Cell Line L3 Analysis

1. load libraries

2. Load Seurat Object

#Load Seurat Object L3
load("../Documents/1-SS-STeps/4-Analysis_and_Robj_Marie/analyse juillet 2023/ObjetsR/L3_B.Robj")

L3 <- L3_B
L3
## An object of class Seurat 
## 36629 features across 6428 samples within 2 assays 
## Active assay: RNA (36601 features, 0 variable features)
##  2 layers present: counts, data
##  1 other assay present: ADT

3. QC

# Set identity classes to an existing column in meta data
Idents(object = L3) <- "cell_line"

L3[["percent.rb"]] <- PercentageFeatureSet(L3, pattern = "^RP[SL]")

VlnPlot(L3, features = c("nFeature_RNA", 
                                         "nCount_RNA", 
                                         "percent.mito",
                                         "percent.rb"), 
                            ncol = 4, pt.size = 0.1) & 
              theme(plot.title = element_text(size=10))

FeatureScatter(L3, feature1 = "percent.mito", 
                                  feature2 = "percent.rb")

VlnPlot(L3, features = c("nFeature_RNA", 
                                    "nCount_RNA", 
                                    "percent.mito"), 
                                      ncol = 3)

FeatureScatter(L3, 
               feature1 = "percent.mito", 
               feature2 = "percent.rb") +
        geom_smooth(method = 'lm')
## `geom_smooth()` using formula = 'y ~ x'

FeatureScatter(L3, 
               feature1 = "nCount_RNA", 
               feature2 = "nFeature_RNA") +
        geom_smooth(method = 'lm')
## `geom_smooth()` using formula = 'y ~ x'

##FeatureScatter is typically used to visualize feature-feature relationships ##for anything calculated by the object, ##i.e. columns in object metadata, PC scores etc.

FeatureScatter(L3, 
               feature1 = "nCount_RNA", 
               feature2 = "percent.mito")+
  geom_smooth(method = 'lm')
## `geom_smooth()` using formula = 'y ~ x'

FeatureScatter(L3, 
               feature1 = "nCount_RNA", 
               feature2 = "nFeature_RNA")+
  geom_smooth(method = 'lm')
## `geom_smooth()` using formula = 'y ~ x'

## Assign Cell-Cycle Scores

## Running SCTransform on assay: RNA
## vst.flavor='v2' set. Using model with fixed slope and excluding poisson genes.
## Calculating cell attributes from input UMI matrix: log_umi
## Variance stabilizing transformation of count matrix of size 18417 by 6428
## Model formula is y ~ log_umi
## Get Negative Binomial regression parameters per gene
## Using 2000 genes, 5000 cells
## Found 177 outliers - those will be ignored in fitting/regularization step
## Second step: Get residuals using fitted parameters for 18417 genes
## Computing corrected count matrix for 18417 genes
## Calculating gene attributes
## Wall clock passed: Time difference of 24.08633 secs
## Determine variable features
## Place corrected count matrix in counts slot
## Set default assay to SCT
## Warning: The following features are not present in the object: MLF1IP, not
## searching for symbol synonyms
## Warning: The following features are not present in the object: FAM64A, HN1, not
## searching for symbol synonyms

4. Normalize data

# Apply SCTransform
L3 <- SCTransform(L3, vars.to.regress = c("percent.rb","percent.mito", "CC.Difference"), 
                  do.scale=TRUE, 
                  do.center=TRUE, 
                  verbose = TRUE)
## Running SCTransform on assay: RNA
## vst.flavor='v2' set. Using model with fixed slope and excluding poisson genes.
## Calculating cell attributes from input UMI matrix: log_umi
## Variance stabilizing transformation of count matrix of size 18417 by 6428
## Model formula is y ~ log_umi
## Get Negative Binomial regression parameters per gene
## Using 2000 genes, 5000 cells
## Found 177 outliers - those will be ignored in fitting/regularization step
## Second step: Get residuals using fitted parameters for 18417 genes
## Computing corrected count matrix for 18417 genes
## Calculating gene attributes
## Wall clock passed: Time difference of 19.97999 secs
## Determine variable features
## Regressing out percent.rb, percent.mito, CC.Difference
## Centering and scaling data matrix
## Place corrected count matrix in counts slot
## Set default assay to SCT

5. Perform PCA

Variables_genes <- L3@assays$SCT@var.features

# Exclude genes starting with "HLA-" AND "Xist" AND "TRBV, TRAV"
Variables_genes_after_exclusion <- Variables_genes[!grepl("^HLA-|^XIST|^TRBV|^TRAV", Variables_genes)]


# These are now standard steps in the Seurat workflow for visualization and clustering
L3 <- RunPCA(L3,
             features = Variables_genes_after_exclusion,
             do.print = TRUE, 
             pcs.print = 1:5, 
             genes.print = 15,
             npcs = 50)
## PC_ 1 
## Positive:  B2M, VIM, S100A6, MALAT1, SQSTM1, LGALS1, CCL5, MAL, MT2A, CDKN1A 
##     S100A11, CCR7, H3F3B, RPL10, TMSB4X, PRKCE, ISG15, JUNB, RRM2, S100A4 
##     S100P, NCF2, OPTN, CD82, MYL6, WARS, PLAAT4, PMAIP1, HMSD, CRIP1 
## Negative:  NPM1, HSP90AB1, UBE2S, HSPE1, HSPD1, NCL, FABP5, MTDH, SERBP1, RPL17 
##     NME1, PTMA, SRM, HSP90AA1, HNRNPAB, CCT8, RPL23, HNRNPA2B1, RAN, ODC1 
##     CCT6A, JPT1, MRPL3, SET, MDH2, RPS17, TOMM40, LTB, FKBP4, CCT2 
## PC_ 2 
## Positive:  HIST1H4C, HIST1H1B, HIST1H1E, HIST1H1C, TOP2A, HIST1H1A, HIST1H1D, MALAT1, RRM2, NLGN1 
##     WWOX, HIST1H3B, TUBB, PSAT1, HIST1H2AH, HIST1H3G, ATAD2, PRKDC, HIST1H3D, MKI67 
##     RPS16, SMC1A, EEF2, NSD2, HIST1H2AL, RPL28, PCLAF, SOS1, DUT, TMPO 
## Negative:  LGALS1, S100A11, TMSB4X, ACTG1, ACTB, TMSB10, PTTG1, MYL6, S100A4, HSPA8 
##     TNFRSF4, CDC20, S100A6, B2M, CRIP1, PRR13, CCL17, VIM, ANXA1, JPT1 
##     ANXA2, NQO1, MYL12A, SH3BGRL3, HTATIP2, S100A10, IL13, CLIC1, IL32, YWHAZ 
## PC_ 3 
## Positive:  RANBP17, RPL18A, PGAP1, LINC02398, RPL13A, AC024901.1, RPL36, AREG, TMEM178B, ACSL4 
##     EEF2, MYO1D, NLGN1, LY75, LMNA, RPS15, EMP3, AHNAK, NCALD, REL 
##     RPS28, MAST4, RPS19, NFAT5, COL19A1, JUN, HSPA8, CADM1, MIR155HG, APP 
## Negative:  HIST1H4C, TUBA1B, H2AFZ, RRM2, GAPDH, TUBB, PCLAF, HIST1H1E, HIST1H1A, TYMS 
##     HIST1H1B, UBE2T, HIST1H1D, PPIA, MT-CO3, HMGB2, PKMYT1, TUBA4A, H1FX, CD74 
##     H2AFX, CFL1, UBE2I, SIVA1, CENPM, CENPU, UBE2C, HIST1H3B, DUT, TPI1 
## PC_ 4 
## Positive:  FN1, AC011586.2, RPS12, ADAM19, RPL12, STC1, LINC01170, GAB2, PLPP1, FAM107B 
##     ATP8B4, RNF213, CHST11, FAM189A1, DENND1B, DOCK2, KCNQ5, RPS4X, CACNA1D, ARHGEF6 
##     RUNX1, AGBL1, RYR2, FGGY, ARL6IP5, CYTOR, MSI2, NCOA2, AC112770.1, SLC26A4 
## Negative:  AREG, RPS15, RPL18A, RPL36, CD70, GPX4, HMSD, RPS16, EMP3, RPS5 
##     RPS19, RPS28, LAYN, UBA52, PDCD5, CYTIP, RPL18, HPGDS, TXNDC17, PRMT1 
##     RANBP17, AC024901.1, GJB2, LTA, PHLDA2, CYB5A, LINC00276, SNRPD2, RPL28, ATP1B2 
## PC_ 5 
## Positive:  SQSTM1, KLF6, PPP1R15A, GATA2, TXN, CXCL8, GRINA, EEF1A2, IL1A, DUSP1 
##     RAP1B, CCL5, ZFAS1, HSPA9, CHCHD10, GAS5, IER3, FOS, CCL3, NAMPT 
##     PRPS2, RPS12, RGS1, PMAIP1, FOSB, EBI3, HIST1H1E, HSPA5, RPL12, CNBP 
## Negative:  RPS15, CA10, RPL28, RPL36, RPL18A, RPL18, RPS19, RPS28, GPX4, RPS16 
##     S100A4, UBA52, RPS5, CSMD3, CFI, LINC02398, NDUFA11, CD3D, SPINT2, GMFG 
##     AREG, AL023574.1, SEC11C, UQCR11, OAZ1, LSM7, EVI2B, COX6C, RALYL, SNRPD2
# determine dimensionality of the data
ElbowPlot(L3, ndims =50)

# Perform PCA TEST

library(ggplot2)
library(RColorBrewer)  

# Assuming you have 10 different cell lines, generating a color palette with 10 colors
cell_line_colors <- brewer.pal(10, "Set3")

# Assuming L3$cell_line is a factor or character vector containing cell line names
data <- as.data.frame(table(L3$cell_line))
colnames(data) <- c("cell_line", "nUMI")  # Change column name to nUMI

ncells <- ggplot(data, aes(x = cell_line, y = nUMI, fill = cell_line)) + 
  geom_col() +
  theme_classic() +
  geom_text(aes(label = nUMI), 
            position = position_dodge(width = 0.9), 
            vjust = -0.25) +
  scale_fill_manual(values = cell_line_colors) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1),
        plot.title = element_text(hjust = 0.5)) +  # Adjust the title position
  ggtitle("Filtered cells per sample") +
  xlab("Cell lines") +  # Adjust x-axis label
  ylab("Frequency")    # Adjust y-axis label

print(ncells)

# TEST-1
# given that the output of RunPCA is "pca"
# replace "so" by the name of your seurat object

pct <- L3[["pca"]]@stdev / sum(L3[["pca"]]@stdev) * 100
cumu <- cumsum(pct) # Calculate cumulative percents for each PC
# Determine the difference between variation of PC and subsequent PC
co2 <- sort(which((pct[-length(pct)] - pct[-1]) > 0.1), decreasing = T)[1] + 1
# last point where change of % of variation is more than 0.1%. -> co2
co2
## [1] 10
# TEST-2
# get significant PCs
stdv <- L3[["pca"]]@stdev
sum.stdv <- sum(L3[["pca"]]@stdev)
percent.stdv <- (stdv / sum.stdv) * 100
cumulative <- cumsum(percent.stdv)
co1 <- which(cumulative > 90 & percent.stdv < 5)[1]
co2 <- sort(which((percent.stdv[1:length(percent.stdv) - 1] - 
                       percent.stdv[2:length(percent.stdv)]) > 0.1), 
              decreasing = T)[1] + 1
min.pc <- min(co1, co2)
min.pc
## [1] 10
# Create a dataframe with values
plot_df <- data.frame(pct = percent.stdv, 
           cumu = cumulative, 
           rank = 1:length(percent.stdv))

# Elbow plot to visualize 
  ggplot(plot_df, aes(cumulative, percent.stdv, label = rank, color = rank > min.pc)) + 
  geom_text() + 
  geom_vline(xintercept = 90, color = "grey") + 
  geom_hline(yintercept = min(percent.stdv[percent.stdv > 5]), color = "grey") +
  theme_bw()

6. Clustering

L3 <- FindNeighbors(L3, 
                    dims = 1:min.pc, 
                    verbose = FALSE)

# understanding resolution
L3 <- FindClusters(L3, 
                  resolution = c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
                                0.7,0.8, 0.9, 1, 1.1, 1.2))
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 6428
## Number of edges: 194888
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9231
## Number of communities: 3
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 6428
## Number of edges: 194888
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8776
## Number of communities: 5
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 6428
## Number of edges: 194888
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8398
## Number of communities: 5
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 6428
## Number of edges: 194888
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8074
## Number of communities: 6
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 6428
## Number of edges: 194888
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.7804
## Number of communities: 6
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 6428
## Number of edges: 194888
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.7571
## Number of communities: 7
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 6428
## Number of edges: 194888
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.7397
## Number of communities: 9
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 6428
## Number of edges: 194888
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.7251
## Number of communities: 10
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 6428
## Number of edges: 194888
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.7129
## Number of communities: 11
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 6428
## Number of edges: 194888
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.7003
## Number of communities: 12
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 6428
## Number of edges: 194888
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.6873
## Number of communities: 11
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 6428
## Number of edges: 194888
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.6764
## Number of communities: 14
## Elapsed time: 0 seconds
# non-linear dimensionality reduction --------------
L3 <- RunUMAP(L3, 
              dims = 1:min.pc,
              verbose = FALSE)
## Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
## To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
## This message will be shown once per session
# note that you can set `label = TRUE` or use the Label Clusters function to help label
# individual clusters
DimPlot(L3,group.by = "cell_line", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L3,
        group.by = "SCT_snn_res.0.1", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L3,
        group.by = "SCT_snn_res.0.2", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L3,
        group.by = "SCT_snn_res.0.3", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L3,
        group.by = "SCT_snn_res.0.4", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L3,
        group.by = "SCT_snn_res.0.5", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L3,
        group.by = "SCT_snn_res.0.6", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L3,
        group.by = "SCT_snn_res.0.7", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L3,
        group.by = "SCT_snn_res.0.8", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L3,
        group.by = "SCT_snn_res.0.9", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L3,
        group.by = "SCT_snn_res.1", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L3,
        group.by = "SCT_snn_res.1.1", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L3,
        group.by = "SCT_snn_res.1.2", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

7. Azimuth Annotation

InstallData("pbmcref")
## Warning: The following packages are already installed and will not be
## reinstalled: pbmcref
# The RunAzimuth function can take a Seurat object as input
L3 <- RunAzimuth(L3, reference = "pbmcref")
## Warning: Overwriting miscellanous data for model
## Warning: Adding a dimensional reduction (refUMAP) without the associated assay
## being present
## Warning: Adding a dimensional reduction (refUMAP) without the associated assay
## being present
## detected inputs from HUMAN with id type Gene.name
## reference rownames detected HUMAN with id type Gene.name
## Normalizing query using reference SCT model
## Warning: 113 features of the features specified were not present in both the reference query assays. 
## Continuing with remaining 4887 features.
## Projecting cell embeddings
## Finding query neighbors
## Finding neighborhoods
## Finding anchors
##  Found 220 anchors
## Finding integration vectors
## Finding integration vector weights
## Predicting cell labels
## Predicting cell labels
## Warning: Feature names cannot have underscores ('_'), replacing with dashes
## ('-')
## Predicting cell labels
## Warning: Feature names cannot have underscores ('_'), replacing with dashes
## ('-')
## 
## Integrating dataset 2 with reference dataset
## Finding integration vectors
## Integrating data
## Warning: Keys should be one or more alphanumeric characters followed by an
## underscore, setting key from integrated_dr_ to integrateddr_
## Computing nearest neighbors
## Running UMAP projection
## Warning in RunUMAP.default(object = neighborlist, reduction.model =
## reduction.model, : Number of neighbors between query and reference is not equal
## to the number of neighbors within reference
## 15:44:06 Read 6428 rows
## 15:44:06 Processing block 1 of 1
## 15:44:06 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 20
## 15:44:06 Initializing by weighted average of neighbor coordinates using 1 thread
## 15:44:06 Commencing optimization for 67 epochs, with 128560 positive edges
## 15:44:07 Finished
## Warning: No assay specified, setting assay as RNA by default.
## Projecting reference PCA onto query
## Finding integration vector weights
## Projecting back the query cells into original PCA space
## Finding integration vector weights
## Computing scores:
##     Finding neighbors of original query cells
##     Finding neighbors of transformed query cells
##     Computing query SNN
##     Determining bandwidth and computing transition probabilities
## Total elapsed time: 2.28114891052246
DimPlot(L3, group.by = "predicted.celltype.l2", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = F)

DimPlot (L3, group.by = "predicted.celltype.l2", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T)

8. Cell type annotation using ProjectTils

#Load reference atlas and query data
ref <- readRDS(file = "CD4T_human_ref_v1.rds")

#Run Projection algorithm
query.projected <- Run.ProjecTILs(L3, ref = ref)
##   |                                                                              |                                                                      |   0%[1] "Using assay SCT for query"
## Pre-filtering cells with scGate...
## 
## ### Detected a total of 2353 pure 'Target' cells (36.61% of total)
## [1] "4075 out of 6428 ( 63% ) non-pure cells removed. Use filter.cells=FALSE to avoid pre-filtering"
## [1] "Aligning query to reference map for batch-correction..."
## Warning: Layer counts isn't present in the assay object[[assay]]; returning
## NULL
## Preparing PCA embeddings for objects...
## Warning: Number of dimensions changing from 50 to 20
## 
## Projecting corrected query onto Reference PCA space
## 
## Projecting corrected query onto Reference UMAP space
## Warning: Not all features provided are in this Assay object, removing the
## following feature(s): GNLY, GZMK, CCL20, MT1G, CD177, CGA, G0S2, IL17A, CCL4L2,
## XCL1, IGFL2, GZMH, TRDC, XCL2, LAIR2, IL10, ACTG2, RASD1, DIRAS3, KLRD1, NPPC,
## IL17RB, ZBED2, LGMN, CD7, CXCR6, HOPX, MS4A6A, TYROBP, TUBA3D, ADGRG1, IL2,
## PVALB, MRC1, TNFSF4, TASL, ID1, CPA5, TMIGD2, PRF1, H1-4, METTL7A, IL26, CLIC3,
## H2AZ1, CTSW, ACP5, PTGER2, GPR25, TNFSF8, TNS3, ELAPOR1, CCL3L3, POLR1F, ENC1,
## BTLA, KIR3DL2, F5, AHSP, CCR2, FAIM2, GIMAP7, CDKN2B, GIMAP4, HTRA1, CCND1,
## PLAC8, LIMS2, H1-2, CDKN2A, H1-0, WARS1, H1-3, ASCL2, DTHD1, H2BC11, GPX1,
## FCMR, H2AC6, IRAG2, H1-10, MYO7A, FASLG, SLA, CCR5, SCML1, H3C10, NAP1L2,
## HS3ST3B1, FGFBP2, IL22, KRT81, PDLIM4, UCP3, ZNF683, ECEL1, HSD11B1, ARC,
## GFPT2, H4C3, RORC, GSTM2
##   |                                                                              |======================================================================| 100%
## Creating slots functional.cluster and functional.cluster.conf in query object
#reference atlas
DimPlot(ref, label = T)

#Visualize projection
plot.projection(ref, query.projected, linesize = 0.5, pointsize = 0.5)

#Plot the predicted composition of the query in terms of reference T cell subtypes
plot.statepred.composition(ref, query.projected, metric = "Percent")

L3 <- ProjecTILs.classifier(query = L3, ref = ref)
##   |                                                                              |                                                                      |   0%[1] "Using assay SCT for query"
## Pre-filtering cells with scGate...
## 
## ### Detected a total of 2353 pure 'Target' cells (36.61% of total)
## [1] "4075 out of 6428 ( 63% ) non-pure cells removed. Use filter.cells=FALSE to avoid pre-filtering"
## [1] "Aligning query to reference map for batch-correction..."
## Warning: Layer counts isn't present in the assay object[[assay]]; returning
## NULL
## Preparing PCA embeddings for objects...
## Warning: Number of dimensions changing from 50 to 20
## 
## Projecting corrected query onto Reference PCA space
## 
## Projecting corrected query onto Reference UMAP space
## Warning: Not all features provided are in this Assay object, removing the
## following feature(s): GNLY, GZMK, CCL20, MT1G, CD177, CGA, G0S2, IL17A, CCL4L2,
## XCL1, IGFL2, GZMH, TRDC, XCL2, LAIR2, IL10, ACTG2, RASD1, DIRAS3, KLRD1, NPPC,
## IL17RB, ZBED2, LGMN, CD7, CXCR6, HOPX, MS4A6A, TYROBP, TUBA3D, ADGRG1, IL2,
## PVALB, MRC1, TNFSF4, TASL, ID1, CPA5, TMIGD2, PRF1, H1-4, METTL7A, IL26, CLIC3,
## H2AZ1, CTSW, ACP5, PTGER2, GPR25, TNFSF8, TNS3, ELAPOR1, CCL3L3, POLR1F, ENC1,
## BTLA, KIR3DL2, F5, AHSP, CCR2, FAIM2, GIMAP7, CDKN2B, GIMAP4, HTRA1, CCND1,
## PLAC8, LIMS2, H1-2, CDKN2A, H1-0, WARS1, H1-3, ASCL2, DTHD1, H2BC11, GPX1,
## FCMR, H2AC6, IRAG2, H1-10, MYO7A, FASLG, SLA, CCR5, SCML1, H3C10, NAP1L2,
## HS3ST3B1, FGFBP2, IL22, KRT81, PDLIM4, UCP3, ZNF683, ECEL1, HSD11B1, ARC,
## GFPT2, H4C3, RORC, GSTM2
##   |                                                                              |======================================================================| 100%
## Creating slots functional.cluster and functional.cluster.conf in query object
UMAPPlot(L3, group.by = "functional.cluster", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T)

9.Cell type annotation using SingleR

#get reference datasets from celldex package

monaco.ref <- celldex::MonacoImmuneData()
## see ?celldex and browseVignettes('celldex') for documentation
## loading from cache
## see ?celldex and browseVignettes('celldex') for documentation
## loading from cache
hpca.ref <- celldex::HumanPrimaryCellAtlasData()
## see ?celldex and browseVignettes('celldex') for documentation
## loading from cache
## see ?celldex and browseVignettes('celldex') for documentation
## loading from cache
dice.ref <- celldex::DatabaseImmuneCellExpressionData()
## see ?celldex and browseVignettes('celldex') for documentation
## loading from cache
## see ?celldex and browseVignettes('celldex') for documentation
## loading from cache
bpe.ref <- celldex::BlueprintEncodeData()
## see ?celldex and browseVignettes('celldex') for documentation
## loading from cache
## see ?celldex and browseVignettes('celldex') for documentation
## loading from cache
#convert our Seurat object to single cell experiment (SCE)
sce <- as.SingleCellExperiment(DietSeurat(L3))

#using SingleR
monaco.main <- SingleR(test = sce,assay.type.test = 1,ref = monaco.ref,labels = monaco.ref$label.main)
monaco.fine <- SingleR(test = sce,assay.type.test = 1,ref = monaco.ref,labels = monaco.ref$label.fine)
hpca.main <- SingleR(test = sce,assay.type.test = 1,ref = hpca.ref,labels = hpca.ref$label.main)
hpca.fine <- SingleR(test = sce,assay.type.test = 1,ref = hpca.ref,labels = hpca.ref$label.fine)
dice.main <- SingleR(test = sce,assay.type.test = 1,ref = dice.ref,labels = dice.ref$label.main)
dice.fine <- SingleR(test = sce,assay.type.test = 1,ref = dice.ref,labels = dice.ref$label.fine)
bpe.main <- SingleR(test = sce,assay.type.test = 1,ref = bpe.ref,labels = bpe.ref$label.main)
bpe.fine <- SingleR(test = sce,assay.type.test = 1,ref = bpe.ref,labels = bpe.ref$label.fine)


#summary of general cell type annotations

#table(monaco.main$pruned.labels)
#table(hpca.main$pruned.labels)
#table(dice.main$pruned.labels)
#table(bpe.main$pruned.labels)

#The finer cell types annotations are you after, the harder they are to get reliably. 
#This is where comparing many databases, as well as using individual markers from literature, 
#would all be very valuable.

#table(monaco.fine$pruned.labels)
#table(hpca.fine$pruned.labels)
#table(dice.fine$pruned.labels)
#table(bpe.fine$pruned.labels)



#add the annotations to the Seurat object metadata
L3@meta.data$monaco.main <- monaco.main$pruned.labels
L3@meta.data$monaco.fine <- monaco.fine$pruned.labels
#
L3@meta.data$hpca.main   <- hpca.main$pruned.labels
L3@meta.data$hpca.fine   <- hpca.fine$pruned.labels
#  
L3@meta.data$dice.main   <- dice.main$pruned.labels
L3@meta.data$dice.fine   <- dice.fine$pruned.labels
# 
L3@meta.data$bpe.main   <- bpe.main$pruned.labels
L3@meta.data$bpe.fine   <- bpe.fine$pruned.labels

# Monaco Annotations
DimPlot(L3, group.by = "monaco.main", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = F)

DimPlot(L3, group.by = "monaco.main", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)
## Warning: ggrepel: 3 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

DimPlot(L3, group.by = "monaco.fine", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = F)

DimPlot(L3, group.by = "monaco.fine", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)
## Warning: ggrepel: 6 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

# HPCA Annotations
DimPlot(L3, group.by = "hpca.main", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)
## Warning: ggrepel: 2 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

DimPlot(L3, group.by = "hpca.fine", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = F)

DimPlot(L3, group.by = "hpca.fine", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

# DICE Annotations
DimPlot(L3, group.by = "dice.main", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L3, group.by = "dice.fine", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = F)

DimPlot(L3, group.by = "dice.fine", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

# BPE Annotations
DimPlot(L3, group.by = "bpe.main", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

DimPlot(L3, group.by = "bpe.fine", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = F)

DimPlot(L3, group.by = "bpe.fine", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)

10. clusTree

library(clustree)
## Loading required package: ggraph
## 
## Attaching package: 'ggraph'
## The following object is masked from 'package:sp':
## 
##     geometry
clustree(L3, prefix = "SCT_snn_res.")

11.Save the Seurat object as an Robj file

save(L3, file = "L3_Analysis.Robj")

```