1 Exploration

Pour le moment, j’ai appliquer acunes filtres (ni Protocole, ni OS,…)

1.1 Database import

BBD V1.9 (=> landworm_V1.9)

  • Import of database LandWorm_dataset_site_V1.9.xlsx version V1.9 (february 22, 2024)
chemin_fichier_excel = "C:/Users/diall/Downloads/datas/LandWorm_dataset_site_V1.9.xlsx"
landworm_V1.9 <- read.xlsx(chemin_fichier_excel, sheet = "Sheet1")

landworm_V1.9 <- landworm_V1.9 %>% mutate(gps_x = as.numeric(gps_x),gps_y = as.numeric(gps_y))
  • The database contains 8019 rows and 481 columns

BBD V2 (=> landworm)

  • Import of database LandWorm_dataset_site_01_07_2024.xlsx (01/07/2024)
chemin_fichier_excel = "C:/Users/diall/Downloads/datas/LandWorm_dataset_site_01_07_2024.xlsx"
landworm <- read.xlsx(chemin_fichier_excel, sheet = "Sheet1")
  • The database contains 8143 rows and 479 columns

1.2 Variations

BBD V1.9 (=> landworm_V1.9)

summary(landworm_V1.9[,c("gps_x", "gps_y")])
##      gps_x            gps_y      
##  Min.   :-5.050   Min.   :41.44  
##  1st Qu.:-0.318   1st Qu.:46.07  
##  Median : 2.154   Median :47.85  
##  Mean   : 2.004   Mean   :47.21  
##  3rd Qu.: 4.346   3rd Qu.:48.75  
##  Max.   : 9.521   Max.   :50.98  
##  NA's   :425      NA's   :428

Dans BDD V1.9, GPS_X varie de \(-5.050\) à \(9.521\)

BBD V2 (=> landworm)

summary(landworm[,c("gps_x", "gps_y")])
##      gps_x            gps_y      
##  Min.   :0.0001   Min.   :41.44  
##  1st Qu.:1.5924   1st Qu.:46.07  
##  Median :2.5116   Median :47.84  
##  Mean   :2.9430   Mean   :47.20  
##  3rd Qu.:4.4110   3rd Qu.:48.74  
##  Max.   :9.5213   Max.   :50.98  
##  NA's   :435      NA's   :438

Dans BDD V2, GPS_X varie de \(0.0001\) à \(9.521\)

1.3 Visualisations

Pour GPS_Y

## Pour gps_y
plot(landworm_V1.9$gps_y, main = 'GPS_Y de V1.9 (en noir) vs GPS_Y de V2 (en bleu)')
points(landworm$gps_y, col = "blue")

On observe une bonne superposition des GPS_X dans les deux BDD

Pour GPS_X

## Pour gps_x
plot(landworm_V1.9$gps_x, main = 'GPS_X de V1.9 (en noir) vs GPS_X de V2 (en bleu)')
points(landworm$gps_x, col = "blue")
lines(c(0,8000), c(0,0), col = 'red', lwd = 3)

On peut observer qu’en dessous de la ligne horizontale rouge, il y a que des points noir (c’est à dire uniquement des points venant de la BDD V1.9).

1.4 Carte des observations

BBD V1.9 (=> landworm_V1.9)

df_coord <- landworm_V1.9[, c("gps_x", "gps_y")] %>% mutate(gps_x = as.numeric(gps_x),gps_y = as.numeric(gps_y))

df_coord$num_ligne <- seq(nrow(df_coord))
carte <- leaflet(df_coord) %>%
  addTiles() %>%
  addCircleMarkers(lng = ~gps_x, lat = ~gps_y, radius = 0.8, fillOpacity = 0.8, fillColor = "blue")
carte

BBD V2 (=> landworm)

df_coord <- landworm[, c("gps_x", "gps_y")] %>% mutate(gps_x = as.numeric(gps_x),gps_y = as.numeric(gps_y))

df_coord$num_ligne <- seq(nrow(df_coord))
carte <- leaflet(df_coord) %>%
  addTiles() %>%
  addCircleMarkers(lng = ~gps_x, lat = ~gps_y, radius = 0.8, fillOpacity = 0.8, fillColor = "blue")
carte

2 Date de Prelevement

Après avoir effectué les filtres selon les OWNERS, PROTOCOLES, OS,…:

Le programme Theix, annee 2011 n’a pas de Date de Prelevement, est ce que c’est normal ?

LS0tDQp0aXRsZTogJ0NoZWNrIGRlcyBDb29yZG9ubsOpZXMgR1BTIGRlIGxhIEJERCBWMi4wJw0KYXV0aG9yOiAiQWJkb3VyYWhtYW5lIERpYWxsbyINCmRhdGU6ICdgciBTeXMuRGF0ZSgpYCcNCm91dHB1dDoNCiAgaHRtbF9kb2N1bWVudDoNCiAgICBjb2RlX2Rvd25sb2FkOiB5ZXMNCiAgICB0b2M6IHllcw0KICAgIHRvY19mbG9hdDogeWVzDQogICAgY29kZV9mb2xkOiBoaWRlDQogICAgd2FybmluZzogbm8NCiAgICBtZXNzYWdlOiBubw0KICAgIHRoZW1lOiB1bml0ZWQNCiAgICBudW1iZXJfc2VjdGlvbnM6IHllcw0KICAgIHNlY19udW1iZXJfc3VmZml4OiAnLiAgICcNCiAgICBjYWNoZTogdHJ1ZQ0KICBwZGZfZG9jdW1lbnQ6DQogICAgdG9jOiB5ZXMNCi0tLQ0KDQpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0NCmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSwgd2FybmluZyA9IEZBTFNFLCBtZXNzYWdlID0gRkFMU0UsDQogICAgICAgICAgICAgICAgICAgICAgZmlnLmFsaWduPSdjZW50ZXInLGZpZy5oZWlnaHQ9NCkNCiMgcm0obGlzdD1scyhhbGw9VFJVRSkpICAjIFJlc2V0IHRoZSB3b3JraW5nIGVudmlyb25tZW50DQpsaWJyYXJ5KG9wZW54bHN4KQ0KbGlicmFyeShyZWFkeGwpDQpsaWJyYXJ5KGtuaXRyKQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpsaWJyYXJ5KGxlYWZsZXQpICMgcG91ciBsYSBjYXJ0bw0KYGBgDQoNCg0KIyBFeHBsb3JhdGlvbg0KDQpQb3VyIGxlIG1vbWVudCwgaidhaSBhcHBsaXF1ZXIgYWN1bmVzIGZpbHRyZXMgKG5pIFByb3RvY29sZSwgbmkgT1MsLi4uKQ0KDQojIyBEYXRhYmFzZSBpbXBvcnQNCg0KKipCQkQgVjEuOSoqICg9PiBsYW5kd29ybV9WMS45KQ0KDQotICAgSW1wb3J0IG9mIGRhdGFiYXNlICoqTGFuZFdvcm1fZGF0YXNldF9zaXRlX1YxLjkueGxzeCoqIHZlcnNpb24gKipWMS45KiogKGZlYnJ1YXJ5IDIyLCAyMDI0KQ0KDQpgYGB7cixlY2hvPVRSVUV9DQpjaGVtaW5fZmljaGllcl9leGNlbCA9ICJDOi9Vc2Vycy9kaWFsbC9Eb3dubG9hZHMvZGF0YXMvTGFuZFdvcm1fZGF0YXNldF9zaXRlX1YxLjkueGxzeCINCmxhbmR3b3JtX1YxLjkgPC0gcmVhZC54bHN4KGNoZW1pbl9maWNoaWVyX2V4Y2VsLCBzaGVldCA9ICJTaGVldDEiKQ0KDQpsYW5kd29ybV9WMS45IDwtIGxhbmR3b3JtX1YxLjkgJT4lIG11dGF0ZShncHNfeCA9IGFzLm51bWVyaWMoZ3BzX3gpLGdwc195ID0gYXMubnVtZXJpYyhncHNfeSkpDQpgYGANCg0KLSAgIFRoZSBkYXRhYmFzZSBjb250YWlucyAqKmByIG5yb3cobGFuZHdvcm1fVjEuOSlgKiogcm93cyBhbmQgKipgciBuY29sKGxhbmR3b3JtX1YxLjkpYCoqIGNvbHVtbnMNCg0KDQpcbg0KKipCQkQgVjIqKiAoPT4gbGFuZHdvcm0pDQoNCi0gICBJbXBvcnQgb2YgZGF0YWJhc2UgKipMYW5kV29ybV9kYXRhc2V0X3NpdGVfMDFfMDdfMjAyNC54bHN4KiogKDAxLzA3LzIwMjQpDQoNCmBgYHtyfQ0KY2hlbWluX2ZpY2hpZXJfZXhjZWwgPSAiQzovVXNlcnMvZGlhbGwvRG93bmxvYWRzL2RhdGFzL0xhbmRXb3JtX2RhdGFzZXRfc2l0ZV8wMV8wN18yMDI0Lnhsc3giDQpsYW5kd29ybSA8LSByZWFkLnhsc3goY2hlbWluX2ZpY2hpZXJfZXhjZWwsIHNoZWV0ID0gIlNoZWV0MSIpDQoNCmBgYA0KDQotICAgVGhlIGRhdGFiYXNlIGNvbnRhaW5zICoqYHIgbnJvdyhsYW5kd29ybSlgKiogcm93cyBhbmQgKipgciBuY29sKGxhbmR3b3JtKWAqKiBjb2x1bW5zDQoNCg0KIyMgVmFyaWF0aW9ucw0KDQoqKkJCRCBWMS45KiogKD0+IGxhbmR3b3JtX1YxLjkpDQpgYGB7cn0NCnN1bW1hcnkobGFuZHdvcm1fVjEuOVssYygiZ3BzX3giLCAiZ3BzX3kiKV0pDQpgYGANCkRhbnMgKipCREQgVjEuOSoqLCBHUFNfWCB2YXJpZSBkZSAkLTUuMDUwJCDDoCAkOS41MjEkDQoNCioqQkJEIFYyKiogKD0+IGxhbmR3b3JtKQ0KYGBge3J9DQpzdW1tYXJ5KGxhbmR3b3JtWyxjKCJncHNfeCIsICJncHNfeSIpXSkNCmBgYA0KRGFucyAqKkJERCBWMioqLCBHUFNfWCB2YXJpZSBkZSAkMC4wMDAxJCDDoCAkOS41MjEkDQoNCg0KIyMgVmlzdWFsaXNhdGlvbnMNCg0KKipQb3VyIEdQU19ZKioNCmBgYHtyfQ0KIyMgUG91ciBncHNfeQ0KcGxvdChsYW5kd29ybV9WMS45JGdwc195LCBtYWluID0gJ0dQU19ZIGRlIFYxLjkgKGVuIG5vaXIpIHZzIEdQU19ZIGRlIFYyIChlbiBibGV1KScpDQpwb2ludHMobGFuZHdvcm0kZ3BzX3ksIGNvbCA9ICJibHVlIikNCmBgYA0KKipPbiBvYnNlcnZlIHVuZSBib25uZSBzdXBlcnBvc2l0aW9uIGRlcyBHUFNfWCBkYW5zIGxlcyBkZXV4IEJERCoqDQoNCg0KKipQb3VyIEdQU19YKioNCmBgYHtyfQ0KIyMgUG91ciBncHNfeA0KcGxvdChsYW5kd29ybV9WMS45JGdwc194LCBtYWluID0gJ0dQU19YIGRlIFYxLjkgKGVuIG5vaXIpIHZzIEdQU19YIGRlIFYyIChlbiBibGV1KScpDQpwb2ludHMobGFuZHdvcm0kZ3BzX3gsIGNvbCA9ICJibHVlIikNCmxpbmVzKGMoMCw4MDAwKSwgYygwLDApLCBjb2wgPSAncmVkJywgbHdkID0gMykNCmBgYA0KDQoqKk9uIHBldXQgb2JzZXJ2ZXIgcXUnZW4gZGVzc291cyBkZSBsYSBsaWduZSBob3Jpem9udGFsZSByb3VnZSwgaWwgeSBhIHF1ZSBkZXMgcG9pbnRzIG5vaXIgKGMnZXN0IMOgIGRpcmUgdW5pcXVlbWVudCBkZXMgcG9pbnRzIHZlbmFudCBkZSBsYSBCREQgVjEuOSkuKioNCg0KDQoNCiMjIENhcnRlIGRlcyBvYnNlcnZhdGlvbnMNCg0KDQoNCioqQkJEIFYxLjkqKiAoPT4gbGFuZHdvcm1fVjEuOSkNCg0KYGBge3J9DQpkZl9jb29yZCA8LSBsYW5kd29ybV9WMS45WywgYygiZ3BzX3giLCAiZ3BzX3kiKV0gJT4lIG11dGF0ZShncHNfeCA9IGFzLm51bWVyaWMoZ3BzX3gpLGdwc195ID0gYXMubnVtZXJpYyhncHNfeSkpDQoNCmRmX2Nvb3JkJG51bV9saWduZSA8LSBzZXEobnJvdyhkZl9jb29yZCkpDQpjYXJ0ZSA8LSBsZWFmbGV0KGRmX2Nvb3JkKSAlPiUNCiAgYWRkVGlsZXMoKSAlPiUNCiAgYWRkQ2lyY2xlTWFya2VycyhsbmcgPSB+Z3BzX3gsIGxhdCA9IH5ncHNfeSwgcmFkaXVzID0gMC44LCBmaWxsT3BhY2l0eSA9IDAuOCwgZmlsbENvbG9yID0gImJsdWUiKQ0KY2FydGUNCmBgYA0KDQoNCioqQkJEIFYyKiogKD0+IGxhbmR3b3JtKQ0KDQpgYGB7cn0NCmRmX2Nvb3JkIDwtIGxhbmR3b3JtWywgYygiZ3BzX3giLCAiZ3BzX3kiKV0gJT4lIG11dGF0ZShncHNfeCA9IGFzLm51bWVyaWMoZ3BzX3gpLGdwc195ID0gYXMubnVtZXJpYyhncHNfeSkpDQoNCmRmX2Nvb3JkJG51bV9saWduZSA8LSBzZXEobnJvdyhkZl9jb29yZCkpDQpjYXJ0ZSA8LSBsZWFmbGV0KGRmX2Nvb3JkKSAlPiUNCiAgYWRkVGlsZXMoKSAlPiUNCiAgYWRkQ2lyY2xlTWFya2VycyhsbmcgPSB+Z3BzX3gsIGxhdCA9IH5ncHNfeSwgcmFkaXVzID0gMC44LCBmaWxsT3BhY2l0eSA9IDAuOCwgZmlsbENvbG9yID0gImJsdWUiKQ0KY2FydGUNCmBgYA0KDQojIERhdGUgZGUgUHJlbGV2ZW1lbnQNCg0KKipBcHLDqHMgYXZvaXIgZWZmZWN0dcOpIGxlcyBmaWx0cmVzIHNlbG9uIGxlcyBPV05FUlMsIFBST1RPQ09MRVMsIE9TLC4uLjoqKg0KDQpMZSBwcm9ncmFtbWUgKipUaGVpeCwgYW5uZWUgMjAxMSoqIG4nYSBwYXMgZGUgKipEYXRlIGRlIFByZWxldmVtZW50KiosIGVzdCBjZSBxdWUgYydlc3Qgbm9ybWFsID8NCg0KDQo8cCBhbGlnbj0iY2VudGVyIj4NCiAgPGltZyBzcmM9IkM6L1VzZXJzL2RpYWxsL0Rvd25sb2Fkcy9kYXRhcy9EYXRlX1ByZWxldmVtZW50X0FOTkVFX1NFVUxFLnBuZyI+DQo8L3A+DQoNCg0KDQoNCg0K