bpe.main <- SingleR(test = sce,assay.type.test = 1,ref = bpe.ref,labels = bpe.ref$label.main)
bpe.fine <- SingleR(test = sce,assay.type.test = 1,ref = bpe.ref,labels = bpe.ref$label.fine)
#summary of general cell type annotations
#table(monaco.main$pruned.labels)
#table(hpca.main$pruned.labels)
#table(dice.main$pruned.labels)
#table(bpe.main$pruned.labels)
#The finer cell types annotations are you after, the harder they are to get reliably.
#This is where comparing many databases, as well as using individual markers from literature,
#would all be very valuable.
#table(monaco.fine$pruned.labels)
#table(hpca.fine$pruned.labels)
#table(dice.fine$pruned.labels)
#table(bpe.fine$pruned.labels)
#add the annotations to the Seurat object metadata
L5@meta.data$monaco.main <- monaco.main$pruned.labels
L5@meta.data$monaco.fine <- monaco.fine$pruned.labels
#
L5@meta.data$hpca.main <- hpca.main$pruned.labels
L5@meta.data$hpca.fine <- hpca.fine$pruned.labels
#
L5@meta.data$dice.main <- dice.main$pruned.labels
L5@meta.data$dice.fine <- dice.fine$pruned.labels
#
L5@meta.data$bpe.main <- bpe.main$pruned.labels
L5@meta.data$bpe.fine <- bpe.fine$pruned.labels
# Monaco Annotations
DimPlot(L5, group.by = "monaco.main",
reduction = "umap",
label.size = 3,
repel = T,
label = F)
DimPlot(L5, group.by = "monaco.main",
reduction = "umap",
label.size = 3,
repel = T,
label = T, label.box = T)
DimPlot(L5, group.by = "monaco.fine",
reduction = "umap",
label.size = 3,
repel = T,
label = T, label.box = T)
# HPCA Annotations
DimPlot(L5, group.by = "hpca.main",
reduction = "umap",
label.size = 3,
repel = T,
label = T, label.box = T)
## Warning: ggrepel: 2 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
DimPlot(L5, group.by = "hpca.fine",
reduction = "umap",
label.size = 3,
repel = T,
label = T, label.box = T)
## Warning: ggrepel: 2 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
# DICE Annotations
DimPlot(L5, group.by = "dice.main",
reduction = "umap",
label.size = 3,
repel = T,
label = T, label.box = T)
DimPlot(L5, group.by = "dice.fine",
reduction = "umap",
label.size = 3,
repel = T,
label = T, label.box = T)
# BPE Annotations
DimPlot(L5, group.by = "bpe.main",
reduction = "umap",
label.size = 3,
repel = T,
label = T, label.box = T)
DimPlot(L5, group.by = "bpe.fine",
reduction = "umap",
label.size = 3,
repel = T,
label = T, label.box = T)
10. clusTree
## Loading required package: ggraph
##
## Attaching package: 'ggraph'
## The following object is masked from 'package:sp':
##
## geometry