DATA & PREP
ANALYSES
Negative Polarization
Political Ideology
 | negPartisan | |||
---|---|---|---|---|
Predictors | Estimates | CI | Statistic | p |
(Intercept) | 28.19 | 25.07 – 31.31 | 17.78 | <0.001 |
ideology cont | 1.78 | 0.65 – 2.92 | 3.09 | 0.002 |
ideology sq | -2.64 | -3.32 – -1.96 | -7.65 | <0.001 |
Observations | 280 | |||
R2 / R2 adjusted | 0.220 / 0.214 |
Summary:
Ideology has a quadratic effect on negative partisanship (b = -2.62, F(1, 283) = 60.68, p < .001). Negative partisanship is higher at the ideological extremes than in the moderate center.
 | negPartisan | |||
---|---|---|---|---|
Predictors | Estimates | CI | Statistic | p |
(Intercept) | 30.06 | 22.46 – 37.66 | 7.79 | <0.001 |
age | -0.27 | -0.46 – -0.08 | -2.84 | 0.005 |
ideology cont | 6.38 | 2.23 – 10.54 | 3.02 | 0.003 |
age × ideology cont | -0.09 | -0.19 – 0.01 | -1.74 | 0.083 |
Observations | 280 | |||
R2 / R2 adjusted | 0.092 / 0.082 |
interact_plot(m.np2, pred = ideology_cont, modx = age, plot.points = F) +
scale_x_continuous(breaks = seq(-3,3,1)) +
scale_y_continuous(breaks = seq(0, 80, 10)) +
coord_cartesian(ylim = c(0, 70)) +
theme_classic() +
ylab("Affective Polarization
(Ingroup - Outgroup)") +
xlab("Ideology
Strong Liberal to Strong Conservative")
Summary:
Age and ideology predict negative partisanship; negative partisanship decreases with age (b = -0.28, F(1,283) = 9.12, p = .003) and increases with conservatism (b = 6.04, F(1,283) = 8.70, p = .003). There is also a marginal interaction with age: the conservatism-negative polarization relationship is marginally stronger for younger people than for older people (b = -0.08, F(1,283) = 2.76, p = .098).
Party ID
ggplot(d[d$party_factor != "Independent",],
aes(x = party_factor,
y = negPartisan)) +
geom_bar(stat = "summary",
fun = "mean") +
geom_errorbar(aes(x = factor(party_factor),
y = negPartisan),
stat='summary', width=.1) +
theme_classic() +
ylab("Perceptions of Outgroup
(out of 100)") +
xlab("Partisan Identification")
 | negPartisan | |||
---|---|---|---|---|
Predictors | Estimates | CI | Statistic | p |
(Intercept) | 19.42 | 17.11 – 21.74 | 16.52 | <0.001 |
Dem Rep | 9.16 | 4.53 – 13.78 | 3.89 | <0.001 |
Observations | 280 | |||
R2 / R2 adjusted | 0.052 / 0.048 |
ggplot(d[d$party_factor != "Independent",],
aes(x = age,
y = negPartisan)) +
geom_smooth(method = "lm") +
theme_classic() +
ylab("Perceptions of Outgroup
(out of 100)") +
xlab("Age") +
facet_wrap(~party_factor)
 | negPartisan | |||
---|---|---|---|---|
Predictors | Estimates | CI | Statistic | p |
(Intercept) | 29.93 | 22.26 – 37.59 | 7.69 | <0.001 |
Dem Rep | 10.53 | 5.86 – 15.20 | 4.44 | <0.001 |
age | -0.27 | -0.46 – -0.08 | -2.83 | 0.005 |
Observations | 280 | |||
R2 / R2 adjusted | 0.078 / 0.072 |
Summary:
Partisanship and age predict negative partisanship; Republicans hold higher average negative partisanship than Democrats (b = 10.53, p < .001) when controlling for age; further, across both parties, age negatively predicts negative partisanship (b = -0.27, p = .005).
Affective Polarization
Political Ideology
ggplot(d,
aes(x = ideology_cont,
y = affPol)) +
geom_smooth(method = "loess") +
theme_classic() +
scale_x_continuous(breaks = seq(-3,3,1)) +
coord_cartesian(xlim = c(-3,3)) +
ylab("Affective Polarization
(Ingroup - Outgroup)") +
xlab("Ideology
(Strong Liberal to Strong Conservative)")
##
## Call:
## lm(formula = affPol ~ ideology_cont + ideology_sq, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -90.596 -18.916 2.964 18.141 61.671
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 32.3286 2.4794 13.039 < 2e-16 ***
## ideology_cont -0.7683 0.9045 -0.849 0.396
## ideology_sq 4.7114 0.5399 8.726 2.51e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 27.64 on 277 degrees of freedom
## (35 observations deleted due to missingness)
## Multiple R-squared: 0.2275, Adjusted R-squared: 0.2219
## F-statistic: 40.78 on 2 and 277 DF, p-value: 2.99e-16
ggplot(d[d$party_factor != "Independent",],
aes(x = party_factor,
y = affPol)) +
geom_bar(stat = "summary",
fun = 'mean') +
theme_classic() +
coord_cartesian(ylim = c(0,100)) +
ylab("Affective Polarization
(Ingroup - Outgroup)") +
xlab("Partisan Identification")
##
## Call:
## lm(formula = affPol ~ Dem_Rep, data = d[d$party_factor != "Independent",
## ])
##
## Residuals:
## Min 1Q Median 3Q Max
## -101.101 -22.993 1.971 23.257 56.899
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 48.029 1.874 25.624 < 2e-16 ***
## Dem_Rep -9.856 3.749 -2.629 0.00904 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 31.01 on 278 degrees of freedom
## Multiple R-squared: 0.02426, Adjusted R-squared: 0.02075
## F-statistic: 6.912 on 1 and 278 DF, p-value: 0.009039
ggplot(d[d$party_factor != "Independent",],
aes(x = age,
y = affPol)) +
geom_smooth(method = "lm") +
theme_classic() +
scale_x_continuous(breaks = seq(20,80,10)) +
coord_cartesian(ylim = c(0,100), xlim = c(18,80)) +
ylab("Affective Polarization
(Ingroup - Outgroup)") +
xlab("Age")
##
## Call:
## lm(formula = affPol ~ age, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -103.527 -21.262 3.338 24.260 59.066
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 29.1968 6.0545 4.822 2.34e-06 ***
## age 0.5103 0.1504 3.393 0.000793 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 30.76 on 278 degrees of freedom
## (35 observations deleted due to missingness)
## Multiple R-squared: 0.03976, Adjusted R-squared: 0.0363
## F-statistic: 11.51 on 1 and 278 DF, p-value: 0.0007928
##
## Call:
## lm(formula = affPol ~ age * ideology_cont + Dem_Rep, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -94.341 -21.227 2.821 21.571 68.373
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 23.29265 6.09359 3.822 0.000163 ***
## age 0.61615 0.15011 4.105 5.34e-05 ***
## ideology_cont -7.53055 3.56207 -2.114 0.035408 *
## Dem_Rep -12.23750 6.20691 -1.972 0.049658 *
## age:ideology_cont 0.18383 0.07992 2.300 0.022193 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 29.98 on 275 degrees of freedom
## (35 observations deleted due to missingness)
## Multiple R-squared: 0.09754, Adjusted R-squared: 0.08442
## F-statistic: 7.431 on 4 and 275 DF, p-value: 1.071e-05
interact_plot(m.ap4, pred = ideology_cont, modx = age, plot.points = F, interval = T, int.type = "confidence") +
scale_x_continuous(breaks = seq(-3,3,1)) +
scale_y_continuous(breaks = seq(0, 80, 10)) +
coord_cartesian(ylim = c(20, 80)) +
theme_classic() +
ylab("Affective Polarization
(Ingroup - Outgroup)") +
xlab("Ideology
Strong Liberal to Strong Conservative")
Vote Intentions
ggplot(d,
aes(x = vote_factor,
y = ideology_cont,
fill = vote_factor)) +
geom_bar(stat = "summary",
fun = "mean",
position = position_dodge(.8)) +
theme_classic() +
scale_fill_manual("Candidate Choice",
values = c("navyblue",
"dodgerblue",
"grey42",
"indianred2",
"red3")) +
coord_cartesian(ylim = c(-2,2)) +
xlab("Candidate Preference") +
ylab("Ideology
(Strong Liberal to Strong Conservative)")
ggplot(d,
aes(x = vote_factor,
y = VoteIntention,
fill = vote_factor)) +
geom_bar(stat = "summary",
fun = "mean",
position = position_dodge(.8)) +
theme_classic() +
scale_fill_manual("Candidate Choice",
values = c("navyblue",
"dodgerblue",
"grey42",
"indianred2",
"red3")) +
coord_cartesian(ylim = c(-1.5,3)) +
theme(axis.text.x = element_blank()) +
xlab("Candidate Preference") +
ylab("Intention to Vote") #+
##
## Call:
## lm(formula = VoteIntention ~ ideology_cont * (Biden_Trump + Neither_Cand),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.4216 -0.2243 0.6540 0.8669 2.3793
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.3811 0.1435 9.624 < 2e-16 ***
## ideology_cont 0.1316 0.0929 1.417 0.157506
## Biden_Trump -0.6295 0.3263 -1.929 0.054612 .
## Neither_Cand 1.1291 0.3248 3.476 0.000582 ***
## ideology_cont:Biden_Trump 0.5807 0.1804 3.218 0.001429 **
## ideology_cont:Neither_Cand 0.2024 0.2308 0.877 0.381196
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.66 on 309 degrees of freedom
## Multiple R-squared: 0.1115, Adjusted R-squared: 0.09716
## F-statistic: 7.758 on 5 and 309 DF, p-value: 6.822e-07
Partisan stuff
##
## Call:
## lm(formula = partyCont ~ ideology_cont * age * MC_protests, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9339 -0.6197 0.0237 0.7859 2.7674
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.751e-01 6.223e-01 0.764 0.44573
## ideology_cont 1.139e+00 3.753e-01 3.036 0.00261 **
## age -2.456e-02 1.591e-02 -1.544 0.12368
## MC_protests -2.428e-01 1.756e-01 -1.383 0.16778
## ideology_cont:age 4.820e-03 9.489e-03 0.508 0.61185
## ideology_cont:MC_protests -1.022e-01 9.378e-02 -1.090 0.27646
## age:MC_protests 8.676e-03 4.373e-03 1.984 0.04813 *
## ideology_cont:age:MC_protests 9.429e-05 2.324e-03 0.041 0.96766
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.086 on 307 degrees of freedom
## Multiple R-squared: 0.7236, Adjusted R-squared: 0.7173
## F-statistic: 114.8 on 7 and 307 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = ideology_cont ~ (Dem_Rep + Ind_Party) * age * MC_protests,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.6129 -0.6787 -0.0430 0.5940 3.8602
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1467068 0.7028857 0.209 0.8348
## Dem_Rep 2.8675510 1.1645504 2.462 0.0144 *
## Ind_Party 0.2492060 1.8518373 0.135 0.8930
## age 0.0127310 0.0181593 0.701 0.4838
## MC_protests -0.1679539 0.2150901 -0.781 0.4355
## Dem_Rep:age -0.0316990 0.0287349 -1.103 0.2708
## Ind_Party:age -0.0071772 0.0484622 -0.148 0.8824
## Dem_Rep:MC_protests -0.1896550 0.3327093 -0.570 0.5691
## Ind_Party:MC_protests 0.1186470 0.5773665 0.205 0.8373
## age:MC_protests -0.0007229 0.0054084 -0.134 0.8938
## Dem_Rep:age:MC_protests 0.0150132 0.0080612 1.862 0.0635 .
## Ind_Party:age:MC_protests -0.0014879 0.0146466 -0.102 0.9191
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.024 on 303 degrees of freedom
## Multiple R-squared: 0.6792, Adjusted R-squared: 0.6675
## F-statistic: 58.31 on 11 and 303 DF, p-value: < 2.2e-16
ggplot(d, aes(x = ideology_cont)) +
geom_histogram(color="black", fill="white") +
theme_classic() +
scale_x_continuous(breaks = seq(-3,3,1)) +
facet_wrap(~party_factor)
Protest attitudes
ggplot(d,
aes(x = age,
y = MC_protests)) +
geom_smooth(method = 'lm') +
theme_classic() +
facet_wrap(~party_factor) +
coord_cartesian(ylim = c(1,5)) +
scale_x_continuous(breaks = seq(20,80,10)) +
xlab("Age") +
ylab("Protests as Moral Issue")
##
## Call:
## lm(formula = MC_protests ~ age * ideology_cont, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.8998 -0.7819 0.1247 1.0544 2.2500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.029464 0.239037 12.674 < 2e-16 ***
## age 0.007549 0.005934 1.272 0.20426
## ideology_cont -0.410842 0.136751 -3.004 0.00288 **
## age:ideology_cont 0.006828 0.003289 2.076 0.03870 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.253 on 311 degrees of freedom
## Multiple R-squared: 0.05065, Adjusted R-squared: 0.04149
## F-statistic: 5.531 on 3 and 311 DF, p-value: 0.001036
##
## Call:
## lm(formula = MC_protests ~ age + ideology_cont + demNorms_6.r,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.8690 -0.8055 0.1500 1.0468 2.5592
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.956943 0.236894 12.482 < 2e-16 ***
## age 0.005346 0.005894 0.907 0.365103
## ideology_cont -0.096544 0.041812 -2.309 0.021598 *
## demNorms_6.r 0.157578 0.043508 3.622 0.000341 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.235 on 311 degrees of freedom
## Multiple R-squared: 0.07645, Adjusted R-squared: 0.06754
## F-statistic: 8.581 on 3 and 311 DF, p-value: 1.723e-05
##
## Call:
## lm(formula = MC_protests ~ age + ideology_cont, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.70075 -0.81073 0.07208 1.03459 2.10395
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.044425 0.240192 12.675 < 2e-16 ***
## age 0.007966 0.005962 1.336 0.182448
## ideology_cont -0.139740 0.040845 -3.421 0.000707 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.259 on 312 degrees of freedom
## Multiple R-squared: 0.03749, Adjusted R-squared: 0.03132
## F-statistic: 6.076 on 2 and 312 DF, p-value: 0.002577
age.low <- mean(d$age, na.rm = T) + sd(d$age, na.rm = T)
age.low <- round(age.low,2)
age.mean <- mean(d$age, na.rm = T)
age.mean <- round(age.mean,2)
age.high <- mean(d$age, na.rm = T) - sd(d$age, na.rm = T)
age.high <- round(age.high,2)
interact_plot(m.mc, pred = ideology_cont, modx = age, plot.points = F) +
scale_x_continuous(breaks = seq(-3,3,1)) +
theme_classic() +
coord_cartesian(ylim = c(2,5)) +
ylab("Moral Conviction in Protest Stance") +
xlab("Ideology
Strong Liberal to Strong Conservative")
##
## Pearson's product-moment correlation
##
## data: (d$MC_protests_1) and (d$MC_protests_2)
## t = 33.15, df = 313, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.8550813 0.9045461
## sample estimates:
## cor
## 0.8822249
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 315 -2.18 1.31 -3 -2.42 0 -3 3 6 1.45 1.08 0.07
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 315 -1.04 2.08 -2 -1.27 1.48 -3 3 6 0.58 -1.04 0.12
Democratic norms
##
## Call:
## lm(formula = demNorms ~ ideology_cont, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.97192 -0.58684 0.00494 0.59273 1.82537
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.17463 0.04483 26.203 < 2e-16 ***
## ideology_cont -0.08978 0.02518 -3.566 0.000419 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7919 on 313 degrees of freedom
## Multiple R-squared: 0.03904, Adjusted R-squared: 0.03597
## F-statistic: 12.72 on 1 and 313 DF, p-value: 0.0004189
##
## Call:
## lm(formula = demNorms ~ ideology_cont * age, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.80792 -0.54351 -0.01395 0.52872 1.95383
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.484733 0.145475 3.332 0.000966 ***
## ideology_cont -0.243870 0.083225 -2.930 0.003638 **
## age 0.017545 0.003611 4.858 1.88e-06 ***
## ideology_cont:age 0.003272 0.002001 1.635 0.103096
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7623 on 311 degrees of freedom
## Multiple R-squared: 0.1154, Adjusted R-squared: 0.1069
## F-statistic: 13.52 on 3 and 311 DF, p-value: 2.567e-08
##
## Call:
## lm(formula = demNorms ~ ideology_cont * MC_protests, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.12325 -0.57498 -0.03528 0.53543 2.02027
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.75325 0.12556 5.999 5.51e-09 ***
## ideology_cont -0.03263 0.07420 -0.440 0.660400
## MC_protests 0.12462 0.03494 3.566 0.000419 ***
## ideology_cont:MC_protests -0.01102 0.01867 -0.590 0.555316
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7785 on 311 degrees of freedom
## Multiple R-squared: 0.07731, Adjusted R-squared: 0.06841
## F-statistic: 8.686 on 3 and 311 DF, p-value: 1.498e-05
Support for Protestors
# Agree with Protestors
## ideology
ggplot(d,
aes(x = ideology_cont,
y = protestAgree)) +
geom_smooth(method = "lm") +
theme_classic() +
coord_cartesian(ylim = c(-3,3)) +
scale_x_continuous(breaks = seq(-3,3,1)) +
scale_y_continuous(breaks = seq(-3,3,1)) +
xlab("Political Ideology") +
ylab("Agree with protestors' methods")
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 315 0.14 2.03 0 0.17 2.97 -3 3 6 -0.18 -1.21 0.11
##
## Call:
## lm(formula = protestAgree ~ ideology_cont, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1655 -1.1364 0.1214 1.0632 4.8074
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.02207 0.09241 0.239 0.811
## ideology_cont -0.68606 0.05190 -13.219 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.633 on 313 degrees of freedom
## Multiple R-squared: 0.3583, Adjusted R-squared: 0.3562
## F-statistic: 174.7 on 1 and 313 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = protestAgree ~ ideology_cont, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1655 -1.1364 0.1214 1.0632 4.8074
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.02207 0.09241 0.239 0.811
## ideology_cont -0.68606 0.05190 -13.219 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.633 on 313 degrees of freedom
## Multiple R-squared: 0.3583, Adjusted R-squared: 0.3562
## F-statistic: 174.7 on 1 and 313 DF, p-value: < 2.2e-16
##
## Pearson's product-moment correlation
##
## data: d$protestAgree and d$protestLegit
## t = 22.297, df = 313, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.7366229 0.8226554
## sample estimates:
## cor
## 0.783363
##
## Call:
## lm(formula = protestLegit ~ ideology_cont, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0659 -1.2481 0.2296 1.0474 4.2215
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.65701 0.09478 6.932 2.37e-11 ***
## ideology_cont -0.70446 0.05323 -13.235 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.674 on 313 degrees of freedom
## Multiple R-squared: 0.3588, Adjusted R-squared: 0.3568
## F-statistic: 175.2 on 1 and 313 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = protestAgree ~ ideology_cont * MC_protests, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2853 -1.1383 0.2193 1.1021 4.7113
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.84893 0.25635 -3.312 0.001037 **
## ideology_cont -0.25470 0.15149 -1.681 0.093722 .
## MC_protests 0.24894 0.07134 3.489 0.000554 ***
## ideology_cont:MC_protests -0.10709 0.03811 -2.810 0.005266 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.589 on 311 degrees of freedom
## Multiple R-squared: 0.3955, Adjusted R-squared: 0.3897
## F-statistic: 67.84 on 3 and 311 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = protestLegit ~ ideology_cont * MC_protests, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1438 -1.2001 0.2199 1.0533 4.2353
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.10798 0.26721 0.404 0.6864
## ideology_cont -0.36251 0.15791 -2.296 0.0224 *
## MC_protests 0.15498 0.07436 2.084 0.0380 *
## ideology_cont:MC_protests -0.08636 0.03972 -2.174 0.0305 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.657 on 311 degrees of freedom
## Multiple R-squared: 0.3762, Adjusted R-squared: 0.3702
## F-statistic: 62.51 on 3 and 311 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = protestAgree ~ ideology_cont * MC_protests * protestLegit,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7712 -0.5943 0.0682 0.6100 4.8861
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.70856 0.23131 -3.063 0.00238 **
## ideology_cont -0.34564 0.13989 -2.471 0.01403 *
## MC_protests 0.09860 0.07084 1.392 0.16497
## protestLegit 0.12206 0.12830 0.951 0.34216
## ideology_cont:MC_protests 0.04011 0.03949 1.016 0.31049
## ideology_cont:protestLegit 0.06674 0.05968 1.118 0.26431
## MC_protests:protestLegit 0.13959 0.03451 4.045 6.63e-05 ***
## ideology_cont:MC_protests:protestLegit -0.01256 0.01523 -0.825 0.40993
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.181 on 307 degrees of freedom
## Multiple R-squared: 0.6705, Adjusted R-squared: 0.663
## F-statistic: 89.26 on 7 and 307 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = protestLegit ~ ideology_cont * MC_protests * protestAgree,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.9269 -0.6620 -0.0507 0.6586 4.8649
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.487458 0.240592 2.026 0.04362 *
## ideology_cont -0.268284 0.154236 -1.739 0.08296 .
## MC_protests 0.079420 0.071680 1.108 0.26874
## protestAgree 0.385549 0.143674 2.684 0.00768 **
## ideology_cont:MC_protests 0.005132 0.041713 0.123 0.90217
## ideology_cont:protestAgree 0.057086 0.067819 0.842 0.40059
## MC_protests:protestAgree 0.075173 0.037619 1.998 0.04657 *
## ideology_cont:MC_protests:protestAgree 0.003747 0.016758 0.224 0.82324
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.236 on 307 degrees of freedom
## Multiple R-squared: 0.6571, Adjusted R-squared: 0.6493
## F-statistic: 84.04 on 7 and 307 DF, p-value: < 2.2e-16
d$protestAtt <- rowMeans(d[,c("protestAgree","protestLegit")], na.rm = T)
m13 <- lm(protestAtt ~ ideology_cont * MC_protests * age, data = d)
summary(m13)
##
## Call:
## lm(formula = protestAtt ~ ideology_cont * MC_protests * age,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7975 -0.8456 0.0797 0.9291 4.0644
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.279717 0.833803 -1.535 0.12586
## ideology_cont -0.403773 0.502824 -0.803 0.42259
## MC_protests 0.699605 0.235262 2.974 0.00318 **
## age 0.021440 0.021320 1.006 0.31538
## ideology_cont:MC_protests -0.003962 0.125654 -0.032 0.97487
## ideology_cont:age 0.001025 0.012714 0.081 0.93583
## MC_protests:age -0.011937 0.005859 -2.037 0.04247 *
## ideology_cont:MC_protests:age -0.001679 0.003114 -0.539 0.59018
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.455 on 307 degrees of freedom
## Multiple R-squared: 0.4536, Adjusted R-squared: 0.4412
## F-statistic: 36.41 on 7 and 307 DF, p-value: < 2.2e-16
US war role
##
## Call:
## lm(formula = USrole ~ ideology_cont, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.35922 -0.85028 0.09317 0.83870 2.60210
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.85028 0.06869 41.493 < 2e-16 ***
## ideology_cont -0.16964 0.03858 -4.397 1.5e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.214 on 313 degrees of freedom
## Multiple R-squared: 0.05818, Adjusted R-squared: 0.05517
## F-statistic: 19.34 on 1 and 313 DF, p-value: 1.504e-05
##
## Call:
## lm(formula = USrole ~ ideology_cont * age, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.34829 -0.87886 0.03162 0.88418 2.77812
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.382770 0.230599 10.333 <2e-16 ***
## ideology_cont -0.252362 0.131923 -1.913 0.0567 .
## age 0.011954 0.005724 2.088 0.0376 *
## ideology_cont:age 0.001670 0.003173 0.526 0.5991
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.208 on 311 degrees of freedom
## Multiple R-squared: 0.07225, Adjusted R-squared: 0.06331
## F-statistic: 8.074 on 3 and 311 DF, p-value: 3.395e-05
ggplot(d,
aes(x = ideology_cont,
y = USrole)) +
geom_smooth(method = "lm") +
theme_classic() +
scale_x_continuous(breaks = seq(-3,3,1)) +
coord_cartesian(ylim = c(1,5)) +
ylab("US's Role in War") +
xlab("Ideology
(Strong Liberal to Strong Conservative)")
interact_plot(m16, pred = ideology_cont, modx = age, plot.points = F) +
scale_x_continuous(breaks = seq(-3,3,1)) +
theme_classic() +
coord_cartesian(ylim = c(2,5)) +
ylab("US's Role in War") +
xlab("Ideology
Strong Liberal to Strong Conservative")
War perceptions
## [1] -2.184127
## [1] -1.038095
ggplot(d, aes(x = acceptable_israel)) +
geom_histogram(color="black", fill="white") +
theme_classic() +
scale_x_continuous(breaks = seq(-3,3,1)) +
facet_wrap(~party_factor)
##
## Call:
## lm(formula = acceptable_israel ~ (Dem_Rep + Ind_Party) * age,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8540 -1.1134 -0.3267 1.5875 5.2015
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.87332 0.42885 -4.368 1.71e-05 ***
## Dem_Rep 0.89650 0.74613 1.202 0.2305
## Ind_Party -0.98025 1.11251 -0.881 0.3789
## age 0.02397 0.01081 2.217 0.0273 *
## Dem_Rep:age 0.02540 0.01825 1.392 0.1649
## Ind_Party:age 0.02713 0.02832 0.958 0.3389
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.817 on 309 degrees of freedom
## Multiple R-squared: 0.2466, Adjusted R-squared: 0.2344
## F-statistic: 20.22 on 5 and 309 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = acceptable_israel ~ (Dem_Rep + Ind_Party), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1345 -1.0870 -0.1345 1.8655 4.9130
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.9262 0.1281 -7.231 3.71e-12 ***
## Dem_Rep 2.0475 0.2235 9.160 < 2e-16 ***
## Ind_Party 0.1107 0.3319 0.334 0.739
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.849 on 312 degrees of freedom
## Multiple R-squared: 0.212, Adjusted R-squared: 0.2069
## F-statistic: 41.96 on 2 and 312 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = acceptable_israel ~ (Dem_R + Dem_I) * age, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8540 -1.1134 -0.3267 1.5875 5.2015
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.64832 0.46481 -5.698 2.83e-08 ***
## Dem_R 0.89650 0.74613 1.202 0.2305
## Dem_I 1.42850 1.14653 1.246 0.2137
## age 0.02031 0.01222 1.663 0.0974 .
## Dem_R:age 0.02540 0.01825 1.392 0.1649
## Dem_I:age -0.01443 0.02947 -0.490 0.6247
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.817 on 309 degrees of freedom
## Multiple R-squared: 0.2466, Adjusted R-squared: 0.2344
## F-statistic: 20.22 on 5 and 309 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = acceptable_israel ~ (Rep_D + Rep_I) * age, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8540 -1.1134 -0.3267 1.5875 5.2015
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.75182 0.58367 -3.001 0.002906 **
## Rep_D -0.89650 0.74613 -1.202 0.230468
## Rep_I 0.53200 1.19965 0.443 0.657742
## age 0.04572 0.01356 3.372 0.000841 ***
## Rep_D:age -0.02540 0.01825 -1.392 0.164914
## Rep_I:age -0.03983 0.03005 -1.326 0.185911
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.817 on 309 degrees of freedom
## Multiple R-squared: 0.2466, Adjusted R-squared: 0.2344
## F-statistic: 20.22 on 5 and 309 DF, p-value: < 2.2e-16
m18.2 <- lm(acceptable_israel ~ (Dem_Rep + Ind_Party) * age * ideology_cont, data = d)
summary(m18.2)
##
## Call:
## lm(formula = acceptable_israel ~ (Dem_Rep + Ind_Party) * age *
## ideology_cont, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9449 -1.0319 -0.2799 1.0785 5.3940
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.883289 0.571141 -3.297 0.00109 **
## Dem_Rep 0.061564 1.325882 0.046 0.96300
## Ind_Party -1.078094 1.271749 -0.848 0.39726
## age 0.018995 0.014616 1.300 0.19471
## ideology_cont 1.084672 0.615523 1.762 0.07904 .
## Dem_Rep:age -0.006409 0.032816 -0.195 0.84529
## Ind_Party:age 0.013636 0.033390 0.408 0.68328
## Dem_Rep:ideology_cont 0.418056 0.736581 0.568 0.57075
## Ind_Party:ideology_cont -1.839961 1.732888 -1.062 0.28918
## age:ideology_cont -0.008183 0.013463 -0.608 0.54376
## Dem_Rep:age:ideology_cont 0.002339 0.017573 0.133 0.89420
## Ind_Party:age:ideology_cont 0.040622 0.037412 1.086 0.27843
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.698 on 303 degrees of freedom
## Multiple R-squared: 0.3545, Adjusted R-squared: 0.3311
## F-statistic: 15.13 on 11 and 303 DF, p-value: < 2.2e-16
ggplot(d,
aes(x = age,
y = acceptable_israel,
fill = party_factor)) +
geom_smooth(method = "loess") +
theme_classic() +
ylab("Israel Acceptability") +
xlab("Age")
ggplot(d,
aes(x = age,
y = acceptable_israel)) +
geom_smooth(method = "lm") +
theme_classic() +
facet_wrap(~party_factor) +
ylab("Israel Acceptability") +
xlab("Age")
ggplot(d,
aes(x = party_factor,
y = acceptable_israel)) +
geom_bar(stat = "summary",
fun = "mean") +
theme_classic()
##
## Call:
## lm(formula = acceptable_israel ~ age * ideology_cont, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4804 -1.1356 -0.1863 1.1045 5.4037
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.909819 0.324728 -5.881 1.05e-08 ***
## age 0.024918 0.008061 3.091 0.00217 **
## ideology_cont 0.401207 0.185774 2.160 0.03156 *
## age:ideology_cont 0.005446 0.004468 1.219 0.22374
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.702 on 311 degrees of freedom
## Multiple R-squared: 0.3348, Adjusted R-squared: 0.3284
## F-statistic: 52.17 on 3 and 311 DF, p-value: < 2.2e-16
interact_plot(m19, pred = ideology_cont, modx = age, plot.points = F) +
scale_x_continuous(breaks = seq(-3,3,1)) +
theme_classic() +
ylab("Israel Acceptability") +
xlab("Ideology
Strong Liberal to Strong Conservative")
ggplot(d,
aes(x = age,
y = acceptable_hamas,
fill = party_factor)) +
geom_smooth(method = "loess") +
theme_classic() +
ylab("Hamas Acceptability") +
xlab("Age")
##
## Call:
## lm(formula = acceptable_hamas ~ age, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.2670 -0.8919 -0.5636 0.2957 5.4833
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.287450 0.237601 -5.419 1.2e-07 ***
## age -0.023448 0.005922 -3.960 9.3e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.276 on 313 degrees of freedom
## Multiple R-squared: 0.0477, Adjusted R-squared: 0.04466
## F-statistic: 15.68 on 1 and 313 DF, p-value: 9.3e-05
##
## Call:
## lm(formula = acceptable_hamas ~ age * (Dem_Rep + Ind_Party),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3574 -0.8834 -0.4980 0.3951 4.9235
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.390077 0.300587 -4.625 5.53e-06 ***
## age -0.018492 0.007578 -2.440 0.0152 *
## Dem_Rep -0.123454 0.522977 -0.236 0.8135
## Ind_Party 0.106848 0.779772 0.137 0.8911
## age:Dem_Rep -0.001845 0.012791 -0.144 0.8854
## age:Ind_Party -0.014144 0.019853 -0.712 0.4767
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.273 on 309 degrees of freedom
## Multiple R-squared: 0.06407, Adjusted R-squared: 0.04893
## F-statistic: 4.231 on 5 and 309 DF, p-value: 0.0009807
Social Media