***VECTORS
PC1 PC2 r2 Pr(>r)
con.masas -0.80006 0.59992 0.6989 0.001 ***
incendios -0.28550 -0.95838 0.1422 0.006 **
lluvias 0.89490 0.44627 0.2088 0.001 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Permutation: free
Number of permutations: 999
MODEL Building [Vegan PCKG functions]
upr <- vegan::cca(M1[,4:8] ~ . , data=M2[,-1]) # Full Model
lwr <- vegan::cca(M1[,4:8] ~ 1 , data=M2[,-1]) # Null model
## Stepwise Selection via Adjusted R^2
### 1. Global test
### 2. Radjusted forward selection
finalModel <- ordiR2step(lwr, upr, trace = FALSE)
finalModel
# VIF
#finalModel <- mods2
vif.cca(finalModel) # estamos "OK"!
De todas las variables ambientales y las de contaminantes,
solo el SO2
y el PM2.5
mostraron un asociación
significativa con la lista completa de enfermedades respiratorias (i.e,
J:00, J:02, J:03, J:06 y J:20). Esto no descarta que algún contaminante
o variable ambiental (o cualquiera de sus combinaciones) se asocien
específicatmente con alguna enfermedad en particular.Habrá que ver esto
con un análisis univariado (i.e.,incluso regresiones
múltiples)
Permutation test for cca under reduced model
Terms added sequentially (first to last)
Permutation: free
Number of permutations: 999
Model: cca(formula = M1[, 4:8] ~ SO2 + pm2.5, data = M2[, -1])
Df ChiSquare F Pr(>F)
SO2 1 0.0031738 10.0912 0.001 ***
pm2.5 1 0.0009931 3.1577 0.038 *
Residual 62 0.0194997
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MODEL Building [Vegan PCKG functions]
upr <- vegan::cca(M1[,4:7] ~ . , data=M2[,-1]) # Full Model
lwr <- vegan::cca(M1[,4:7] ~ 1 , data=M2[,-1]) # Null model
## Stepwise Selection via Adjusted R^2
### 1. Global test
### 2. Radjusted forward selection
finalModel <- ordiR2step(lwr, upr, trace = FALSE)
finalModel
# VIF
#finalModel <- mods2
vif.cca(finalModel) # estamos "OK"!
** De todas las variables ambientales y las de contaminantes, solo las variables que se muestran abajo mostraron un asociación significativa con la lista completa de enfermedades AGUDAS (i.e, J:01, J:04, J:21 y J:22). Esto no descarta que algún contaminante o variable ambiental (o cualquiera de sus combinaciones) se asocien específicatmente con alguna enfermedad en particular.Habrá que ver esto con un análisis univariado (i.e.,incluso regresiones múltiples)**
Permutation test for cca under reduced model
Terms added sequentially (first to last)
Permutation: free
Number of permutations: 999
Model: cca(formula = M1[, 4:7] ~ Tmin + pm2.5, data = M2[, -1])
Df ChiSquare F Pr(>F)
Tmin 1 0.015518 3.8444 0.041 *
pm2.5 1 0.011144 2.7608 0.068 .
Residual 62 0.250271
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MODEL Building [Vegan PCKG functions]
upr <- vegan::cca(M1[,4:7] ~ . , data=M2[,-1]) # Full Model
lwr <- vegan::cca(M1[,4:7] ~ 1 , data=M2[,-1]) # Null model
## Stepwise Selection via Adjusted R^2
### 1. Global test
### 2. Radjusted forward selection
finalModel <- ordiR2step(lwr, upr, trace = FALSE)
finalModel
# VIF
#finalModel <- mods2
vif.cca(finalModel) # estamos "OK"!
** De todas las variables ambientales y las de contaminantes, solo las variables que se muestran abajo mostraron un asociación significativa con la lista completa de enfermedades AGUDAS (i.e, J:01, J:04, J:21 y J:22). Esto no descarta que algún contaminante o variable ambiental (o cualquiera de sus combinaciones) se asocien específicatmente con alguna enfermedad en particular.Habrá que ver esto con un análisis univariado (i.e.,incluso regresiones múltiples)**
Permutation test for cca under reduced model
Terms added sequentially (first to last)
Permutation: free
Number of permutations: 999
Model: cca(formula = M1[, 4:7] ~ SO2, data = M2[, -1])
Df ChiSquare F Pr(>F)
SO2 1 0.0014445 4.1296 0.032 *
Residual 63 0.0220369
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Call:
glm(formula = enf.PC1 ~ pm2.5 + I(pm2.5^2), data = m1)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.4797328 1.2712896 -2.737 0.00742 **
pm2.5 0.1715247 0.0646233 2.654 0.00935 **
I(pm2.5^2) -0.0018053 0.0007618 -2.370 0.01986 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 3.679217)
Null deviance: 370.77 on 95 degrees of freedom
Residual deviance: 342.17 on 93 degrees of freedom
AIC: 402.45
Number of Fisher Scoring iterations: 2
El pm2.5 se asocia fuertemente con los puntajes del Componente Principal [J00,J02,J03]. Esto no implica relación causal, pero sugiere asociación con cada una de las enfermedades del compnente. Tampoco descarta que el pm2.5 se asocie a otro factor/variable no medido. Por ejemplo, otro contaminante u factor ambiental que se asocie, al mismo tiempo, a las enfermedades del componente.
Call:
glm(formula = enf.PC1 ~ NO2 + I(NO2^2), data = m1)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.561841 1.835786 -2.485 0.0148 *
NO2 0.244970 0.101430 2.415 0.0177 *
I(NO2^2) -0.003020 0.001343 -2.248 0.0270 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 3.783715)
Null deviance: 368.08 on 93 degrees of freedom
Residual deviance: 344.32 on 91 degrees of freedom
(2 observations deleted due to missingness)
AIC: 396.8
Number of Fisher Scoring iterations: 2
Call:
glm(formula = enf.PC1 ~ SO2 + I(SO2^2), data = m1)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.28767 0.50610 2.544 0.0134 *
SO2 -0.32578 0.18717 -1.741 0.0866 .
I(SO2^2) 0.01756 0.01211 1.450 0.1520
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 3.808503)
Null deviance: 253.26 on 65 degrees of freedom
Residual deviance: 239.94 on 63 degrees of freedom
(30 observations deleted due to missingness)
AIC: 280.49
Number of Fisher Scoring iterations: 2
Call:
glm(formula = SO2 ~ NO2, data = m1)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.13790 1.92131 4.756 1.19e-05 ***
NO2 -0.11972 0.04944 -2.421 0.0184 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 16.8442)
Null deviance: 1159.9 on 64 degrees of freedom
Residual deviance: 1061.2 on 63 degrees of freedom
(31 observations deleted due to missingness)
AIC: 371.99
Number of Fisher Scoring iterations: 2
Shapiro-Wilk normality test
data: m1$J0
W = 0.98371, p-value = 0.2807
Call:
glm(formula = J0 ~ pm2.5 + I(pm2.5^2), data = m1)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2069.6765 606.8088 3.411 0.00096 ***
pm2.5 78.3261 30.8458 2.539 0.01277 *
I(pm2.5^2) -0.8535 0.3636 -2.347 0.02104 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 838243.5)
Null deviance: 83558974 on 95 degrees of freedom
Residual deviance: 77956648 on 93 degrees of freedom
AIC: 1586.7
Number of Fisher Scoring iterations: 2
Shapiro-Wilk normality test
data: m1$J02
W = 0.93817, p-value = 0.0002055
Call:
glm(formula = J02 ~ pm2.5 + I(pm2.5^2), family = poisson, data = m1)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 6.019e+00 2.568e-02 234.36 <2e-16 ***
pm2.5 3.444e-02 1.310e-03 26.30 <2e-16 ***
I(pm2.5^2) -4.037e-04 1.575e-05 -25.64 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 17224 on 95 degrees of freedom
Residual deviance: 16488 on 93 degrees of freedom
AIC: 17299
Number of Fisher Scoring iterations: 4
Shapiro-Wilk normality test
data: m1$J03
W = 0.94716, p-value = 0.000723
Call:
glm(formula = J03 ~ pm2.5 + I(pm2.5^2), family = poisson, data = m1)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 6.818e+00 1.704e-02 400.00 <2e-16 ***
pm2.5 3.198e-02 8.580e-04 37.28 <2e-16 ***
I(pm2.5^2) -3.370e-04 1.013e-05 -33.27 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 24790 on 95 degrees of freedom
Residual deviance: 23179 on 93 degrees of freedom
AIC: 24072
Number of Fisher Scoring iterations: 4
Shapiro-Wilk normality test
data: m1$J0
W = 0.98371, p-value = 0.2807
Call:
glm(formula = J0 ~ NO2 + I(NO2^2), data = m1)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1192.6046 865.9138 1.377 0.17180
NO2 133.1846 47.8431 2.784 0.00653 **
I(NO2^2) -1.6757 0.6335 -2.645 0.00962 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 841828.5)
Null deviance: 83328334 on 93 degrees of freedom
Residual deviance: 76606390 on 91 degrees of freedom
(2 observations deleted due to missingness)
AIC: 1554.2
Number of Fisher Scoring iterations: 2
Shapiro-Wilk normality test
data: m1$J02
W = 0.93817, p-value = 0.0002055
Call:
glm(formula = J02 ~ NO2 + I(NO2^2), family = poisson, data = m1)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.792e+00 3.727e-02 155.41 <2e-16 ***
NO2 4.854e-02 2.046e-03 23.72 <2e-16 ***
I(NO2^2) -6.252e-04 2.708e-05 -23.08 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 16714 on 93 degrees of freedom
Residual deviance: 16113 on 91 degrees of freedom
(2 observations deleted due to missingness)
AIC: 16907
Number of Fisher Scoring iterations: 4
Shapiro-Wilk normality test
data: m1$J03
W = 0.94716, p-value = 0.000723
Call:
glm(formula = J03 ~ NO2 + I(NO2^2), family = poisson, data = m1)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 6.701e+00 2.461e-02 272.26 <2e-16 ***
NO2 4.393e-02 1.355e-03 32.41 <2e-16 ***
I(NO2^2) -5.795e-04 1.799e-05 -32.21 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 24321 on 93 degrees of freedom
Residual deviance: 23204 on 91 degrees of freedom
(2 observations deleted due to missingness)
AIC: 24078
Number of Fisher Scoring iterations: 4
Shapiro-Wilk normality test
data: m1$enf.PC2
W = 0.98071, p-value = 0.1698
Call:
glm(formula = enf.PC2 ~ SO2 + I(SO2^2), data = m1)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.781936 0.172964 -4.521 2.78e-05 ***
SO2 0.264860 0.063967 4.141 0.000105 ***
I(SO2^2) -0.010216 0.004138 -2.469 0.016268 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 0.4448376)
Null deviance: 46.156 on 65 degrees of freedom
Residual deviance: 28.025 on 63 degrees of freedom
(30 observations deleted due to missingness)
AIC: 138.77
Number of Fisher Scoring iterations: 2
Los puntajes del Componente Principal [J06,J20] se asocian fuertemente con el SO2. Esto no implica relación causal. Tampoco descarta que el SO2 se asocie a otro factor no medido. Por ejemplo, otro contaminante u factor ambiental que se asocie, al mismo tiempo, al las enfermedades J06 y J20.
Call:
glm(formula = J06 ~ SO2 + I(SO2^2) + NO2 + I(NO2^2), data = m1)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -29.3483 226.4549 -0.130 0.897317
SO2 -86.4474 17.4120 -4.965 6.01e-06 ***
I(SO2^2) 3.9895 1.0887 3.664 0.000527 ***
NO2 43.7160 11.3433 3.854 0.000286 ***
I(NO2^2) -0.5750 0.1442 -3.989 0.000183 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 25707.44)
Null deviance: 3068443 on 64 degrees of freedom
Residual deviance: 1542446 on 60 degrees of freedom
(31 observations deleted due to missingness)
AIC: 851.3
Number of Fisher Scoring iterations: 2
** El NO2 se asocia negativamente con el SO2. POr eso la asociación de la J06 con el SO2 parece ser “negativa”. Es decir, la asociación negativa con el SO2 es muy posiblmente coincidental, y la asociación positiva con el NO2 es a la que es más priudente ponerele atención.
[1] "Pico de casos con NO2 = 38.01 μg/m3"
Call:
glm(formula = J20 ~ SO2 + NO2 + I(NO2^2), family = poisson, data = m1)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.830e+00 7.013e-02 68.86 <2e-16 ***
SO2 -2.427e-02 1.514e-03 -16.03 <2e-16 ***
NO2 7.291e-02 3.631e-03 20.08 <2e-16 ***
I(NO2^2) -8.731e-04 4.589e-05 -19.03 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 3751.1 on 64 degrees of freedom
Residual deviance: 2984.2 on 61 degrees of freedom
(31 observations deleted due to missingness)
AIC: 3507
Number of Fisher Scoring iterations: 4
** El NO2 se asocia negativamente con el SO2. Por eso la asociación de la enfermedad J20 con el SO2 parece ser “negativa”. Es decir, la asociación negativa con el SO2 es muy posiblmente coincidental, y la asociación positiva con el NO2 es a la que es más prudente ponerele atención.
[1] "Pico de casos con NO2 = 41.75 μg/m3"
Call:
glm(formula = enf.PC1 ~ amb.PCA.1, data = m1)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.096e-16 1.985e-01 0.000 1.0000
amb.PCA.1 -2.460e-01 1.225e-01 -2.008 0.0476 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 3.782199)
Null deviance: 370.77 on 95 degrees of freedom
Residual deviance: 355.53 on 94 degrees of freedom
AIC: 404.12
Number of Fisher Scoring iterations: 2
El Amb.CP.1[Temperature] se asocia fuertemente con los puntajes del C.Pr-1_J[00, 02, 03]. Esto no implica relación causal, pero sugiere asociación entre la temperatura ambiental (Tem. mínima y promedio) y las enfermedades J0, J02, J03.
Call:
glm(formula = enf.PC2 ~ amb.PCA.1 + I(amb.PCA.1^2), data = m1)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.17611 0.11520 1.529 0.1297
amb.PCA.1 0.12738 0.06020 2.116 0.0370 *
I(amb.PCA.1^2) -0.06711 0.03162 -2.122 0.0365 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 0.6131769)
Null deviance: 60.526 on 95 degrees of freedom
Residual deviance: 57.025 on 93 degrees of freedom
AIC: 230.43
Number of Fisher Scoring iterations: 2
El Amb.CP.1[Temperature] se asocia fuertemente con los puntajes del C.Pr-2_J[06,20]. Esto no implica relación causal, pero sugiere asociación entre la temperatura ambiental (Tem. mínima y promedio) y las enfermedades J0, J02, J03.
Call:
glm(formula = enf.PC1 ~ amb.PCA.2, data = m1)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.443e-16 2.025e-01 0.000 1.00
amb.PCA.2 -6.366e-02 1.489e-01 -0.428 0.67
(Dispersion parameter for gaussian family taken to be 3.93671)
Null deviance: 370.77 on 95 degrees of freedom
Residual deviance: 370.05 on 94 degrees of freedom
AIC: 407.97
Number of Fisher Scoring iterations: 2
El Amb.CP.2[Hum.Precip.Pluv] No se asocia con los puntajes del C.Pr-1_J[00, 02, 03]. Esto sugiere que la asociación entre la temperatura ambiental (Tem. mínima y la promedio) y las enfermedades J0, J02, J03 es muy baja o inexistente.
Call:
glm(formula = enf.PC2 ~ amb.PCA.2, data = m1)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.115e-17 8.183e-02 0.000 1.000
amb.PCA.2 2.374e-02 6.017e-02 0.395 0.694
(Dispersion parameter for gaussian family taken to be 0.6428336)
Null deviance: 60.526 on 95 degrees of freedom
Residual deviance: 60.426 on 94 degrees of freedom
AIC: 234
Number of Fisher Scoring iterations: 2
Call:
glm(formula = enf.PC1 ~ amb.PCA.1 + pm2.5 + I(pm2.5^2), data = m1)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.4790591 1.2499059 -2.783 0.00653 **
amb.PCA.1 -0.2444091 0.1191267 -2.052 0.04304 *
pm2.5 0.1733412 0.0635425 2.728 0.00763 **
I(pm2.5^2) -0.0018524 0.0007493 -2.472 0.01527 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 3.556485)
Null deviance: 370.77 on 95 degrees of freedom
Residual deviance: 327.20 on 92 degrees of freedom
AIC: 400.15
Number of Fisher Scoring iterations: 2
***VECTORS
PC1 PC2 r2 Pr(>r)
con.masas -0.80006 0.59992 0.6989 0.001 ***
incendios -0.28550 -0.95838 0.1422 0.005 **
lluvias 0.89490 0.44627 0.2088 0.001 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Permutation: free
Number of permutations: 999
Call:
glm(formula = enf.PC1 ~ ++cnrd.pca.1 + I(cnrd.pca.1^2) + cnrd.pca.2 +
I(cnrd.pca.2^2), data = m1)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.005425 0.276232 0.020 0.9844
cnrd.pca.1 -0.320893 0.259797 -1.235 0.2199
I(cnrd.pca.1^2) 1.560653 0.666045 2.343 0.0213 *
cnrd.pca.2 -3.077149 1.330041 -2.314 0.0229 *
I(cnrd.pca.2^2) -1.673423 0.716331 -2.336 0.0217 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 3.838687)
Null deviance: 370.77 on 95 degrees of freedom
Residual deviance: 349.32 on 91 degrees of freedom
AIC: 408.43
Number of Fisher Scoring iterations: 2
Call:
glm(formula = J0 ~ cnrd.pca.1 + I(cnrd.pca.1^2) + cnrd.pca.2 +
I(cnrd.pca.2^2), family = poisson, data = m1)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 8.185067 0.002361 3466.700 < 2e-16 ***
cnrd.pca.1 -0.016128 0.002160 -7.466 8.25e-14 ***
I(cnrd.pca.1^2) 0.151960 0.005155 29.477 < 2e-16 ***
cnrd.pca.2 -0.290009 0.010264 -28.255 < 2e-16 ***
I(cnrd.pca.2^2) -0.155478 0.005560 -27.964 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 23294 on 95 degrees of freedom
Residual deviance: 22398 on 91 degrees of freedom
AIC: 23368
Number of Fisher Scoring iterations: 4
Call:
glm(formula = J02 ~ cnrd.pca.1 + I(cnrd.pca.1^2) + cnrd.pca.2 +
I(cnrd.pca.2^2), family = poisson, data = m1)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 6.663599 0.005042 1321.62 <2e-16 ***
cnrd.pca.1 -0.074718 0.004671 -15.99 <2e-16 ***
I(cnrd.pca.1^2) 0.248648 0.010467 23.76 <2e-16 ***
cnrd.pca.2 -0.507054 0.020865 -24.30 <2e-16 ***
I(cnrd.pca.2^2) -0.265693 0.011326 -23.46 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 17224 on 95 degrees of freedom
Residual deviance: 16656 on 91 degrees of freedom
AIC: 17471
Number of Fisher Scoring iterations: 4
Call:
glm(formula = J03 ~ cnrd.pca.1 + I(cnrd.pca.1^2) + cnrd.pca.2 +
I(cnrd.pca.2^2), family = poisson, data = m1)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 7.465244 0.003382 2207.36 <2e-16 ***
cnrd.pca.1 -0.061130 0.003114 -19.63 <2e-16 ***
I(cnrd.pca.1^2) 0.248440 0.006984 35.58 <2e-16 ***
cnrd.pca.2 -0.504874 0.013906 -36.31 <2e-16 ***
I(cnrd.pca.2^2) -0.263204 0.007552 -34.85 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 24790 on 95 degrees of freedom
Residual deviance: 23581 on 91 degrees of freedom
AIC: 24478
Number of Fisher Scoring iterations: 4
Call:
glm(formula = J06 ~ amb.PCA.1 + cnrd.pca.1 + I(cnrd.pca.1^2) +
cnrd.pca.2 + I(cnrd.pca.2^2) + pm2.5 + I(pm2.5^2) + NO2 +
I(NO2^2), family = poisson, data = m1)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.948e+00 5.764e-02 85.842 < 2e-16 ***
amb.PCA.1 -9.091e-02 3.848e-03 -23.622 < 2e-16 ***
cnrd.pca.1 -8.984e-02 6.678e-03 -13.454 < 2e-16 ***
I(cnrd.pca.1^2) 2.402e-01 1.354e-02 17.744 < 2e-16 ***
cnrd.pca.2 -4.777e-01 2.675e-02 -17.857 < 2e-16 ***
I(cnrd.pca.2^2) -2.697e-01 1.474e-02 -18.294 < 2e-16 ***
pm2.5 3.459e-02 1.738e-03 19.900 < 2e-16 ***
I(pm2.5^2) -3.522e-04 2.019e-05 -17.443 < 2e-16 ***
NO2 1.706e-02 2.847e-03 5.990 2.1e-09 ***
I(NO2^2) -1.028e-04 3.778e-05 -2.722 0.0065 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 9999.7 on 93 degrees of freedom
Residual deviance: 7835.6 on 84 degrees of freedom
(2 observations deleted due to missingness)
AIC: 8594.1
Number of Fisher Scoring iterations: 4
Call:
glm(formula = J20 ~ amb.PCA.1 + amb.PCA.2 + +pm2.5 + I(pm2.5^2) +
NO2 + I(NO2^2), family = poisson, data = m1)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.793e+00 5.799e-02 82.645 < 2e-16 ***
amb.PCA.1 -4.106e-02 3.403e-03 -12.067 < 2e-16 ***
amb.PCA.2 2.597e-02 3.840e-03 6.762 1.36e-11 ***
pm2.5 2.911e-02 1.756e-03 16.578 < 2e-16 ***
I(pm2.5^2) -2.733e-04 2.021e-05 -13.526 < 2e-16 ***
NO2 2.840e-02 2.845e-03 9.979 < 2e-16 ***
I(NO2^2) -2.747e-04 3.787e-05 -7.254 4.05e-13 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 5425.2 on 93 degrees of freedom
Residual deviance: 4476.4 on 87 degrees of freedom
(2 observations deleted due to missingness)
AIC: 5227.9
Number of Fisher Scoring iterations: 4