The following graph shows how countries are being added every year with the progression in the dataset since the end of WWII
The necessary pre-condition for the dynast in our dataset is that a leader will only be classified as a dynast if and only if a that leader in our dataset has a parent, in-law, or any kind of direct relative who has contested and won an election at any level of politics in their respective polities, then that politician is a dynast. Therefore a dynastic country i at point t will be a country whose leader is a dynast.
The first graph shows the proportion of dynastic countries at a given time over the years.
The second graph shows the proportion of dynastic countries at a given time over a period of 25-25-25 years.
The necessary pre-condition for the dynast in our dataset is that a leader will only be classified as a dynast if and only if a that leader in our dataset has a parent, in-law, or any kind of direct relative who has contested and won an election at any level of politics in their respective polities, then that politician is a dynast. Therefore, dynastic rule will be years under a dynast.
These classifications are extended and replicated based on the regime types given in WhoGov Dataset (Nuffield Research Center which is based in turn on Cheibub et. al (2010))
| system_category | year_bin | Prop_Dyn_Years |
|---|---|---|
| Mixed Democratic | 1945-1970 | 5.902778 |
| Mixed Democratic | 1970-1995 | 14.804159 |
| Mixed Democratic | 1995-2020 | 10.337995 |
| Parliamentary Democracy | 1945-1970 | 27.408962 |
| Parliamentary Democracy | 1970-1995 | 22.937322 |
| Parliamentary Democracy | 1995-2020 | 16.101495 |
| Parliamentary Democracy | NA | NA |
| Presidential Democracy | 1945-1970 | 29.876087 |
| Presidential Democracy | 1970-1995 | 18.575780 |
| Presidential Democracy | 1995-2020 | 26.030800 |
| Presidential Democracy | NA | NA |
## # A tibble: 2 × 4
## dictatorship Prop_Dyn_Years Cummulative_Dyn_Years Dynastic_Rulers_percentage
## <dbl> <dbl> <dbl> <dbl>
## 1 0 NA NA NA
## 2 1 30.8 1641 24.1
## # A tibble: 9 × 4
## system_category Prop_Dyn_Years Cummulative_Dyn_Years Dynastic_Rulers_perc…¹
## <chr> <dbl> <dbl> <dbl>
## 1 "" 23.6 13 6.35
## 2 "Civilian Dictato… 21.5 590 18.7
## 3 "Military Dictato… 14.5 257 20.2
## 4 "Mixed Democratic" 11.9 146 10.4
## 5 "Parliamentary De… NA 468 19.5
## 6 "Presidential Dem… NA 451 25.2
## 7 "Royal Dictatorsh… 98.9 794 72.7
## 8 "military Dictato… 0 0 0
## 9 "system_category" NA NA NA
## # ℹ abbreviated name: ¹Dynastic_Rulers_percentage
##Proportion of Years Under Dynastic Rule, Year-by-year Dynastic Rule, Proportion of dynastic leaders by Regime Change Binary
## # A tibble: 2 × 4
## Regime_Change Prop_Dyn_Years Cummulative_Dyn_Years Dynastic_Rulers_percentage
## <dbl> <dbl> <dbl> <dbl>
## 1 0 NA NA NA
## 2 1 NA 1247 20.4
##Country Count and dynastic information for Countries by Regime Change
Status
| Regime_Change | Number_Of_Countries |
|---|---|
| 0 | 92 |
| 1 | 78 |
| dictatorship | Number_Of_Countries_With_No_RegChange |
|---|---|
| 0 | 48 |
| 1 | 44 |
| system_category | Prop_Dyn_Years |
|---|---|
| Mixed Democratic | 12.46291 |
| Parliamentary Democracy | NA |
| Presidential Democracy | 35.66667 |
| system_category | NA |
| system_category | Prop_Dyn_Years |
|---|---|
| Civilian Dictatorship | 10.33275 |
| Military Dictatorship | 16.86747 |
| Royal Dictatorship | 99.44341 |
| Num_Transitions | Number_Countries |
|---|---|
| 0 | 92 |
| 1 | 34 |
| 2 | 17 |
| 3 | 12 |
| 4 | 6 |
| 5 | 4 |
| 6 | 2 |
| 7 | 1 |
| 8 | 2 |
| Num_Transitions | Percentage_Dynastic_Years |
|---|---|
| 1 | NA |
| 2 | 28.46088 |
| 3 | 28.34437 |
| 4 | 14.04959 |
| 5 | 12.95547 |
| 6 | 30.87248 |
| 7 | 10.66667 |
| 8 | 24.00000 |
| Number_of_Transitions | Percentage_Dynastic_Years |
|---|---|
| One Transition | NA |
| Two or More Transitions | 24.74156 |
| Number_of_Transitions | Dynastic_Rulers_percentage |
|---|---|
| One Transition | 16.71470 |
| Two or More Transitions | 22.64808 |
## # A tibble: 33 × 6
## year_bin.x postww2_ind Prop_Dyn_Years Cummulative_Dyn_Years year_bin.y
## <ord> <dbl> <dbl> <dbl> <ord>
## 1 1945-1970 0 29.6 462 1945-1970
## 2 1945-1970 0 29.6 462 1970-1995
## 3 1945-1970 0 29.6 462 1995-2020
## 4 1945-1970 1 28.7 205 1945-1970
## 5 1945-1970 1 28.7 205 1970-1995
## 6 1945-1970 1 28.7 205 1995-2020
## 7 1945-1970 NA 0 0 1945-1970
## 8 1945-1970 NA 0 0 1995-2020
## 9 1945-1970 NA 0 0 <NA>
## 10 1970-1995 0 27.0 438 1945-1970
## # ℹ 23 more rows
## # ℹ 1 more variable: Dynastic_Rulers_percentage <dbl>
| former_british_colony | year_bin | Prop_Dyn_Years |
|---|---|---|
| 0 | 1945-1970 | 25.06917 |
| 0 | 1970-1995 | 18.15867 |
| 0 | 1995-2020 | 21.96514 |
| 0 | NA | NA |
| 1 | 1945-1970 | 38.09904 |
| 1 | 1970-1995 | 36.20000 |
| 1 | 1995-2020 | 35.83490 |
The necessary pre-condition for the dynast in our dataset is that a leader will only be classified as a dynast if and only if a that leader in our dataset has a parent, in-law, or any kind of direct relative who has contested and won an election at any level of politics in their respective polities, then that politician is a dynast.
This graph shows what kind of dynastic relationships are most relevant across regime types (Civilian Dictatorship, Military Dictatorship, Mixed Democratic, Parliamentary Democracy, Presidential Democracy, Royal Dictatorship)
gdd_relation_all <- gdd %>%
distinct(nominal_leader, .keep_all = TRUE) %>%
filter(pred_bin == 1, relation_code_pred != 0)
gdd_relation_all <-gdd_relation_all %>%
group_by(fln_gender) %>%
count(relation_code_pred) %>%
mutate(Relation_Type = case_when(
fln_gender == 0 & relation_code_pred == 2 ~ "Father-Son",
fln_gender == 0 & relation_code_pred == 3 ~ "Mother-Son",
fln_gender == 0 & relation_code_pred == 8 ~ "Brother-Brother",
fln_gender == 0 & relation_code_pred == 10 ~ "Grandfather-Grandson",
fln_gender == 0 & relation_code_pred == 11 ~ "Grandmother-Grandson",
fln_gender == 0 & relation_code_pred == 14 ~ "Uncle-Nephew",
relation_code_pred == 18 ~ "Cousin-Cousin",
relation_code_pred == 19 ~ "Other",
fln_gender == 1 & relation_code_pred == 2 ~ "Father-Daughter",
fln_gender == 1 & relation_code_pred == 6 ~ "Husband-Wife",
fln_gender == 1 & relation_code_pred == 8 ~ "Brother-Sister",
fln_gender == 1 & relation_code_pred == 10 ~ "Grandfather-Granddaughter",
TRUE ~ NA_character_)
) %>%
rename(Total = n) %>%
mutate(percentage_tot_dyn = Total/sum(Total)*100)
relation <- ggplot(gdd_relation_all, aes(x = Relation_Type, y = Total, fill = Relation_Type)) +
geom_bar(stat = "identity") +
labs(title = "Dynastic Relationship Across All Regime Types",
x = "Dynastic Relationship Type",
y = "Total") +
theme_stata()+
theme(axis.text.x = element_text(angle = 45, hjust = 1),
legend.position = "none")
ggplotly(relation)The necessary pre-condition for the dynast in our dataset is that a leader will only be classified as a dynast if and only if a that leader in our dataset has a parent, in-law, or any kind of direct relative who has contested and won an election at any level of politics in their respective polities, then that politician is a dynast.
This graph shows what kind of dynastic relationships are most relevant in democratic regime types (Mixed Democratic, Parliamentary Democracy, Presidential Democracy)
While our definition of a dynast is clear as stated in the previous section. This section expands on that definition at talks about three different kinds of dynast.
The First definition of Dynast is the one mentioned before. This shows the proportion of leaders that necessarily have an ancestor in politics and may or may not have a successor. The necessary precondition is a family member preceding him/her in politics before his time. ((pred_bin == 1 & suc_bin doesn’t matter))
The Second definition of Dynast is the one of dynasty sustainers. This means that the following graph shows the proportion of leaders that necessarily come from apolitical family and also leaves a successor in politics. Therefore, a dynasty sustainer The necessary preconditions are a family member preceding him/her in politics before his/her time and a family member suceeding him/her in politics after his/her time. (pred_bin == 1 & suc_bin == 1)
The THIRD definition of Dynast is the one of dynasty-enderss. This means that the following graph shows the proportion of leaders that necessarily come from a political family BUT DO NOT LEAVE a successor in politics. Therefore, for a dynasty ENDER The necessary preconditions are a family member preceding him/her in politics before his/her time and a family member NOT suceeding him/her in politics after his/her time. (pred_bin == 1 & suc_bin == 0)
The fourth definition of Dynast is the one of dynasty-formers. This means that the following graph shows the proportion of leaders that DO NOT come from a political family HAVE a successor in politics. Therefore, for a dynasty former the necessary preconditions are the ABSENCE OF A family member preceding him/her in politics before his/her time and a family member SUCCEEDING him/her in politics after his/her time. (pred_bin == 0 & suc_bin == 1)
The last category is a category of leaders that have no family before or after them in politics. These are not-dynasts and are included to show declining prevalence of family ties in politics.
##
## Call:
## glm(formula = dynastic ~ dictatorship, family = binomial(link = "logit"),
## data = gdd)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.32226 0.03463 -38.18 <2e-16 ***
## dictatorship 0.50447 0.04564 11.05 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 11850 on 10343 degrees of freedom
## Residual deviance: 11726 on 10342 degrees of freedom
## AIC: 11730
##
## Number of Fisher Scoring iterations: 4
##
## Call:
## glm(formula = dynastic ~ dictatorship + factor(Country) + factor(Year),
## family = binomial(link = "logit"), data = gdd)
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) 1.311e+00 4.208e-01 3.114
## dictatorship -2.001e-01 1.006e-01 -1.989
## factor(Country)Albania -2.338e+00 3.907e-01 -5.983
## factor(Country)Algeria -2.039e+01 1.391e+03 -0.015
## factor(Country)Angola -2.039e+01 1.575e+03 -0.013
## factor(Country)Argentina -1.678e+00 3.606e-01 -4.653
## factor(Country)Armenia -2.062e+01 1.951e+03 -0.011
## factor(Country)Australia -9.492e-01 3.582e-01 -2.650
## factor(Country)Austria -2.062e+01 1.233e+03 -0.017
## factor(Country)Azerbaijan -4.137e-01 4.547e-01 -0.910
## factor(Country)Bahamas -2.056e+01 1.543e+03 -0.013
## factor(Country)Bahrain 1.882e+01 1.513e+03 0.012
## factor(Country)Bangladesh -4.380e-01 3.874e-01 -1.131
## factor(Country)Barbados -2.262e+00 4.263e-01 -5.305
## factor(Country)Belarus -2.042e+01 1.951e+03 -0.010
## factor(Country)Belgium -3.338e+00 4.822e-01 -6.922
## factor(Country)Belize -2.055e+01 1.689e+03 -0.012
## factor(Country)Benin 1.115e-01 3.859e-01 0.289
## factor(Country)Bhutan 6.375e-01 3.912e-01 1.630
## factor(Country)Bosnia and Herzegovina -1.857e+00 4.882e-01 -3.805
## factor(Country)Botswana -2.157e+00 4.194e-01 -5.142
## factor(Country)Brazil -3.458e+00 5.022e-01 -6.886
## factor(Country)Bulgaria -2.818e+00 4.270e-01 -6.599
## factor(Country)Burkina Faso -3.202e+00 5.319e-01 -6.020
## factor(Country)Burundi -1.569e+00 3.790e-01 -4.139
## factor(Country)Cambodia 9.098e-02 3.684e-01 0.247
## factor(Country)Cameroon -2.035e+01 1.370e+03 -0.015
## factor(Country)Canada -1.677e+00 3.657e-01 -4.585
## factor(Country)Cape Verde -2.050e+01 1.573e+03 -0.013
## factor(Country)Central African Republic -2.150e+00 4.048e-01 -5.311
## factor(Country)Chad -2.035e+01 1.370e+03 -0.015
## factor(Country)Chile -2.322e+00 3.890e-01 -5.968
## factor(Country)China -2.241e+00 3.850e-01 -5.821
## factor(Country)Colombia -1.277e+00 3.591e-01 -3.555
## factor(Country)Costa Rica -3.852e-01 3.657e-01 -1.053
## factor(Country)Croatia -2.062e+01 1.951e+03 -0.011
## factor(Country)Cuba -2.517e+00 4.051e-01 -6.212
## factor(Country)Cyprus -2.039e+00 3.984e-01 -5.118
## factor(Country)Czech Republic -2.064e+01 2.020e+03 -0.010
## factor(Country)Democratic Republic of the Congo -1.741e+00 3.829e-01 -4.547
## factor(Country)Denmark -2.062e+01 1.233e+03 -0.017
## factor(Country)Djibouti -7.600e-01 3.961e-01 -1.919
## factor(Country)Dominican Republic -2.768e+00 4.206e-01 -6.582
## factor(Country)Ecuador -2.303e+00 3.871e-01 -5.950
## factor(Country)Egypt -3.138e+00 4.717e-01 -6.651
## factor(Country)El Salvador -2.052e+01 1.233e+03 -0.017
## factor(Country)Equatorial Guinea 5.964e-01 4.243e-01 1.406
## factor(Country)Eritrea -2.044e+01 2.020e+03 -0.010
## factor(Country)Estonia -2.663e+00 5.617e-01 -4.741
## factor(Country)Eswatini 1.883e+01 1.470e+03 0.013
## factor(Country)Ethiopia -1.367e+00 3.491e-01 -3.916
## factor(Country)Fiji -1.073e+00 3.813e-01 -2.815
## factor(Country)Finland -4.962e+00 6.438e-01 -7.707
## factor(Country)France -3.338e+00 4.822e-01 -6.922
## factor(Country)Gabon -2.294e+00 4.195e-01 -5.468
## factor(Country)Georgia -2.055e+01 1.942e+03 -0.011
## factor(Country)Germany -2.061e+01 1.919e+03 -0.011
## factor(Country)Ghana -1.987e+00 3.891e-01 -5.107
## factor(Country)Greece -9.822e-01 3.554e-01 -2.764
## factor(Country)Guatemala -3.014e+00 4.448e-01 -6.776
## factor(Country)Guinea -2.039e+01 1.345e+03 -0.015
## factor(Country)Guinea-Bissau -2.043e+01 1.556e+03 -0.013
## factor(Country)Guyana -4.135e+00 7.653e-01 -5.403
## factor(Country)Haiti -1.188e+00 3.461e-01 -3.432
## factor(Country)Honduras -3.131e+00 4.585e-01 -6.829
## factor(Country)Hungary -2.052e+01 1.232e+03 -0.017
## factor(Country)Iceland -1.799e+00 3.690e-01 -4.875
## factor(Country)India -2.039e+00 3.787e-01 -5.383
## factor(Country)Indonesia -3.744e+00 5.759e-01 -6.501
## factor(Country)Iran -6.399e-01 3.444e-01 -1.858
## factor(Country)Iraq -1.662e+00 3.572e-01 -4.653
## factor(Country)Ireland -1.799e+00 3.690e-01 -4.875
## factor(Country)Israel -4.210e+00 4.982e-01 -8.450
## factor(Country)Italy -3.705e+00 5.378e-01 -6.890
## factor(Country)Ivory Coast -2.035e+01 1.370e+03 -0.015
## factor(Country)Jamaica -1.644e+00 3.881e-01 -4.236
## factor(Country)Japan -6.366e-01 3.619e-01 -1.759
## factor(Country)Jordan 1.876e+01 1.233e+03 0.015
## factor(Country)Kazakhstan -2.042e+01 1.951e+03 -0.010
## factor(Country)Kenya -2.717e+00 4.616e-01 -5.886
## factor(Country)Kosovo -2.084e+01 3.577e+03 -0.006
## factor(Country)Kuwait 2.208e+00 6.448e-01 3.424
## factor(Country)Kyrgyzstan -2.054e+01 1.942e+03 -0.011
## factor(Country)Laos 3.983e-01 3.829e-01 1.040
## factor(Country)Latvia -2.062e+01 1.951e+03 -0.011
## factor(Country)Lebanon -7.786e-03 3.614e-01 -0.022
## factor(Country)Lesotho -2.040e+01 1.439e+03 -0.014
## factor(Country)Liberia -8.274e-01 3.442e-01 -2.404
## factor(Country)Libya -1.544e+00 3.603e-01 -4.285
## factor(Country)Lithuania -2.062e+01 1.951e+03 -0.011
## factor(Country)Luxembourg -2.062e+01 1.233e+03 -0.017
## factor(Country)Madagascar -2.039e+01 1.369e+03 -0.015
## factor(Country)Malawi -3.245e+00 5.366e-01 -6.047
## factor(Country)Malaysia -1.127e+00 3.602e-01 -3.128
## factor(Country)Maldives -1.178e-01 3.812e-01 -0.309
## factor(Country)Mali -2.182e+00 4.069e-01 -5.361
## factor(Country)Malta -2.805e+00 4.696e-01 -5.974
## factor(Country)Mauritius -1.629e+00 3.991e-01 -4.083
## factor(Country)Mexico -2.943e-01 3.515e-01 -0.837
## factor(Country)Moldova -2.062e+01 1.951e+03 -0.011
## factor(Country)Mongolia -2.051e+01 1.232e+03 -0.017
## factor(Country)Montenegro -2.065e+01 2.772e+03 -0.007
## factor(Country)Morocco 1.881e+01 1.327e+03 0.014
## factor(Country)Mozambique -2.036e+01 1.576e+03 -0.013
## factor(Country)Myanmar -3.512e+00 5.299e-01 -6.627
## factor(Country)Namibia -2.041e+01 1.919e+03 -0.011
## factor(Country)Nepal 4.299e-01 3.813e-01 1.127
## factor(Country)Netherlands -2.062e+01 1.233e+03 -0.017
## factor(Country)New Zealand -2.601e+00 4.102e-01 -6.340
## factor(Country)Nicaragua -1.328e+00 3.496e-01 -3.797
## factor(Country)Niger -2.043e+01 1.366e+03 -0.015
## factor(Country)Nigeria -2.530e+00 4.345e-01 -5.821
## factor(Country)North Korea -2.286e+00 3.916e-01 -5.836
## factor(Country)North Macedonia -1.734e+00 4.749e-01 -3.651
## factor(Country)Norway -1.737e+00 3.673e-01 -4.730
## factor(Country)Oman 1.883e+01 1.498e+03 0.013
## factor(Country)Pakistan -1.881e+00 3.673e-01 -5.120
## factor(Country)Panama -6.155e-01 3.538e-01 -1.740
## factor(Country)Papua New Guinea -2.056e+01 1.576e+03 -0.013
## factor(Country)Paraguay -3.832e+00 5.755e-01 -6.658
## factor(Country)Peru -1.658e+00 3.588e-01 -4.620
## factor(Country)Philippines 2.021e-01 3.780e-01 0.535
## factor(Country)Poland -3.591e+00 5.304e-01 -6.771
## factor(Country)Portugal -3.622e+00 5.317e-01 -6.813
## factor(Country)Qatar 1.882e+01 1.381e+03 0.014
## factor(Country)Republic of the Congo -2.036e+01 1.370e+03 -0.015
## factor(Country)Republic of the Gambia -7.108e-01 3.700e-01 -1.921
## factor(Country)Romania -2.940e+00 4.395e-01 -6.688
## factor(Country)Russia -2.042e+01 1.233e+03 -0.017
## factor(Country)Rwanda -2.035e+01 1.393e+03 -0.015
## factor(Country)Saudi Arabia 1.876e+01 1.233e+03 0.015
## factor(Country)Senegal -2.043e+01 1.365e+03 -0.015
## factor(Country)Serbia -2.057e+01 1.944e+03 -0.011
## factor(Country)Sierra Leone -2.082e+00 4.025e-01 -5.172
## factor(Country)Singapore -1.613e+00 3.870e-01 -4.167
## factor(Country)Slovakia -2.064e+01 2.020e+03 -0.010
## factor(Country)Slovenia -3.256e+00 6.678e-01 -4.876
## factor(Country)Solomon Islands -2.055e+01 1.630e+03 -0.013
## factor(Country)Somalia -2.038e+01 1.369e+03 -0.015
## factor(Country)South Africa -2.593e+00 3.400e-01 -7.628
## factor(Country)South Korea -4.147e+00 6.465e-01 -6.415
## factor(Country)South Sudan -2.065e+01 3.394e+03 -0.006
## factor(Country)Spain -2.969e+00 4.410e-01 -6.732
## factor(Country)Sri Lanka -5.657e-01 3.597e-01 -1.573
## factor(Country)Sudan -7.280e-01 3.566e-01 -2.042
## factor(Country)Suriname -2.053e+01 1.574e+03 -0.013
## factor(Country)Sweden -2.528e+00 4.034e-01 -6.267
## factor(Country)Switzerland -4.247e+00 6.498e-01 -6.536
## factor(Country)Syria -2.185e+00 3.806e-01 -5.742
## factor(Country)Taiwan -2.629e+00 4.170e-01 -6.305
## factor(Country)Tajikistan -2.042e+01 1.951e+03 -0.010
## factor(Country)Tanzania -2.036e+01 1.417e+03 -0.014
## factor(Country)Thailand -2.702e+00 4.159e-01 -6.495
## factor(Country)Timor-Leste -2.078e+01 2.460e+03 -0.008
## factor(Country)Togo -1.488e+00 3.733e-01 -3.986
## factor(Country)Trinidad and Tobago -1.722e+00 3.907e-01 -4.407
## factor(Country)Tunisia -2.040e+01 1.324e+03 -0.015
## factor(Country)Turkey -3.314e+00 4.801e-01 -6.903
## factor(Country)Turkmenistan -2.042e+01 1.951e+03 -0.010
## factor(Country)Uganda -2.652e+00 4.587e-01 -5.782
## factor(Country)Ukraine -2.062e+01 1.951e+03 -0.011
## factor(Country)United Arab Emirates 1.882e+01 1.513e+03 0.012
## factor(Country)United Kingdom -2.061e+00 3.783e-01 -5.449
## factor(Country)United States of America -1.927e+00 3.731e-01 -5.164
## factor(Country)Uruguay -2.036e+00 3.754e-01 -5.425
## factor(Country)Uzbekistan -2.042e+01 1.951e+03 -0.010
## factor(Country)Venezuela -1.959e+00 3.716e-01 -5.271
## factor(Country)Vietnam -2.035e+01 1.594e+03 -0.013
## factor(Country)Yemen -2.172e+00 3.796e-01 -5.722
## factor(Country)Zambia -2.041e+01 1.415e+03 -0.014
## factor(Year)1947 6.267e-02 4.466e-01 0.140
## factor(Year)1948 -1.403e-01 4.453e-01 -0.315
## factor(Year)1949 -7.046e-02 4.414e-01 -0.160
## factor(Year)1950 -1.625e-01 4.439e-01 -0.366
## factor(Year)1951 1.569e-01 4.342e-01 0.361
## factor(Year)1952 3.233e-01 4.313e-01 0.750
## factor(Year)1953 3.487e-01 4.289e-01 0.813
## factor(Year)1954 1.926e-01 4.315e-01 0.446
## factor(Year)1955 2.804e-01 4.303e-01 0.652
## factor(Year)1956 -2.674e-02 4.339e-01 -0.062
## factor(Year)1957 -1.052e-02 4.300e-01 -0.024
## factor(Year)1958 -1.741e-01 4.336e-01 -0.401
## factor(Year)1959 -3.455e-01 4.379e-01 -0.789
## factor(Year)1960 -5.397e-01 4.318e-01 -1.250
## factor(Year)1961 -5.517e-01 4.305e-01 -1.281
## factor(Year)1962 -4.576e-01 4.236e-01 -1.080
## factor(Year)1963 -4.012e-01 4.208e-01 -0.953
## factor(Year)1964 -3.437e-01 4.183e-01 -0.822
## factor(Year)1965 -1.740e-01 4.106e-01 -0.424
## factor(Year)1966 4.081e-02 4.050e-01 0.101
## factor(Year)1967 -7.424e-02 4.070e-01 -0.182
## factor(Year)1968 -4.688e-01 4.139e-01 -1.133
## factor(Year)1969 -4.594e-01 4.139e-01 -1.110
## factor(Year)1970 -6.204e-01 4.168e-01 -1.488
## factor(Year)1971 -3.312e-01 4.081e-01 -0.811
## factor(Year)1972 -4.574e-01 4.111e-01 -1.113
## factor(Year)1973 -5.213e-01 4.128e-01 -1.263
## factor(Year)1974 -3.310e-01 4.082e-01 -0.811
## factor(Year)1975 -7.922e-02 4.041e-01 -0.196
## factor(Year)1976 -2.071e-01 4.057e-01 -0.510
## factor(Year)1977 -3.570e-01 4.078e-01 -0.876
## factor(Year)1978 -2.954e-01 4.064e-01 -0.727
## factor(Year)1979 -4.198e-01 4.090e-01 -1.026
## factor(Year)1980 -1.842e-01 4.038e-01 -0.456
## factor(Year)1981 -5.555e-01 4.118e-01 -1.349
## factor(Year)1982 -5.516e-01 4.119e-01 -1.339
## factor(Year)1983 -3.625e-01 4.074e-01 -0.890
## factor(Year)1984 -3.643e-01 4.074e-01 -0.894
## factor(Year)1985 -5.562e-01 4.118e-01 -1.351
## factor(Year)1986 -6.309e-01 4.138e-01 -1.525
## factor(Year)1987 -6.309e-01 4.138e-01 -1.525
## factor(Year)1988 -6.986e-01 4.157e-01 -1.680
## factor(Year)1989 -7.013e-01 4.157e-01 -1.687
## factor(Year)1990 -5.894e-01 4.114e-01 -1.432
## factor(Year)1991 -5.315e-01 4.073e-01 -1.305
## factor(Year)1992 -7.271e-01 4.123e-01 -1.764
## factor(Year)1993 -6.687e-01 4.104e-01 -1.629
## factor(Year)1994 -6.737e-01 4.103e-01 -1.642
## factor(Year)1995 -7.379e-01 4.121e-01 -1.791
## factor(Year)1996 -6.128e-01 4.086e-01 -1.500
## factor(Year)1997 -4.885e-01 4.057e-01 -1.204
## factor(Year)1998 -6.739e-01 4.103e-01 -1.643
## factor(Year)1999 -4.888e-01 4.056e-01 -1.205
## factor(Year)2000 -5.471e-01 4.071e-01 -1.344
## factor(Year)2001 -3.111e-01 4.022e-01 -0.774
## factor(Year)2002 -4.279e-01 4.042e-01 -1.059
## factor(Year)2003 -3.696e-01 4.030e-01 -0.917
## factor(Year)2004 -3.125e-01 4.018e-01 -0.778
## factor(Year)2005 -3.696e-01 4.030e-01 -0.917
## factor(Year)2006 -1.530e-01 3.992e-01 -0.383
## factor(Year)2007 1.134e-02 3.967e-01 0.029
## factor(Year)2008 6.246e-02 3.961e-01 0.158
## factor(Year)2009 -1.592e-01 3.994e-01 -0.398
## factor(Year)2010 5.397e-02 3.964e-01 0.136
## factor(Year)2011 1.565e-03 3.971e-01 0.004
## factor(Year)2012 -1.050e-01 3.985e-01 -0.264
## factor(Year)2013 1.076e-01 3.956e-01 0.272
## factor(Year)2014 1.602e-01 3.950e-01 0.406
## factor(Year)2015 2.148e-01 3.944e-01 0.545
## factor(Year)2016 -1.540e-01 3.992e-01 -0.386
## factor(Year)2017 3.824e-03 3.969e-01 0.010
## factor(Year)2018 -2.750e-01 4.015e-01 -0.685
## factor(Year)2019 -1.643e-01 3.996e-01 -0.411
## factor(Year)2020 -1.643e-01 3.996e-01 -0.411
## Pr(>|z|)
## (Intercept) 0.001844 **
## dictatorship 0.046702 *
## factor(Country)Albania 2.19e-09 ***
## factor(Country)Algeria 0.988309
## factor(Country)Angola 0.989671
## factor(Country)Argentina 3.28e-06 ***
## factor(Country)Armenia 0.991567
## factor(Country)Australia 0.008043 **
## factor(Country)Austria 0.986654
## factor(Country)Azerbaijan 0.362867
## factor(Country)Bahamas 0.989373
## factor(Country)Bahrain 0.990073
## factor(Country)Bangladesh 0.258160
## factor(Country)Barbados 1.13e-07 ***
## factor(Country)Belarus 0.991648
## factor(Country)Belgium 4.46e-12 ***
## factor(Country)Belize 0.990294
## factor(Country)Benin 0.772671
## factor(Country)Bhutan 0.103152
## factor(Country)Bosnia and Herzegovina 0.000142 ***
## factor(Country)Botswana 2.71e-07 ***
## factor(Country)Brazil 5.73e-12 ***
## factor(Country)Bulgaria 4.13e-11 ***
## factor(Country)Burkina Faso 1.75e-09 ***
## factor(Country)Burundi 3.48e-05 ***
## factor(Country)Cambodia 0.804920
## factor(Country)Cameroon 0.988148
## factor(Country)Canada 4.54e-06 ***
## factor(Country)Cape Verde 0.989602
## factor(Country)Central African Republic 1.09e-07 ***
## factor(Country)Chad 0.988148
## factor(Country)Chile 2.40e-09 ***
## factor(Country)China 5.84e-09 ***
## factor(Country)Colombia 0.000378 ***
## factor(Country)Costa Rica 0.292198
## factor(Country)Croatia 0.991567
## factor(Country)Cuba 5.24e-10 ***
## factor(Country)Cyprus 3.08e-07 ***
## factor(Country)Czech Republic 0.991846
## factor(Country)Democratic Republic of the Congo 5.45e-06 ***
## factor(Country)Denmark 0.986654
## factor(Country)Djibouti 0.055046 .
## factor(Country)Dominican Republic 4.64e-11 ***
## factor(Country)Ecuador 2.68e-09 ***
## factor(Country)Egypt 2.91e-11 ***
## factor(Country)El Salvador 0.986723
## factor(Country)Equatorial Guinea 0.159806
## factor(Country)Eritrea 0.991925
## factor(Country)Estonia 2.12e-06 ***
## factor(Country)Eswatini 0.989776
## factor(Country)Ethiopia 8.99e-05 ***
## factor(Country)Fiji 0.004876 **
## factor(Country)Finland 1.29e-14 ***
## factor(Country)France 4.46e-12 ***
## factor(Country)Gabon 4.54e-08 ***
## factor(Country)Georgia 0.991556
## factor(Country)Germany 0.991431
## factor(Country)Ghana 3.27e-07 ***
## factor(Country)Greece 0.005713 **
## factor(Country)Guatemala 1.23e-11 ***
## factor(Country)Guinea 0.987902
## factor(Country)Guinea-Bissau 0.989525
## factor(Country)Guyana 6.56e-08 ***
## factor(Country)Haiti 0.000600 ***
## factor(Country)Honduras 8.54e-12 ***
## factor(Country)Hungary 0.986706
## factor(Country)Iceland 1.09e-06 ***
## factor(Country)India 7.32e-08 ***
## factor(Country)Indonesia 7.98e-11 ***
## factor(Country)Iran 0.063139 .
## factor(Country)Iraq 3.27e-06 ***
## factor(Country)Ireland 1.09e-06 ***
## factor(Country)Israel < 2e-16 ***
## factor(Country)Italy 5.59e-12 ***
## factor(Country)Ivory Coast 0.988146
## factor(Country)Jamaica 2.27e-05 ***
## factor(Country)Japan 0.078520 .
## factor(Country)Jordan 0.987864
## factor(Country)Kazakhstan 0.991648
## factor(Country)Kenya 3.96e-09 ***
## factor(Country)Kosovo 0.995351
## factor(Country)Kuwait 0.000616 ***
## factor(Country)Kyrgyzstan 0.991563
## factor(Country)Laos 0.298204
## factor(Country)Latvia 0.991567
## factor(Country)Lebanon 0.982811
## factor(Country)Lesotho 0.988687
## factor(Country)Liberia 0.016208 *
## factor(Country)Libya 1.83e-05 ***
## factor(Country)Lithuania 0.991567
## factor(Country)Luxembourg 0.986654
## factor(Country)Madagascar 0.988121
## factor(Country)Malawi 1.47e-09 ***
## factor(Country)Malaysia 0.001762 **
## factor(Country)Maldives 0.757267
## factor(Country)Mali 8.26e-08 ***
## factor(Country)Malta 2.31e-09 ***
## factor(Country)Mauritius 4.45e-05 ***
## factor(Country)Mexico 0.402413
## factor(Country)Moldova 0.991567
## factor(Country)Mongolia 0.986720
## factor(Country)Montenegro 0.994058
## factor(Country)Morocco 0.988691
## factor(Country)Mozambique 0.989694
## factor(Country)Myanmar 3.43e-11 ***
## factor(Country)Namibia 0.991514
## factor(Country)Nepal 0.259557
## factor(Country)Netherlands 0.986654
## factor(Country)New Zealand 2.29e-10 ***
## factor(Country)Nicaragua 0.000146 ***
## factor(Country)Niger 0.988066
## factor(Country)Nigeria 5.85e-09 ***
## factor(Country)North Korea 5.34e-09 ***
## factor(Country)North Macedonia 0.000262 ***
## factor(Country)Norway 2.24e-06 ***
## factor(Country)Oman 0.989971
## factor(Country)Pakistan 3.05e-07 ***
## factor(Country)Panama 0.081873 .
## factor(Country)Papua New Guinea 0.989593
## factor(Country)Paraguay 2.77e-11 ***
## factor(Country)Peru 3.84e-06 ***
## factor(Country)Philippines 0.592904
## factor(Country)Poland 1.28e-11 ***
## factor(Country)Portugal 9.58e-12 ***
## factor(Country)Qatar 0.989129
## factor(Country)Republic of the Congo 0.988146
## factor(Country)Republic of the Gambia 0.054738 .
## factor(Country)Romania 2.26e-11 ***
## factor(Country)Russia 0.986783
## factor(Country)Rwanda 0.988339
## factor(Country)Saudi Arabia 0.987864
## factor(Country)Senegal 0.988059
## factor(Country)Serbia 0.991554
## factor(Country)Sierra Leone 2.32e-07 ***
## factor(Country)Singapore 3.08e-05 ***
## factor(Country)Slovakia 0.991846
## factor(Country)Slovenia 1.08e-06 ***
## factor(Country)Solomon Islands 0.989939
## factor(Country)Somalia 0.988122
## factor(Country)South Africa 2.38e-14 ***
## factor(Country)South Korea 1.41e-10 ***
## factor(Country)South Sudan 0.995147
## factor(Country)Spain 1.68e-11 ***
## factor(Country)Sri Lanka 0.115797
## factor(Country)Sudan 0.041183 *
## factor(Country)Suriname 0.989594
## factor(Country)Sweden 3.69e-10 ***
## factor(Country)Switzerland 6.33e-11 ***
## factor(Country)Syria 9.36e-09 ***
## factor(Country)Taiwan 2.89e-10 ***
## factor(Country)Tajikistan 0.991648
## factor(Country)Tanzania 0.988535
## factor(Country)Thailand 8.31e-11 ***
## factor(Country)Timor-Leste 0.993261
## factor(Country)Togo 6.72e-05 ***
## factor(Country)Trinidad and Tobago 1.05e-05 ***
## factor(Country)Tunisia 0.987712
## factor(Country)Turkey 5.08e-12 ***
## factor(Country)Turkmenistan 0.991648
## factor(Country)Uganda 7.39e-09 ***
## factor(Country)Ukraine 0.991567
## factor(Country)United Arab Emirates 0.990073
## factor(Country)United Kingdom 5.06e-08 ***
## factor(Country)United States of America 2.42e-07 ***
## factor(Country)Uruguay 5.81e-08 ***
## factor(Country)Uzbekistan 0.991648
## factor(Country)Venezuela 1.35e-07 ***
## factor(Country)Vietnam 0.989810
## factor(Country)Yemen 1.05e-08 ***
## factor(Country)Zambia 0.988487
## factor(Year)1947 0.888407
## factor(Year)1948 0.752723
## factor(Year)1949 0.873186
## factor(Year)1950 0.714394
## factor(Year)1951 0.717852
## factor(Year)1952 0.453450
## factor(Year)1953 0.416255
## factor(Year)1954 0.655348
## factor(Year)1955 0.514598
## factor(Year)1956 0.950861
## factor(Year)1957 0.980486
## factor(Year)1958 0.688092
## factor(Year)1959 0.430193
## factor(Year)1960 0.211305
## factor(Year)1961 0.200033
## factor(Year)1962 0.279996
## factor(Year)1963 0.340394
## factor(Year)1964 0.411245
## factor(Year)1965 0.671682
## factor(Year)1966 0.919723
## factor(Year)1967 0.855265
## factor(Year)1968 0.257416
## factor(Year)1969 0.266993
## factor(Year)1970 0.136644
## factor(Year)1971 0.417132
## factor(Year)1972 0.265851
## factor(Year)1973 0.206577
## factor(Year)1974 0.417523
## factor(Year)1975 0.844565
## factor(Year)1976 0.609714
## factor(Year)1977 0.381247
## factor(Year)1978 0.467282
## factor(Year)1979 0.304706
## factor(Year)1980 0.648174
## factor(Year)1981 0.177334
## factor(Year)1982 0.180598
## factor(Year)1983 0.373654
## factor(Year)1984 0.371168
## factor(Year)1985 0.176815
## factor(Year)1986 0.127381
## factor(Year)1987 0.127381
## factor(Year)1988 0.092873 .
## factor(Year)1989 0.091576 .
## factor(Year)1990 0.152017
## factor(Year)1991 0.191863
## factor(Year)1992 0.077773 .
## factor(Year)1993 0.103258
## factor(Year)1994 0.100592
## factor(Year)1995 0.073352 .
## factor(Year)1996 0.133716
## factor(Year)1997 0.228463
## factor(Year)1998 0.100452
## factor(Year)1999 0.228197
## factor(Year)2000 0.178941
## factor(Year)2001 0.439141
## factor(Year)2002 0.289797
## factor(Year)2003 0.359008
## factor(Year)2004 0.436763
## factor(Year)2005 0.359008
## factor(Year)2006 0.701549
## factor(Year)2007 0.977190
## factor(Year)2008 0.874707
## factor(Year)2009 0.690274
## factor(Year)2010 0.891695
## factor(Year)2011 0.996855
## factor(Year)2012 0.792065
## factor(Year)2013 0.785709
## factor(Year)2014 0.685018
## factor(Year)2015 0.586081
## factor(Year)2016 0.699542
## factor(Year)2017 0.992313
## factor(Year)2018 0.493482
## factor(Year)2019 0.681063
## factor(Year)2020 0.681063
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 11844.3 on 10340 degrees of freedom
## Residual deviance: 7104.2 on 10097 degrees of freedom
## (3 observations deleted due to missingness)
## AIC: 7592.2
##
## Number of Fisher Scoring iterations: 18
##
## Call:
## glm(formula = dynastic ~ dictatorship + v2x_polyarchy + former_british_colony +
## factor(Year) + factor(Country), family = binomial(link = "logit"),
## data = gdd_clean, na.action = na.exclude)
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error z value
## (Intercept) -1.28918 0.44619 -2.889
## dictatorship 0.23038 0.12719 1.811
## v2x_polyarchy 1.64381 0.29592 5.555
## former_british_colony 2.15460 0.38103 5.655
## factor(Year)1947 0.10467 0.44631 0.235
## factor(Year)1948 -0.16131 0.44466 -0.363
## factor(Year)1949 -0.08298 0.44094 -0.188
## factor(Year)1950 -0.19198 0.44363 -0.433
## factor(Year)1951 0.11850 0.43384 0.273
## factor(Year)1952 0.27251 0.43135 0.632
## factor(Year)1953 0.28598 0.42982 0.665
## factor(Year)1954 0.11317 0.43251 0.262
## factor(Year)1955 0.18552 0.43154 0.430
## factor(Year)1956 -0.12669 0.43532 -0.291
## factor(Year)1957 -0.12307 0.43148 -0.285
## factor(Year)1958 -0.29832 0.43501 -0.686
## factor(Year)1959 -0.47678 0.43937 -1.085
## factor(Year)1960 -0.67114 0.43371 -1.547
## factor(Year)1961 -0.69096 0.43217 -1.599
## factor(Year)1962 -0.60625 0.42514 -1.426
## factor(Year)1963 -0.55108 0.42204 -1.306
## factor(Year)1964 -0.50144 0.41959 -1.195
## factor(Year)1965 -0.33792 0.41246 -0.819
## factor(Year)1966 -0.11081 0.40647 -0.273
## factor(Year)1967 -0.23235 0.40859 -0.569
## factor(Year)1968 -0.62218 0.41549 -1.497
## factor(Year)1969 -0.62233 0.41574 -1.497
## factor(Year)1970 -0.79202 0.41909 -1.890
## factor(Year)1971 -0.49917 0.41003 -1.217
## factor(Year)1972 -0.61962 0.41277 -1.501
## factor(Year)1973 -0.68413 0.41474 -1.650
## factor(Year)1974 -0.49566 0.41013 -1.209
## factor(Year)1975 -0.24701 0.40615 -0.608
## factor(Year)1976 -0.37509 0.40766 -0.920
## factor(Year)1977 -0.53863 0.40971 -1.315
## factor(Year)1978 -0.48963 0.40868 -1.198
## factor(Year)1979 -0.62526 0.41134 -1.520
## factor(Year)1980 -0.39634 0.40619 -0.976
## factor(Year)1981 -0.76948 0.41433 -1.857
## factor(Year)1982 -0.77125 0.41429 -1.862
## factor(Year)1983 -0.58294 0.40979 -1.423
## factor(Year)1984 -0.60046 0.40991 -1.465
## factor(Year)1985 -0.80160 0.41430 -1.935
## factor(Year)1986 -0.87133 0.41540 -2.098
## factor(Year)1987 -0.88037 0.41579 -2.117
## factor(Year)1988 -0.95487 0.41781 -2.285
## factor(Year)1989 -0.95223 0.41751 -2.281
## factor(Year)1990 -0.86096 0.41366 -2.081
## factor(Year)1991 -0.88472 0.41220 -2.146
## factor(Year)1992 -1.03359 0.41583 -2.486
## factor(Year)1993 -0.98731 0.41419 -2.384
## factor(Year)1994 -0.98174 0.41398 -2.371
## factor(Year)1995 -1.05946 0.41590 -2.547
## factor(Year)1996 -0.93975 0.41247 -2.278
## factor(Year)1997 -0.83959 0.40987 -2.048
## factor(Year)1998 -1.02930 0.41468 -2.482
## factor(Year)1999 -0.84785 0.41006 -2.068
## factor(Year)2000 -0.91005 0.41146 -2.212
## factor(Year)2001 -0.67516 0.40647 -1.661
## factor(Year)2002 -0.80738 0.40913 -1.973
## factor(Year)2003 -0.76353 0.40819 -1.871
## factor(Year)2004 -0.70178 0.40686 -1.725
## factor(Year)2005 -0.76652 0.40836 -1.877
## factor(Year)2006 -0.54968 0.40451 -1.359
## factor(Year)2007 -0.38608 0.40211 -0.960
## factor(Year)2008 -0.34460 0.40215 -0.857
## factor(Year)2009 -0.55683 0.40535 -1.374
## factor(Year)2010 -0.34473 0.40236 -0.857
## factor(Year)2011 -0.39868 0.40302 -0.989
## factor(Year)2012 -0.50131 0.40445 -1.240
## factor(Year)2013 -0.28425 0.40137 -0.708
## factor(Year)2014 -0.22837 0.40092 -0.570
## factor(Year)2015 -0.18001 0.40074 -0.449
## factor(Year)2016 -0.54687 0.40559 -1.348
## factor(Year)2017 -0.38232 0.40316 -0.948
## factor(Year)2018 -0.64875 0.40713 -1.593
## factor(Year)2019 -0.52715 0.40487 -1.302
## factor(Year)2020 -0.51873 0.40458 -1.282
## factor(Country)Albania -0.03882 0.41206 -0.094
## factor(Country)Algeria -18.24924 1391.20064 -0.013
## factor(Country)Angola -18.13545 1571.87286 -0.012
## factor(Country)Argentina 0.13303 0.38995 0.341
## factor(Country)Armenia -18.36965 1950.19456 -0.009
## factor(Country)Australia 0.47481 0.40434 1.174
## factor(Country)Austria -19.16783 1232.04162 -0.016
## factor(Country)Azerbaijan 1.75264 0.47154 3.717
## factor(Country)Bahrain 18.98251 1509.24635 0.013
## factor(Country)Bangladesh 1.64079 0.40959 4.006
## factor(Country)Barbados -2.75363 0.43701 -6.301
## factor(Country)Belarus -18.37092 1958.38092 -0.009
## factor(Country)Belgium -1.86600 0.51514 -3.622
## factor(Country)Benin 2.14194 0.40882 5.239
## factor(Country)Bhutan 2.90404 0.41339 7.025
## factor(Country)Bosnia and Herzegovina -0.36042 0.53320 -0.676
## factor(Country)Botswana -2.51443 0.42569 -5.907
## factor(Country)Brazil -1.63982 0.52396 -3.130
## factor(Country)Bulgaria -0.87586 0.44867 -1.952
## factor(Country)Burkina Faso -1.40427 0.55349 -2.537
## factor(Country)Burundi 0.68583 0.40032 1.713
## factor(Country)Cambodia 2.15234 0.39134 5.500
## factor(Country)Cameroon -18.29136 1380.62798 -0.013
## factor(Country)Canada -0.17053 0.40646 -0.420
## factor(Country)Cape Verde -18.72468 1564.91139 -0.012
## factor(Country)Central African Republic 0.05232 0.42520 0.123
## factor(Country)Chad -18.23321 1367.28189 -0.013
## factor(Country)Chile -0.53326 0.41868 -1.274
## factor(Country)China 0.01380 0.40678 0.034
## factor(Country)Colombia 0.84058 0.38214 2.200
## factor(Country)Costa Rica 1.14244 0.40495 2.821
## factor(Country)Croatia -18.79862 1919.06710 -0.010
## factor(Country)Cuba -0.38688 0.42810 -0.904
## factor(Country)Cyprus -2.56716 0.41122 -6.243
## factor(Country)Czech Republic -19.11344 2022.40469 -0.009
## factor(Country)Democratic Republic of the Congo 0.39193 0.40509 0.968
## factor(Country)Denmark -19.29134 1229.41692 -0.016
## factor(Country)Djibouti 1.36464 0.41659 3.276
## factor(Country)Dominican Republic -0.71107 0.44070 -1.614
## factor(Country)Ecuador -0.39020 0.41052 -0.950
## factor(Country)Egypt -3.19435 0.47315 -6.751
## factor(Country)El Salvador -18.46026 1224.17982 -0.015
## factor(Country)Equatorial Guinea 2.83000 0.44354 6.380
## factor(Country)Eritrea -18.02846 2023.67542 -0.009
## factor(Country)Estonia -1.10823 0.58788 -1.885
## factor(Country)Eswatini 18.92802 1470.45066 0.013
## factor(Country)Ethiopia 0.82622 0.37210 2.220
## factor(Country)Fiji -1.38640 0.38867 -3.567
## factor(Country)Finland -3.51354 0.66991 -5.245
## factor(Country)France -1.86667 0.51529 -3.623
## factor(Country)Gabon -0.29039 0.44025 -0.660
## factor(Country)Georgia -18.56807 1943.97556 -0.010
## factor(Country)Germany -19.11035 1921.31786 -0.010
## factor(Country)Ghana -2.20799 0.39542 -5.584
## factor(Country)Greece 0.75995 0.38759 1.961
## factor(Country)Guatemala -0.86157 0.46411 -1.856
## factor(Country)Guinea -18.20467 1347.80977 -0.014
## factor(Country)Guinea-Bissau -18.29967 1551.68028 -0.012
## factor(Country)Guyana -4.45558 0.76864 -5.797
## factor(Country)Haiti 0.80897 0.37147 2.178
## factor(Country)Honduras -0.95937 0.47586 -2.016
## factor(Country)Hungary -18.59729 1224.09313 -0.015
## factor(Country)Iceland -0.35515 0.41300 -0.860
## factor(Country)India -2.37872 0.38586 -6.165
## factor(Country)Indonesia -1.83893 0.59336 -3.099
## factor(Country)Iran 1.52004 0.36809 4.130
## factor(Country)Iraq -1.70212 0.36086 -4.717
## factor(Country)Ireland -0.34770 0.41244 -0.843
## factor(Country)Israel -4.67998 0.50694 -9.232
## factor(Country)Italy -2.15733 0.56459 -3.821
## factor(Country)Ivory Coast -18.41110 1362.72506 -0.014
## factor(Country)Jamaica -1.95883 0.39504 -4.959
## factor(Country)Japan 0.91770 0.40379 2.273
## factor(Country)Jordan 18.73269 1230.89062 0.015
## factor(Country)Kazakhstan -18.29548 1955.20394 -0.009
## factor(Country)Kenya -2.75245 0.46199 -5.958
## factor(Country)Kuwait 2.10451 0.64637 3.256
## factor(Country)Kyrgyzstan -18.34779 1951.49502 -0.009
## factor(Country)Laos 2.61767 0.40517 6.461
## factor(Country)Latvia -18.95981 1949.74734 -0.010
## factor(Country)Lebanon 1.94610 0.38607 5.041
## factor(Country)Lesotho -20.60356 1427.53754 -0.014
## factor(Country)Liberia 1.14790 0.37080 3.096
## factor(Country)Libya -1.47055 0.36311 -4.050
## factor(Country)Lithuania -19.00826 1951.99628 -0.010
## factor(Country)Luxembourg -19.21934 1230.69625 -0.016
## factor(Country)Madagascar -18.39562 1366.97685 -0.013
## factor(Country)Malawi -3.29708 0.53746 -6.135
## factor(Country)Malaysia 0.92778 0.38279 2.424
## factor(Country)Maldives -0.14469 0.38359 -0.377
## factor(Country)Mali -0.11651 0.42781 -0.272
## factor(Country)Malta -3.29703 0.47934 -6.878
## factor(Country)Mauritius -2.07795 0.40866 -5.085
## factor(Country)Mexico 1.56686 0.37828 4.142
## factor(Country)Moldova -18.57277 1948.12724 -0.010
## factor(Country)Mongolia -18.54997 1228.73801 -0.015
## factor(Country)Montenegro -18.88022 2772.66129 -0.007
## factor(Country)Morocco 20.95029 1326.42002 0.016
## factor(Country)Mozambique -18.38779 1564.30253 -0.012
## factor(Country)Myanmar -3.52642 0.53232 -6.625
## factor(Country)Namibia -18.95287 1917.98357 -0.010
## factor(Country)Nepal 2.61026 0.40323 6.473
## factor(Country)Netherlands -19.16154 1232.24221 -0.016
## factor(Country)New Zealand -1.17294 0.45098 -2.601
## factor(Country)Nicaragua 0.73772 0.37270 1.979
## factor(Country)Niger -18.36368 1363.85548 -0.013
## factor(Country)Nigeria -2.52580 0.43551 -5.800
## factor(Country)North Korea -0.02693 0.41305 -0.065
## factor(Country)North Macedonia 0.42164 0.49347 0.854
## factor(Country)Norway -0.31242 0.41242 -0.758
## factor(Country)Oman 19.03748 1493.81617 0.013
## factor(Country)Pakistan -1.81627 0.36823 -4.932
## factor(Country)Panama 1.39759 0.37900 3.688
## factor(Country)Papua New Guinea -18.46800 1579.27273 -0.012
## factor(Country)Paraguay -1.78594 0.59057 -3.024
## factor(Country)Peru 0.23627 0.38620 0.612
## factor(Country)Philippines 2.26472 0.40032 5.657
## factor(Country)Poland -1.80470 0.55244 -3.267
## factor(Country)Portugal -1.93045 0.55682 -3.467
## factor(Country)Qatar 19.07847 1381.43129 0.014
## factor(Country)Republic of the Congo -18.20471 1369.07479 -0.013
## factor(Country)Republic of the Gambia -0.98530 0.37521 -2.626
## factor(Country)Romania -0.96704 0.46025 -2.101
## factor(Country)Russia -18.35568 1232.76039 -0.015
## factor(Country)Rwanda -18.22115 1391.24310 -0.013
## factor(Country)Saudi Arabia 21.15107 1230.42025 0.017
## factor(Country)Senegal -18.70002 1370.49232 -0.014
## factor(Country)Serbia -18.47499 1941.95196 -0.010
## factor(Country)Sierra Leone -2.09318 0.40420 -5.179
## factor(Country)Singapore 0.23310 0.41210 0.566
## factor(Country)Slovakia -19.02467 2016.86880 -0.009
## factor(Country)Slovenia -1.66728 0.68827 -2.422
## factor(Country)Solomon Islands -20.64135 1628.90694 -0.013
## factor(Country)Somalia -18.16513 1369.43366 -0.013
## factor(Country)South Africa -0.68842 0.36799 -1.871
## factor(Country)South Korea -2.27421 0.66212 -3.435
## factor(Country)South Sudan -20.53437 3394.49700 -0.006
## factor(Country)Spain -1.24071 0.47036 -2.638
## factor(Country)Sri Lanka -0.84526 0.36569 -2.311
## factor(Country)Sudan -0.63405 0.35887 -1.767
## factor(Country)Suriname -18.77421 1567.17492 -0.012
## factor(Country)Sweden -1.11606 0.44549 -2.505
## factor(Country)Switzerland -2.71332 0.67258 -4.034
## factor(Country)Syria 0.00709 0.40211 0.018
## factor(Country)Taiwan -0.70708 0.44161 -1.601
## factor(Country)Tajikistan -18.22706 1953.06173 -0.009
## factor(Country)Tanzania -18.50024 1414.62307 -0.013
## factor(Country)Thailand -0.54657 0.43565 -1.255
## factor(Country)Timor-Leste -18.82401 2458.01431 -0.008
## factor(Country)Togo 0.53296 0.39754 1.341
## factor(Country)Trinidad and Tobago -2.13924 0.39939 -5.356
## factor(Country)Tunisia -18.35183 1315.37036 -0.014
## factor(Country)Turkey -1.27310 0.49827 -2.555
## factor(Country)Turkmenistan -18.08434 1952.12287 -0.009
## factor(Country)Uganda -2.70274 0.46041 -5.870
## factor(Country)Ukraine -18.43611 1950.50820 -0.009
## factor(Country)United Arab Emirates 19.08168 1512.16792 0.013
## factor(Country)United Kingdom -0.59643 0.42040 -1.419
## factor(Country)United States of America -2.52798 0.39021 -6.478
## factor(Country)Uruguay -0.44787 0.41469 -1.080
## factor(Country)Uzbekistan -18.15927 1952.95158 -0.009
## factor(Country)Venezuela -0.05291 0.39667 -0.133
## factor(Country)Vietnam -18.11124 1595.43535 -0.011
## factor(Country)Yemen NA NA NA
## factor(Country)Zambia -20.58289 1412.26997 -0.015
## Pr(>|z|)
## (Intercept) 0.003861 **
## dictatorship 0.070083 .
## v2x_polyarchy 2.78e-08 ***
## former_british_colony 1.56e-08 ***
## factor(Year)1947 0.814573
## factor(Year)1948 0.716782
## factor(Year)1949 0.850734
## factor(Year)1950 0.665196
## factor(Year)1951 0.784741
## factor(Year)1952 0.527545
## factor(Year)1953 0.505824
## factor(Year)1954 0.793585
## factor(Year)1955 0.667278
## factor(Year)1956 0.771028
## factor(Year)1957 0.775466
## factor(Year)1958 0.492862
## factor(Year)1959 0.277857
## factor(Year)1960 0.121760
## factor(Year)1961 0.109859
## factor(Year)1962 0.153870
## factor(Year)1963 0.191636
## factor(Year)1964 0.232062
## factor(Year)1965 0.412627
## factor(Year)1966 0.785158
## factor(Year)1967 0.569593
## factor(Year)1968 0.134272
## factor(Year)1969 0.134421
## factor(Year)1970 0.058780 .
## factor(Year)1971 0.223452
## factor(Year)1972 0.133325
## factor(Year)1973 0.099039 .
## factor(Year)1974 0.226835
## factor(Year)1975 0.543066
## factor(Year)1976 0.357517
## factor(Year)1977 0.188625
## factor(Year)1978 0.230887
## factor(Year)1979 0.128491
## factor(Year)1980 0.329193
## factor(Year)1981 0.063288 .
## factor(Year)1982 0.062655 .
## factor(Year)1983 0.154877
## factor(Year)1984 0.142962
## factor(Year)1985 0.053014 .
## factor(Year)1986 0.035946 *
## factor(Year)1987 0.034229 *
## factor(Year)1988 0.022288 *
## factor(Year)1989 0.022563 *
## factor(Year)1990 0.037402 *
## factor(Year)1991 0.031849 *
## factor(Year)1992 0.012932 *
## factor(Year)1993 0.017139 *
## factor(Year)1994 0.017718 *
## factor(Year)1995 0.010853 *
## factor(Year)1996 0.022707 *
## factor(Year)1997 0.040516 *
## factor(Year)1998 0.013058 *
## factor(Year)1999 0.038676 *
## factor(Year)2000 0.026983 *
## factor(Year)2001 0.096705 .
## factor(Year)2002 0.048451 *
## factor(Year)2003 0.061409 .
## factor(Year)2004 0.084548 .
## factor(Year)2005 0.060505 .
## factor(Year)2006 0.174179
## factor(Year)2007 0.336996
## factor(Year)2008 0.391514
## factor(Year)2009 0.169532
## factor(Year)2010 0.391576
## factor(Year)2011 0.322556
## factor(Year)2012 0.215159
## factor(Year)2013 0.478813
## factor(Year)2014 0.568939
## factor(Year)2015 0.653293
## factor(Year)2016 0.177553
## factor(Year)2017 0.342976
## factor(Year)2018 0.111052
## factor(Year)2019 0.192912
## factor(Year)2020 0.199789
## factor(Country)Albania 0.924934
## factor(Country)Algeria 0.989534
## factor(Country)Angola 0.990795
## factor(Country)Argentina 0.733004
## factor(Country)Armenia 0.992485
## factor(Country)Australia 0.240285
## factor(Country)Austria 0.987587
## factor(Country)Azerbaijan 0.000202 ***
## factor(Country)Bahrain 0.989965
## factor(Country)Bangladesh 6.18e-05 ***
## factor(Country)Barbados 2.96e-10 ***
## factor(Country)Belarus 0.992515
## factor(Country)Belgium 0.000292 ***
## factor(Country)Benin 1.61e-07 ***
## factor(Country)Bhutan 2.14e-12 ***
## factor(Country)Bosnia and Herzegovina 0.499068
## factor(Country)Botswana 3.49e-09 ***
## factor(Country)Brazil 0.001750 **
## factor(Country)Bulgaria 0.050924 .
## factor(Country)Burkina Faso 0.011176 *
## factor(Country)Burundi 0.086675 .
## factor(Country)Cambodia 3.80e-08 ***
## factor(Country)Cameroon 0.989429
## factor(Country)Canada 0.674813
## factor(Country)Cape Verde 0.990453
## factor(Country)Central African Republic 0.902066
## factor(Country)Chad 0.989360
## factor(Country)Chile 0.202786
## factor(Country)China 0.972930
## factor(Country)Colombia 0.027830 *
## factor(Country)Costa Rica 0.004785 **
## factor(Country)Croatia 0.992184
## factor(Country)Cuba 0.366145
## factor(Country)Cyprus 4.30e-10 ***
## factor(Country)Czech Republic 0.992459
## factor(Country)Democratic Republic of the Congo 0.333292
## factor(Country)Denmark 0.987481
## factor(Country)Djibouti 0.001054 **
## factor(Country)Dominican Republic 0.106636
## factor(Country)Ecuador 0.341860
## factor(Country)Egypt 1.47e-11 ***
## factor(Country)El Salvador 0.987969
## factor(Country)Equatorial Guinea 1.77e-10 ***
## factor(Country)Eritrea 0.992892
## factor(Country)Estonia 0.059412 .
## factor(Country)Eswatini 0.989730
## factor(Country)Ethiopia 0.026391 *
## factor(Country)Fiji 0.000361 ***
## factor(Country)Finland 1.56e-07 ***
## factor(Country)France 0.000292 ***
## factor(Country)Gabon 0.509519
## factor(Country)Georgia 0.992379
## factor(Country)Germany 0.992064
## factor(Country)Ghana 2.35e-08 ***
## factor(Country)Greece 0.049913 *
## factor(Country)Guatemala 0.063401 .
## factor(Country)Guinea 0.989223
## factor(Country)Guinea-Bissau 0.990590
## factor(Country)Guyana 6.76e-09 ***
## factor(Country)Haiti 0.029424 *
## factor(Country)Honduras 0.043790 *
## factor(Country)Hungary 0.987878
## factor(Country)Iceland 0.389835
## factor(Country)India 7.06e-10 ***
## factor(Country)Indonesia 0.001940 **
## factor(Country)Iran 3.64e-05 ***
## factor(Country)Iraq 2.40e-06 ***
## factor(Country)Ireland 0.399209
## factor(Country)Israel < 2e-16 ***
## factor(Country)Italy 0.000133 ***
## factor(Country)Ivory Coast 0.989221
## factor(Country)Jamaica 7.10e-07 ***
## factor(Country)Japan 0.023042 *
## factor(Country)Jordan 0.987858
## factor(Country)Kazakhstan 0.992534
## factor(Country)Kenya 2.56e-09 ***
## factor(Country)Kuwait 0.001130 **
## factor(Country)Kyrgyzstan 0.992498
## factor(Country)Laos 1.04e-10 ***
## factor(Country)Latvia 0.992241
## factor(Country)Lebanon 4.64e-07 ***
## factor(Country)Lesotho 0.988485
## factor(Country)Liberia 0.001963 **
## factor(Country)Libya 5.12e-05 ***
## factor(Country)Lithuania 0.992230
## factor(Country)Luxembourg 0.987540
## factor(Country)Madagascar 0.989263
## factor(Country)Malawi 8.54e-10 ***
## factor(Country)Malaysia 0.015361 *
## factor(Country)Maldives 0.706023
## factor(Country)Mali 0.785363
## factor(Country)Malta 6.06e-12 ***
## factor(Country)Mauritius 3.68e-07 ***
## factor(Country)Mexico 3.44e-05 ***
## factor(Country)Moldova 0.992393
## factor(Country)Mongolia 0.987955
## factor(Country)Montenegro 0.994567
## factor(Country)Morocco 0.987398
## factor(Country)Mozambique 0.990621
## factor(Country)Myanmar 3.48e-11 ***
## factor(Country)Namibia 0.992116
## factor(Country)Nepal 9.58e-11 ***
## factor(Country)Netherlands 0.987593
## factor(Country)New Zealand 0.009299 **
## factor(Country)Nicaragua 0.047770 *
## factor(Country)Niger 0.989257
## factor(Country)Nigeria 6.64e-09 ***
## factor(Country)North Korea 0.948009
## factor(Country)North Macedonia 0.392865
## factor(Country)Norway 0.448725
## factor(Country)Oman 0.989832
## factor(Country)Pakistan 8.12e-07 ***
## factor(Country)Panama 0.000226 ***
## factor(Country)Papua New Guinea 0.990670
## factor(Country)Paraguay 0.002494 **
## factor(Country)Peru 0.540678
## factor(Country)Philippines 1.54e-08 ***
## factor(Country)Poland 0.001088 **
## factor(Country)Portugal 0.000527 ***
## factor(Country)Qatar 0.988981
## factor(Country)Republic of the Congo 0.989391
## factor(Country)Republic of the Gambia 0.008640 **
## factor(Country)Romania 0.035628 *
## factor(Country)Russia 0.988120
## factor(Country)Rwanda 0.989550
## factor(Country)Saudi Arabia 0.986285
## factor(Country)Senegal 0.989113
## factor(Country)Serbia 0.992409
## factor(Country)Sierra Leone 2.24e-07 ***
## factor(Country)Singapore 0.571641
## factor(Country)Slovakia 0.992474
## factor(Country)Slovenia 0.015417 *
## factor(Country)Solomon Islands 0.989890
## factor(Country)Somalia 0.989417
## factor(Country)South Africa 0.061376 .
## factor(Country)South Korea 0.000593 ***
## factor(Country)South Sudan 0.995173
## factor(Country)Spain 0.008345 **
## factor(Country)Sri Lanka 0.020810 *
## factor(Country)Sudan 0.077261 .
## factor(Country)Suriname 0.990442
## factor(Country)Sweden 0.012238 *
## factor(Country)Switzerland 5.48e-05 ***
## factor(Country)Syria 0.985932
## factor(Country)Taiwan 0.109341
## factor(Country)Tajikistan 0.992554
## factor(Country)Tanzania 0.989566
## factor(Country)Thailand 0.209617
## factor(Country)Timor-Leste 0.993890
## factor(Country)Togo 0.180039
## factor(Country)Trinidad and Tobago 8.50e-08 ***
## factor(Country)Tunisia 0.988868
## factor(Country)Turkey 0.010617 *
## factor(Country)Turkmenistan 0.992609
## factor(Country)Uganda 4.35e-09 ***
## factor(Country)Ukraine 0.992459
## factor(Country)United Arab Emirates 0.989932
## factor(Country)United Kingdom 0.155979
## factor(Country)United States of America 9.27e-11 ***
## factor(Country)Uruguay 0.280132
## factor(Country)Uzbekistan 0.992581
## factor(Country)Venezuela 0.893892
## factor(Country)Vietnam 0.990943
## factor(Country)Yemen NA
## factor(Country)Zambia 0.988372
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 11781.8 on 10240 degrees of freedom
## Residual deviance: 7067.3 on 9999 degrees of freedom
## AIC: 7551.3
##
## Number of Fisher Scoring iterations: 18
# Model 4: Using Dem_Type as the independent variable, with mixed (1) as the reference category
gdd_clean$Dem_Type <- factor(gdd_clean$Dem_Type, levels = c(1, 0, 2, 3))
model4 <- glm(dynastic ~ Dem_Type + v2x_polyarchy + former_british_colony + factor(Year) + factor(Country), data = gdd_clean, family = binomial(link = "logit"))
summary(model4)##
## Call:
## glm(formula = dynastic ~ Dem_Type + v2x_polyarchy + former_british_colony +
## factor(Year) + factor(Country), family = binomial(link = "logit"),
## data = gdd_clean)
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error z value
## (Intercept) -1.369e+00 4.826e-01 -2.837
## Dem_Type0 2.274e-01 2.147e-01 1.059
## Dem_Type2 1.489e-02 2.272e-01 0.066
## Dem_Type3 -4.008e-02 2.401e-01 -0.167
## v2x_polyarchy 1.629e+00 2.985e-01 5.459
## former_british_colony 2.152e+00 3.808e-01 5.651
## factor(Year)1947 1.163e-01 4.541e-01 0.256
## factor(Year)1948 -1.523e-01 4.526e-01 -0.336
## factor(Year)1949 -7.008e-02 4.487e-01 -0.156
## factor(Year)1950 -1.824e-01 4.517e-01 -0.404
## factor(Year)1951 1.402e-01 4.410e-01 0.318
## factor(Year)1952 2.986e-01 4.383e-01 0.681
## factor(Year)1953 3.136e-01 4.365e-01 0.718
## factor(Year)1954 2.214e-01 4.380e-01 0.505
## factor(Year)1955 2.952e-01 4.371e-01 0.675
## factor(Year)1956 -2.050e-02 4.406e-01 -0.047
## factor(Year)1957 -1.729e-02 4.368e-01 -0.040
## factor(Year)1958 -1.950e-01 4.402e-01 -0.443
## factor(Year)1959 -3.748e-01 4.444e-01 -0.843
## factor(Year)1960 -5.710e-01 4.386e-01 -1.302
## factor(Year)1961 -5.906e-01 4.371e-01 -1.351
## factor(Year)1962 -5.059e-01 4.301e-01 -1.176
## factor(Year)1963 -4.505e-01 4.270e-01 -1.055
## factor(Year)1964 -4.005e-01 4.246e-01 -0.943
## factor(Year)1965 -2.363e-01 4.176e-01 -0.566
## factor(Year)1966 -8.184e-03 4.117e-01 -0.020
## factor(Year)1967 -1.302e-01 4.137e-01 -0.315
## factor(Year)1968 -5.225e-01 4.204e-01 -1.243
## factor(Year)1969 -5.229e-01 4.207e-01 -1.243
## factor(Year)1970 -6.932e-01 4.240e-01 -1.635
## factor(Year)1971 -3.995e-01 4.151e-01 -0.963
## factor(Year)1972 -5.206e-01 4.177e-01 -1.246
## factor(Year)1973 -5.852e-01 4.197e-01 -1.394
## factor(Year)1974 -3.959e-01 4.152e-01 -0.954
## factor(Year)1975 -1.456e-01 4.114e-01 -0.354
## factor(Year)1976 -2.745e-01 4.129e-01 -0.665
## factor(Year)1977 -4.393e-01 4.148e-01 -1.059
## factor(Year)1978 -3.906e-01 4.138e-01 -0.944
## factor(Year)1979 -5.271e-01 4.164e-01 -1.266
## factor(Year)1980 -2.968e-01 4.113e-01 -0.722
## factor(Year)1981 -6.724e-01 4.193e-01 -1.604
## factor(Year)1982 -6.766e-01 4.190e-01 -1.615
## factor(Year)1983 -4.877e-01 4.146e-01 -1.176
## factor(Year)1984 -5.053e-01 4.147e-01 -1.218
## factor(Year)1985 -7.071e-01 4.190e-01 -1.688
## factor(Year)1986 -7.760e-01 4.201e-01 -1.847
## factor(Year)1987 -7.850e-01 4.205e-01 -1.867
## factor(Year)1988 -8.597e-01 4.224e-01 -2.035
## factor(Year)1989 -8.576e-01 4.222e-01 -2.031
## factor(Year)1990 -7.665e-01 4.184e-01 -1.832
## factor(Year)1991 -7.880e-01 4.169e-01 -1.890
## factor(Year)1992 -9.378e-01 4.204e-01 -2.231
## factor(Year)1993 -8.915e-01 4.188e-01 -2.129
## factor(Year)1994 -8.856e-01 4.186e-01 -2.116
## factor(Year)1995 -9.633e-01 4.205e-01 -2.291
## factor(Year)1996 -8.438e-01 4.171e-01 -2.023
## factor(Year)1997 -7.432e-01 4.146e-01 -1.793
## factor(Year)1998 -9.332e-01 4.193e-01 -2.226
## factor(Year)1999 -7.512e-01 4.148e-01 -1.811
## factor(Year)2000 -8.138e-01 4.161e-01 -1.956
## factor(Year)2001 -5.783e-01 4.112e-01 -1.406
## factor(Year)2002 -7.109e-01 4.139e-01 -1.718
## factor(Year)2003 -6.669e-01 4.130e-01 -1.615
## factor(Year)2004 -6.050e-01 4.117e-01 -1.470
## factor(Year)2005 -6.696e-01 4.131e-01 -1.621
## factor(Year)2006 -4.519e-01 4.093e-01 -1.104
## factor(Year)2007 -2.885e-01 4.070e-01 -0.709
## factor(Year)2008 -2.466e-01 4.070e-01 -0.606
## factor(Year)2009 -4.589e-01 4.102e-01 -1.119
## factor(Year)2010 -2.461e-01 4.072e-01 -0.604
## factor(Year)2011 -3.002e-01 4.079e-01 -0.736
## factor(Year)2012 -4.032e-01 4.093e-01 -0.985
## factor(Year)2013 -1.857e-01 4.062e-01 -0.457
## factor(Year)2014 -1.299e-01 4.058e-01 -0.320
## factor(Year)2015 -8.110e-02 4.056e-01 -0.200
## factor(Year)2016 -4.988e-01 4.115e-01 -1.212
## factor(Year)2017 -3.312e-01 4.090e-01 -0.810
## factor(Year)2018 -6.033e-01 4.132e-01 -1.460
## factor(Year)2019 -4.795e-01 4.109e-01 -1.167
## factor(Year)2020 -4.709e-01 4.106e-01 -1.147
## factor(Country)Albania -1.070e+00 6.831e-01 -1.567
## factor(Country)Algeria -1.828e+01 1.511e+03 -0.012
## factor(Country)Angola -1.812e+01 1.664e+03 -0.011
## factor(Country)Argentina 1.257e-01 3.952e-01 0.318
## factor(Country)Armenia -1.837e+01 1.951e+03 -0.009
## factor(Country)Australia 5.208e-01 4.220e-01 1.234
## factor(Country)Austria -1.916e+01 1.233e+03 -0.016
## factor(Country)Azerbaijan 1.750e+00 4.715e-01 3.712
## factor(Country)Bahrain 1.898e+01 1.509e+03 0.013
## factor(Country)Bangladesh 1.649e+00 4.117e-01 4.005
## factor(Country)Barbados -2.713e+00 4.546e-01 -5.968
## factor(Country)Belarus -1.837e+01 1.958e+03 -0.009
## factor(Country)Belgium -1.819e+00 5.293e-01 -3.436
## factor(Country)Benin 2.128e+00 4.105e-01 5.184
## factor(Country)Bhutan 2.904e+00 4.134e-01 7.024
## factor(Country)Bosnia and Herzegovina -3.576e-01 5.333e-01 -0.670
## factor(Country)Botswana -2.515e+00 4.577e-01 -5.495
## factor(Country)Brazil -1.647e+00 5.286e-01 -3.116
## factor(Country)Bulgaria -8.727e-01 4.556e-01 -1.915
## factor(Country)Burkina Faso -1.407e+00 5.533e-01 -2.543
## factor(Country)Burundi 6.740e-01 4.006e-01 1.682
## factor(Country)Cambodia 2.145e+00 3.913e-01 5.482
## factor(Country)Cameroon -1.830e+01 1.381e+03 -0.013
## factor(Country)Canada -1.243e-01 4.244e-01 -0.293
## factor(Country)Cape Verde -1.873e+01 1.567e+03 -0.012
## factor(Country)Central African Republic 4.172e-02 4.255e-01 0.098
## factor(Country)Chad -1.824e+01 1.367e+03 -0.013
## factor(Country)Chile -5.416e-01 4.255e-01 -1.273
## factor(Country)China 1.422e-02 4.065e-01 0.035
## factor(Country)Colombia 8.260e-01 3.906e-01 2.115
## factor(Country)Costa Rica 1.133e+00 4.149e-01 2.730
## factor(Country)Croatia -1.880e+01 1.920e+03 -0.010
## factor(Country)Cuba -3.825e-01 4.276e-01 -0.895
## factor(Country)Cyprus -2.578e+00 4.163e-01 -6.192
## factor(Country)Czech Republic -1.907e+01 2.022e+03 -0.009
## factor(Country)Democratic Republic of the Congo 3.845e-01 4.052e-01 0.949
## factor(Country)Denmark -1.924e+01 1.230e+03 -0.016
## factor(Country)Djibouti 1.360e+00 4.165e-01 3.265
## factor(Country)Dominican Republic -7.197e-01 4.449e-01 -1.618
## factor(Country)Ecuador -3.981e-01 4.152e-01 -0.959
## factor(Country)Egypt -3.189e+00 4.729e-01 -6.745
## factor(Country)El Salvador -1.847e+01 1.225e+03 -0.015
## factor(Country)Equatorial Guinea 2.822e+00 4.434e-01 6.363
## factor(Country)Eritrea -1.803e+01 2.024e+03 -0.009
## factor(Country)Estonia -1.064e+00 6.010e-01 -1.770
## factor(Country)Eswatini 1.892e+01 1.471e+03 0.013
## factor(Country)Ethiopia 8.271e-01 3.720e-01 2.224
## factor(Country)Fiji -1.387e+00 3.895e-01 -3.562
## factor(Country)Finland -3.504e+00 6.903e-01 -5.076
## factor(Country)France -1.859e+00 5.416e-01 -3.433
## factor(Country)Gabon -2.965e-01 4.402e-01 -0.674
## factor(Country)Georgia -1.857e+01 1.946e+03 -0.010
## factor(Country)Germany -1.907e+01 1.921e+03 -0.010
## factor(Country)Ghana -2.219e+00 3.976e-01 -5.580
## factor(Country)Greece 7.782e-01 3.889e-01 2.001
## factor(Country)Guatemala -8.695e-01 4.683e-01 -1.857
## factor(Country)Guinea -1.822e+01 1.348e+03 -0.014
## factor(Country)Guinea-Bissau -1.831e+01 1.551e+03 -0.012
## factor(Country)Guyana -4.460e+00 7.690e-01 -5.800
## factor(Country)Haiti 8.099e-01 3.713e-01 2.181
## factor(Country)Honduras -9.683e-01 4.792e-01 -2.021
## factor(Country)Hungary -1.857e+01 1.225e+03 -0.015
## factor(Country)Iceland -3.481e-01 4.453e-01 -0.782
## factor(Country)India -2.335e+00 4.063e-01 -5.748
## factor(Country)Indonesia -1.844e+00 5.942e-01 -3.103
## factor(Country)Iran 1.518e+00 3.679e-01 4.127
## factor(Country)Iraq -1.698e+00 3.605e-01 -4.711
## factor(Country)Ireland -3.408e-01 4.448e-01 -0.766
## factor(Country)Israel -4.634e+00 5.221e-01 -8.876
## factor(Country)Italy -2.110e+00 5.778e-01 -3.652
## factor(Country)Ivory Coast -1.842e+01 1.375e+03 -0.013
## factor(Country)Jamaica -1.924e+00 4.107e-01 -4.684
## factor(Country)Japan 9.611e-01 4.219e-01 2.278
## factor(Country)Jordan 1.873e+01 1.232e+03 0.015
## factor(Country)Kazakhstan -1.830e+01 1.955e+03 -0.009
## factor(Country)Kenya -2.763e+00 4.633e-01 -5.964
## factor(Country)Kuwait 2.099e+00 6.463e-01 3.249
## factor(Country)Kyrgyzstan -1.835e+01 1.951e+03 -0.009
## factor(Country)Laos 2.609e+00 4.051e-01 6.440
## factor(Country)Latvia -1.892e+01 1.950e+03 -0.010
## factor(Country)Lebanon 1.961e+00 3.888e-01 5.045
## factor(Country)Lesotho -2.060e+01 1.429e+03 -0.014
## factor(Country)Liberia 1.147e+00 3.708e-01 3.092
## factor(Country)Libya -1.474e+00 3.629e-01 -4.063
## factor(Country)Lithuania -1.901e+01 1.952e+03 -0.010
## factor(Country)Luxembourg -1.917e+01 1.232e+03 -0.016
## factor(Country)Madagascar -1.840e+01 1.367e+03 -0.013
## factor(Country)Malawi -3.308e+00 5.392e-01 -6.136
## factor(Country)Malaysia 9.202e-01 3.840e-01 2.396
## factor(Country)Maldives -1.514e-01 3.836e-01 -0.395
## factor(Country)Mali -1.230e-01 4.361e-01 -0.282
## factor(Country)Malta -3.257e+00 4.954e-01 -6.574
## factor(Country)Mauritius -2.037e+00 4.276e-01 -4.764
## factor(Country)Mexico 1.564e+00 3.790e-01 4.128
## factor(Country)Moldova -1.854e+01 1.948e+03 -0.010
## factor(Country)Mongolia -1.855e+01 1.230e+03 -0.015
## factor(Country)Montenegro -1.887e+01 2.772e+03 -0.007
## factor(Country)Morocco 2.094e+01 1.327e+03 0.016
## factor(Country)Mozambique -1.839e+01 1.565e+03 -0.012
## factor(Country)Myanmar -3.523e+00 5.337e-01 -6.602
## factor(Country)Namibia -1.895e+01 1.918e+03 -0.010
## factor(Country)Nepal 2.620e+00 4.054e-01 6.463
## factor(Country)Netherlands -1.911e+01 1.233e+03 -0.016
## factor(Country)New Zealand -1.124e+00 4.669e-01 -2.408
## factor(Country)Nicaragua 7.318e-01 3.743e-01 1.955
## factor(Country)Niger -1.837e+01 1.365e+03 -0.013
## factor(Country)Nigeria -2.534e+00 4.368e-01 -5.802
## factor(Country)North Korea -2.946e-02 4.129e-01 -0.071
## factor(Country)North Macedonia 4.206e-01 5.223e-01 0.805
## factor(Country)Norway -2.653e-01 4.297e-01 -0.617
## factor(Country)Oman 1.903e+01 1.494e+03 0.013
## factor(Country)Pakistan -1.796e+00 3.730e-01 -4.815
## factor(Country)Panama 1.387e+00 3.835e-01 3.618
## factor(Country)Papua New Guinea -1.843e+01 1.579e+03 -0.012
## factor(Country)Paraguay -1.790e+00 5.918e-01 -3.024
## factor(Country)Peru 2.298e-01 3.899e-01 0.589
## factor(Country)Philippines 2.253e+00 4.044e-01 5.572
## factor(Country)Poland -1.801e+00 5.597e-01 -3.217
## factor(Country)Portugal -1.926e+00 5.694e-01 -3.382
## factor(Country)Qatar 1.907e+01 1.381e+03 0.014
## factor(Country)Republic of the Congo -1.821e+01 1.369e+03 -0.013
## factor(Country)Republic of the Gambia -9.887e-01 3.752e-01 -2.635
## factor(Country)Romania -9.636e-01 4.667e-01 -2.064
## factor(Country)Russia -1.835e+01 1.233e+03 -0.015
## factor(Country)Rwanda -1.823e+01 1.391e+03 -0.013
## factor(Country)Saudi Arabia 2.115e+01 1.231e+03 0.017
## factor(Country)Senegal -1.870e+01 1.371e+03 -0.014
## factor(Country)Serbia -1.845e+01 1.943e+03 -0.009
## factor(Country)Sierra Leone -2.100e+00 4.052e-01 -5.183
## factor(Country)Singapore 2.286e-01 4.121e-01 0.555
## factor(Country)Slovakia -1.902e+01 2.017e+03 -0.009
## factor(Country)Slovenia -1.637e+00 6.934e-01 -2.361
## factor(Country)Solomon Islands -2.060e+01 1.629e+03 -0.013
## factor(Country)Somalia -1.817e+01 1.370e+03 -0.013
## factor(Country)South Africa -6.669e-01 3.715e-01 -1.795
## factor(Country)South Korea -2.281e+00 6.633e-01 -3.438
## factor(Country)South Sudan -2.052e+01 3.393e+03 -0.006
## factor(Country)Spain -1.209e+00 4.777e-01 -2.530
## factor(Country)Sri Lanka -8.354e-01 3.673e-01 -2.274
## factor(Country)Sudan -6.311e-01 3.603e-01 -1.751
## factor(Country)Suriname -1.878e+01 1.567e+03 -0.012
## factor(Country)Sweden -1.068e+00 4.616e-01 -2.314
## factor(Country)Switzerland -2.721e+00 6.786e-01 -4.010
## factor(Country)Syria 7.387e-03 4.025e-01 0.018
## factor(Country)Taiwan -7.066e-01 4.468e-01 -1.582
## factor(Country)Tajikistan -1.823e+01 1.953e+03 -0.009
## factor(Country)Tanzania -1.850e+01 1.415e+03 -0.013
## factor(Country)Thailand -5.291e-01 4.386e-01 -1.206
## factor(Country)Timor-Leste -1.882e+01 2.458e+03 -0.008
## factor(Country)Togo 5.265e-01 3.974e-01 1.325
## factor(Country)Trinidad and Tobago -2.100e+00 4.188e-01 -5.014
## factor(Country)Tunisia -1.836e+01 1.315e+03 -0.014
## factor(Country)Turkey -1.271e+00 5.208e-01 -2.441
## factor(Country)Turkmenistan -1.809e+01 1.952e+03 -0.009
## factor(Country)Uganda -2.709e+00 4.604e-01 -5.884
## factor(Country)Ukraine -1.844e+01 1.951e+03 -0.009
## factor(Country)United Arab Emirates 1.908e+01 1.512e+03 0.013
## factor(Country)United Kingdom -5.490e-01 4.375e-01 -1.255
## factor(Country)United States of America -2.535e+00 4.002e-01 -6.333
## factor(Country)Uruguay -4.542e-01 4.226e-01 -1.075
## factor(Country)Uzbekistan -1.816e+01 1.953e+03 -0.009
## factor(Country)Venezuela -6.438e-02 4.031e-01 -0.160
## factor(Country)Vietnam -1.812e+01 1.596e+03 -0.011
## factor(Country)Yemen NA NA NA
## factor(Country)Zambia -2.059e+01 1.412e+03 -0.015
## Pr(>|z|)
## (Intercept) 0.004552 **
## Dem_Type0 0.289534
## Dem_Type2 0.947738
## Dem_Type3 0.867389
## v2x_polyarchy 4.79e-08 ***
## former_british_colony 1.59e-08 ***
## factor(Year)1947 0.797950
## factor(Year)1948 0.736589
## factor(Year)1949 0.875893
## factor(Year)1950 0.686399
## factor(Year)1951 0.750539
## factor(Year)1952 0.495679
## factor(Year)1953 0.472538
## factor(Year)1954 0.613234
## factor(Year)1955 0.499509
## factor(Year)1956 0.962900
## factor(Year)1957 0.968432
## factor(Year)1958 0.657696
## factor(Year)1959 0.398962
## factor(Year)1960 0.192955
## factor(Year)1961 0.176651
## factor(Year)1962 0.239492
## factor(Year)1963 0.291425
## factor(Year)1964 0.345508
## factor(Year)1965 0.571469
## factor(Year)1966 0.984138
## factor(Year)1967 0.752938
## factor(Year)1968 0.213939
## factor(Year)1969 0.213923
## factor(Year)1970 0.102043
## factor(Year)1971 0.335761
## factor(Year)1972 0.212717
## factor(Year)1973 0.163225
## factor(Year)1974 0.340283
## factor(Year)1975 0.723429
## factor(Year)1976 0.506086
## factor(Year)1977 0.289583
## factor(Year)1978 0.345130
## factor(Year)1979 0.205524
## factor(Year)1980 0.470529
## factor(Year)1981 0.108776
## factor(Year)1982 0.106351
## factor(Year)1983 0.239429
## factor(Year)1984 0.223072
## factor(Year)1985 0.091480 .
## factor(Year)1986 0.064707 .
## factor(Year)1987 0.061899 .
## factor(Year)1988 0.041851 *
## factor(Year)1989 0.042219 *
## factor(Year)1990 0.066932 .
## factor(Year)1991 0.058699 .
## factor(Year)1992 0.025704 *
## factor(Year)1993 0.033289 *
## factor(Year)1994 0.034379 *
## factor(Year)1995 0.021977 *
## factor(Year)1996 0.043096 *
## factor(Year)1997 0.073032 .
## factor(Year)1998 0.026041 *
## factor(Year)1999 0.070110 .
## factor(Year)2000 0.050520 .
## factor(Year)2001 0.159611
## factor(Year)2002 0.085845 .
## factor(Year)2003 0.106369
## factor(Year)2004 0.141651
## factor(Year)2005 0.105057
## factor(Year)2006 0.269652
## factor(Year)2007 0.478468
## factor(Year)2008 0.544564
## factor(Year)2009 0.263190
## factor(Year)2010 0.545620
## factor(Year)2011 0.461690
## factor(Year)2012 0.324493
## factor(Year)2013 0.647591
## factor(Year)2014 0.748901
## factor(Year)2015 0.841503
## factor(Year)2016 0.225525
## factor(Year)2017 0.418079
## factor(Year)2018 0.144344
## factor(Year)2019 0.243215
## factor(Year)2020 0.251410
## factor(Country)Albania 0.117161
## factor(Country)Algeria 0.990346
## factor(Country)Angola 0.991309
## factor(Country)Argentina 0.750461
## factor(Country)Armenia 0.992489
## factor(Country)Australia 0.217206
## factor(Country)Austria 0.987599
## factor(Country)Azerbaijan 0.000206 ***
## factor(Country)Bahrain 0.989969
## factor(Country)Bangladesh 6.21e-05 ***
## factor(Country)Barbados 2.40e-09 ***
## factor(Country)Belarus 0.992515
## factor(Country)Belgium 0.000590 ***
## factor(Country)Benin 2.17e-07 ***
## factor(Country)Bhutan 2.15e-12 ***
## factor(Country)Bosnia and Herzegovina 0.502558
## factor(Country)Botswana 3.90e-08 ***
## factor(Country)Brazil 0.001831 **
## factor(Country)Bulgaria 0.055443 .
## factor(Country)Burkina Faso 0.011000 *
## factor(Country)Burundi 0.092497 .
## factor(Country)Cambodia 4.21e-08 ***
## factor(Country)Cameroon 0.989427
## factor(Country)Canada 0.769674
## factor(Country)Cape Verde 0.990462
## factor(Country)Central African Republic 0.921888
## factor(Country)Chad 0.989357
## factor(Country)Chile 0.202996
## factor(Country)China 0.972106
## factor(Country)Colombia 0.034457 *
## factor(Country)Costa Rica 0.006330 **
## factor(Country)Croatia 0.992187
## factor(Country)Cuba 0.370966
## factor(Country)Cyprus 5.94e-10 ***
## factor(Country)Czech Republic 0.992477
## factor(Country)Democratic Republic of the Congo 0.342597
## factor(Country)Denmark 0.987523
## factor(Country)Djibouti 0.001095 **
## factor(Country)Dominican Republic 0.105746
## factor(Country)Ecuador 0.337746
## factor(Country)Egypt 1.53e-11 ***
## factor(Country)El Salvador 0.987976
## factor(Country)Equatorial Guinea 1.98e-10 ***
## factor(Country)Eritrea 0.992891
## factor(Country)Estonia 0.076722 .
## factor(Country)Eswatini 0.989733
## factor(Country)Ethiopia 0.026181 *
## factor(Country)Fiji 0.000368 ***
## factor(Country)Finland 3.85e-07 ***
## factor(Country)France 0.000598 ***
## factor(Country)Gabon 0.500497
## factor(Country)Georgia 0.992385
## factor(Country)Germany 0.992083
## factor(Country)Ghana 2.41e-08 ***
## factor(Country)Greece 0.045393 *
## factor(Country)Guatemala 0.063358 .
## factor(Country)Guinea 0.989216
## factor(Country)Guinea-Bissau 0.990586
## factor(Country)Guyana 6.63e-09 ***
## factor(Country)Haiti 0.029151 *
## factor(Country)Honduras 0.043296 *
## factor(Country)Hungary 0.987907
## factor(Country)Iceland 0.434284
## factor(Country)India 9.04e-09 ***
## factor(Country)Indonesia 0.001916 **
## factor(Country)Iran 3.67e-05 ***
## factor(Country)Iraq 2.46e-06 ***
## factor(Country)Ireland 0.443548
## factor(Country)Israel < 2e-16 ***
## factor(Country)Italy 0.000260 ***
## factor(Country)Ivory Coast 0.989308
## factor(Country)Jamaica 2.82e-06 ***
## factor(Country)Japan 0.022732 *
## factor(Country)Jordan 0.987866
## factor(Country)Kazakhstan 0.992534
## factor(Country)Kenya 2.46e-09 ***
## factor(Country)Kuwait 0.001160 **
## factor(Country)Kyrgyzstan 0.992498
## factor(Country)Laos 1.19e-10 ***
## factor(Country)Latvia 0.992260
## factor(Country)Lebanon 4.54e-07 ***
## factor(Country)Lesotho 0.988497
## factor(Country)Liberia 0.001985 **
## factor(Country)Libya 4.84e-05 ***
## factor(Country)Lithuania 0.992232
## factor(Country)Luxembourg 0.987580
## factor(Country)Madagascar 0.989261
## factor(Country)Malawi 8.44e-10 ***
## factor(Country)Malaysia 0.016570 *
## factor(Country)Maldives 0.693043
## factor(Country)Mali 0.777966
## factor(Country)Malta 4.90e-11 ***
## factor(Country)Mauritius 1.90e-06 ***
## factor(Country)Mexico 3.67e-05 ***
## factor(Country)Moldova 0.992409
## factor(Country)Mongolia 0.987964
## factor(Country)Montenegro 0.994567
## factor(Country)Morocco 0.987405
## factor(Country)Mozambique 0.990622
## factor(Country)Myanmar 4.07e-11 ***
## factor(Country)Namibia 0.992119
## factor(Country)Nepal 1.02e-10 ***
## factor(Country)Netherlands 0.987631
## factor(Country)New Zealand 0.016021 *
## factor(Country)Nicaragua 0.050545 .
## factor(Country)Niger 0.989259
## factor(Country)Nigeria 6.57e-09 ***
## factor(Country)North Korea 0.943118
## factor(Country)North Macedonia 0.420665
## factor(Country)Norway 0.536991
## factor(Country)Oman 0.989838
## factor(Country)Pakistan 1.47e-06 ***
## factor(Country)Panama 0.000297 ***
## factor(Country)Papua New Guinea 0.990687
## factor(Country)Paraguay 0.002496 **
## factor(Country)Peru 0.555592
## factor(Country)Philippines 2.53e-08 ***
## factor(Country)Poland 0.001295 **
## factor(Country)Portugal 0.000719 ***
## factor(Country)Qatar 0.988986
## factor(Country)Republic of the Congo 0.989386
## factor(Country)Republic of the Gambia 0.008417 **
## factor(Country)Romania 0.038975 *
## factor(Country)Russia 0.988128
## factor(Country)Rwanda 0.989546
## factor(Country)Saudi Arabia 0.986297
## factor(Country)Senegal 0.989112
## factor(Country)Serbia 0.992424
## factor(Country)Sierra Leone 2.18e-07 ***
## factor(Country)Singapore 0.579112
## factor(Country)Slovakia 0.992477
## factor(Country)Slovenia 0.018248 *
## factor(Country)Solomon Islands 0.989911
## factor(Country)Somalia 0.989419
## factor(Country)South Africa 0.072578 .
## factor(Country)South Korea 0.000585 ***
## factor(Country)South Sudan 0.995174
## factor(Country)Spain 0.011404 *
## factor(Country)Sri Lanka 0.022961 *
## factor(Country)Sudan 0.079875 .
## factor(Country)Suriname 0.990436
## factor(Country)Sweden 0.020671 *
## factor(Country)Switzerland 6.08e-05 ***
## factor(Country)Syria 0.985358
## factor(Country)Taiwan 0.113747
## factor(Country)Tajikistan 0.992553
## factor(Country)Tanzania 0.989564
## factor(Country)Thailand 0.227749
## factor(Country)Timor-Leste 0.993891
## factor(Country)Togo 0.185165
## factor(Country)Trinidad and Tobago 5.34e-07 ***
## factor(Country)Tunisia 0.988862
## factor(Country)Turkey 0.014649 *
## factor(Country)Turkmenistan 0.992608
## factor(Country)Uganda 4.02e-09 ***
## factor(Country)Ukraine 0.992458
## factor(Country)United Arab Emirates 0.989937
## factor(Country)United Kingdom 0.209529
## factor(Country)United States of America 2.40e-10 ***
## factor(Country)Uruguay 0.282526
## factor(Country)Uzbekistan 0.992581
## factor(Country)Venezuela 0.873107
## factor(Country)Vietnam 0.990940
## factor(Country)Yemen NA
## factor(Country)Zambia 0.988368
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 11720.8 on 10184 degrees of freedom
## Residual deviance: 7016.1 on 9941 degrees of freedom
## (56 observations deleted due to missingness)
## AIC: 7504.1
##
## Number of Fisher Scoring iterations: 18
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 80 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 80 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 1709 rows containing non-finite outside the scale range
## (`stat_smooth()`).
The results in this section are based on Boix’s definition of democracy and a defined cut-off. This will only include analysis for countries that are classified democracies according to the e_boix variable where Charles Boix classifies democracies/non democracies as 0 and 1. The Cut off Point we choose here for our analysis is to include all countries that have been democracies for at least 25% of their lifetime since 1945.
Before we proceed, it is crucial to note that now we are also adding a variable based on the different types of dynasts we have already explained before in order to make the analysis a bit more nuanced. We are adding a variable called “dynast_type” to account for the categorical variation in the types of dynasts that we have. In this classification we have a pure non-dynast (0, no family before or after the said leader is in politics), dynasty-ender (1, definitely has a predecessor in politics but does not have a successor in politics), the DYNAST (2,definitely has a predecessor in politics may or may not have a successor in politics), Dynasty-former (3, does not have any family in politics preceding him/her but definitely leaves a successor in politics), and finally dynasty-sustainer (4, necessarily has both a predecessor and successor in politics). First we will look at some basic characteristic differences in thse kind of dynasts using a basic difference in mean test (education, Spell [the number of time a leader has been in office], tenure length, is also in business)
Dynastic Variable (0/1) is recoded here as a continuous variable in terms of a dynastic score that varies between 0 and 1 to indicate that up until point t in time for a country i how long Dynastic rule has prevailed (Eg. 1970 in India would mean) TWO BASIC GRAPHS
##
## ===============================================
## Dependent variable:
## ---------------------------
## Dynastic_Proportion
## -----------------------------------------------
## v2x_polyarchy -0.040***
## (0.012)
##
## Constant 0.224***
## (0.008)
##
## -----------------------------------------------
## Observations 6,298
## R2 0.002
## Adjusted R2 0.002
## Residual Std. Error 0.267 (df = 6296)
## F Statistic 10.567*** (df = 1; 6296)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
##
## ===============================================
## Dependent variable:
## ---------------------------
## Dynastic_Proportion
## -----------------------------------------------
## v2x_polyarchy 0.121***
## (0.024)
##
## log_gdp_percap -0.021***
## (0.003)
##
## v2xnp_regcorr 0.035*
## (0.018)
##
## v2caviol 0.030***
## (0.003)
##
## v2cademmob -0.026***
## (0.004)
##
## Constant 0.291***
## (0.027)
##
## -----------------------------------------------
## Observations 5,169
## R2 0.034
## Adjusted R2 0.033
## Residual Std. Error 0.258 (df = 5163)
## F Statistic 36.299*** (df = 5; 5163)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
##
## =============================================
## Dependent variable:
## ---------------------------
## Dynastic_Proportion
## ---------------------------------------------
## v2x_polyarchy -0.249**
## (0.115)
##
## Constant -1.237***
## (0.071)
##
## ---------------------------------------------
## Observations 6,298
## Log Likelihood -2,675.470
## Akaike Inf. Crit. 5,354.939
## =============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
##
## =============================================
## Dependent variable:
## ---------------------------
## Dynastic_Proportion
## ---------------------------------------------
## v2x_polyarchy 0.753***
## (0.236)
##
## log_gdp_percap -0.130***
## (0.032)
##
## v2xnp_regcorr 0.218
## (0.172)
##
## v2caviol 0.180***
## (0.031)
##
## v2cademmob -0.160***
## (0.034)
##
## Constant -0.835***
## (0.256)
##
## ---------------------------------------------
## Observations 5,169
## Log Likelihood -2,173.792
## Akaike Inf. Crit. 4,359.584
## =============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
Corruption here is Regime Corruption borrowed from VDem and the specific variable details are:
This section covers some basic regressions treating Dynasticism as a DV against other other variables like democracy scores, regime corruption level, media censorship (v2mecenefm), clean elections (v2xel_frefair), former british colony. These are all fixed effects linear models with country and year fixed effects in place and the standard error is clustered at the country level.
Are democracies and dynastic leadership compatible (and are former British Colonies likely to be more dynastic?)?
##
## Call:
## felm(formula = dynastic ~ v2x_polyarchy + log_gdp_percap + v2xnp_regcorr + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.61674 -0.23353 -0.15014 -0.03866 1.10276
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## v2x_polyarchy 0.28052 0.13100 2.141 0.0646 .
## log_gdp_percap 0.01842 0.01044 1.765 0.1156
## v2xnp_regcorr 0.13401 0.06399 2.094 0.0695 .
## former_british_colony -0.02224 0.04322 -0.515 0.6207
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.395 on 5155 degrees of freedom
## (1070 observations deleted due to missingness)
## Multiple R-squared(full model): 0.08255 Adjusted R-squared: 0.06974
## Multiple R-squared(proj model): 0.01446 Adjusted R-squared: 0.0006929
## F-statistic(full model, *iid*):6.442 on 72 and 5155 DF, p-value: < 2.2e-16
## F-statistic(proj model): 4.787 on 4 and 8 DF, p-value: 0.02882
This regression results seems to suggest that Dynasties and democracies have been historically compatible. Specifically, A one-unit increase in the electoral democracy score (v2x_polyarchy) is associated with a 33.1 percentage point increase in the probability of that polity being dynastic, according to a linear model probability design.
The significant positive relationship between electoral democracy and dynastic regimes suggests that higher levels of electoral democracy might coexist with dynastic regimes. However, the economic and corruption-related predictors, as well as the colonial history, do not show a significant impact on dynastic regimes in this model.
Is dynastic leadership more likely to produce less free and fair elections?
##
## Call:
## felm(formula = v2xel_frefair ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.67384 -0.12799 0.01546 0.14417 0.54483
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic 0.03782 0.01691 2.236 0.0558 .
## log_gdp_percap 0.15606 0.01179 13.235 1.01e-06 ***
## former_british_colony 0.03822 0.02775 1.378 0.2057
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.207 on 5156 degrees of freedom
## (1070 observations deleted due to missingness)
## Multiple R-squared(full model): 0.5883 Adjusted R-squared: 0.5826
## Multiple R-squared(proj model): 0.3188 Adjusted R-squared: 0.3094
## F-statistic(full model, *iid*):103.8 on 71 and 5156 DF, p-value: < 2.2e-16
## F-statistic(proj model): 93.54 on 3 and 8 DF, p-value: 1.437e-06
Consistent with our claim on compatibility with democracies, dynastic leadership is in fact not bad for free and fair elections.
##
## Call:
## felm(formula = v2xnp_regcorr ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.57432 -0.10974 0.00626 0.11851 0.64977
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic 0.00410 0.01152 0.356 0.731
## log_gdp_percap -0.17402 0.01795 -9.696 1.07e-05 ***
## former_british_colony -0.07153 0.08087 -0.884 0.402
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1885 on 5156 degrees of freedom
## (1070 observations deleted due to missingness)
## Multiple R-squared(full model): 0.6252 Adjusted R-squared: 0.62
## Multiple R-squared(proj model): 0.4126 Adjusted R-squared: 0.4045
## F-statistic(full model, *iid*):121.1 on 71 and 5156 DF, p-value: < 2.2e-16
## F-statistic(proj model): 171.2 on 3 and 8 DF, p-value: 1.352e-07
No significant relationship between dynastic leadership and more regime corruption (leaders using offices for private gain).
v2psbars
##
## Call:
## felm(formula = v2psbars ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3321 -0.5152 0.1301 0.7048 2.1829
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic 0.19612 0.10108 1.940 0.0883 .
## log_gdp_percap 0.36636 0.03923 9.339 1.41e-05 ***
## former_british_colony 0.35621 0.19274 1.848 0.1018
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9967 on 5156 degrees of freedom
## (1070 observations deleted due to missingness)
## Multiple R-squared(full model): 0.3604 Adjusted R-squared: 0.3516
## Multiple R-squared(proj model): 0.1212 Adjusted R-squared: 0.1091
## F-statistic(full model, *iid*):40.92 on 71 and 5156 DF, p-value: < 2.2e-16
## F-statistic(proj model): 40.21 on 3 and 8 DF, p-value: 3.589e-05
v2pscnslnl
##
## Call:
## felm(formula = v2pscnslnl ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.8105 -0.5681 -0.0269 0.5566 3.2184
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic 0.06496 0.08201 0.792 0.45115
## log_gdp_percap 0.55793 0.11580 4.818 0.00132 **
## former_british_colony 0.46326 0.35810 1.294 0.23189
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9798 on 5156 degrees of freedom
## (1070 observations deleted due to missingness)
## Multiple R-squared(full model): 0.4342 Adjusted R-squared: 0.4264
## Multiple R-squared(proj model): 0.2299 Adjusted R-squared: 0.2192
## F-statistic(full model, *iid*):55.73 on 71 and 5156 DF, p-value: < 2.2e-16
## F-statistic(proj model): 21.1 on 3 and 8 DF, p-value: 0.000372
v2regoppgroupssize
##
## Call:
## felm(formula = v2regoppgroupssize ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2050 -0.7602 -0.1631 0.5785 4.1010
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic -0.18365 0.09496 -1.934 0.0892 .
## log_gdp_percap -0.46545 0.16255 -2.863 0.0210 *
## former_british_colony 0.35694 0.35641 1.002 0.3459
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.133 on 5150 degrees of freedom
## (1076 observations deleted due to missingness)
## Multiple R-squared(full model): 0.4896 Adjusted R-squared: 0.4826
## Multiple R-squared(proj model): 0.1296 Adjusted R-squared: 0.1176
## F-statistic(full model, *iid*):69.58 on 71 and 5150 DF, p-value: < 2.2e-16
## F-statistic(proj model): 8.019 on 3 and 8 DF, p-value: 0.008535
v2clrspct
##
## Call:
## felm(formula = v2clrspct ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.08448 -0.56879 0.04993 0.57955 2.73352
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic 0.10061 0.12933 0.778 0.459
## log_gdp_percap 0.81523 0.09200 8.861 2.08e-05 ***
## former_british_colony 0.03894 0.17536 0.222 0.830
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9318 on 5156 degrees of freedom
## (1070 observations deleted due to missingness)
## Multiple R-squared(full model): 0.6293 Adjusted R-squared: 0.6242
## Multiple R-squared(proj model): 0.3786 Adjusted R-squared: 0.3701
## F-statistic(full model, *iid*):123.3 on 71 and 5156 DF, p-value: < 2.2e-16
## F-statistic(proj model): 31.17 on 3 and 8 DF, p-value: 9.187e-05
v2clstown
##
## Call:
## felm(formula = v2clstown ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0989 -0.3966 0.0391 0.4527 2.3472
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic -0.001786 0.103878 -0.017 0.986705
## log_gdp_percap 0.246720 0.048832 5.052 0.000986 ***
## former_british_colony -0.233124 0.132801 -1.755 0.117257
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7346 on 5156 degrees of freedom
## (1070 observations deleted due to missingness)
## Multiple R-squared(full model): 0.3814 Adjusted R-squared: 0.3729
## Multiple R-squared(proj model): 0.08967 Adjusted R-squared: 0.07713
## F-statistic(full model, *iid*):44.78 on 71 and 5156 DF, p-value: < 2.2e-16
## F-statistic(proj model): 15.27 on 3 and 8 DF, p-value: 0.001129
v2stcritrecadm (0-5 ordinal scale)
##
## Call:
## felm(formula = v2stcritrecadm ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.81146 -0.43161 0.05032 0.45785 2.33653
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic -0.02401 0.08217 -0.292 0.778
## log_gdp_percap 0.54410 0.06723 8.093 4.02e-05 ***
## former_british_colony 0.03808 0.14129 0.270 0.794
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7018 on 4932 degrees of freedom
## (1294 observations deleted due to missingness)
## Multiple R-squared(full model): 0.504 Adjusted R-squared: 0.4968
## Multiple R-squared(proj model): 0.3107 Adjusted R-squared: 0.3008
## F-statistic(full model, *iid*):70.57 on 71 and 4932 DF, p-value: < 2.2e-16
## F-statistic(proj model): 25.39 on 3 and 8 DF, p-value: 0.000193
v2mecenefm
##
## Call:
## felm(formula = v2mecenefm ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6924 -0.5247 0.0998 0.7345 2.5041
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic 0.27578 0.15150 1.820 0.10620
## log_gdp_percap 0.55111 0.15807 3.486 0.00824 **
## former_british_colony -0.06636 0.19675 -0.337 0.74459
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.1 on 5156 degrees of freedom
## (1070 observations deleted due to missingness)
## Multiple R-squared(full model): 0.4828 Adjusted R-squared: 0.4757
## Multiple R-squared(proj model): 0.175 Adjusted R-squared: 0.1636
## F-statistic(full model, *iid*):67.78 on 71 and 5156 DF, p-value: < 2.2e-16
## F-statistic(proj model): 33.84 on 3 and 8 DF, p-value: 6.802e-05
v2mecorrpt
##
## Call:
## felm(formula = v2mecorrpt ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2865 -0.4471 0.1229 0.6098 2.9626
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic 0.09019 0.09158 0.985 0.35356
## log_gdp_percap 0.78086 0.04160 18.771 6.7e-08 ***
## former_british_colony 0.57129 0.14759 3.871 0.00474 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9621 on 5156 degrees of freedom
## (1070 observations deleted due to missingness)
## Multiple R-squared(full model): 0.5773 Adjusted R-squared: 0.5715
## Multiple R-squared(proj model): 0.371 Adjusted R-squared: 0.3623
## F-statistic(full model, *iid*):99.19 on 71 and 5156 DF, p-value: < 2.2e-16
## F-statistic(proj model): 326.2 on 3 and 8 DF, p-value: 1.06e-08
v2pepwrses (0-4)
##
## Call:
## felm(formula = v2pepwrses ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4192 -0.4287 0.0367 0.4749 2.5528
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic -0.08597 0.07570 -1.136 0.2890
## log_gdp_percap 0.29374 0.12256 2.397 0.0434 *
## former_british_colony 0.27308 0.17732 1.540 0.1621
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8235 on 5156 degrees of freedom
## (1070 observations deleted due to missingness)
## Multiple R-squared(full model): 0.3895 Adjusted R-squared: 0.3811
## Multiple R-squared(proj model): 0.1072 Adjusted R-squared: 0.0949
## F-statistic(full model, *iid*):46.33 on 71 and 5156 DF, p-value: < 2.2e-16
## F-statistic(proj model): 2.235 on 3 and 8 DF, p-value: 0.1616
v2exl_legitideol
##
## Call:
## felm(formula = v2exl_legitideol ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2801 -0.7967 -0.1496 0.7556 3.9378
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic 0.08502 0.15461 0.550 0.597
## log_gdp_percap -0.10373 0.16277 -0.637 0.542
## former_british_colony 0.04574 0.36836 0.124 0.904
##
## Residual standard error: 1.093 on 5141 degrees of freedom
## (1085 observations deleted due to missingness)
## Multiple R-squared(full model): 0.3147 Adjusted R-squared: 0.3052
## Multiple R-squared(proj model): 0.007732 Adjusted R-squared: -0.005972
## F-statistic(full model, *iid*):33.25 on 71 and 5141 DF, p-value: < 2.2e-16
## F-statistic(proj model): 0.2154 on 3 and 8 DF, p-value: 0.883
v2exl_legitlead
##
## Call:
## felm(formula = v2exl_legitlead ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.5747 -0.7904 -0.1260 0.7437 4.9243
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic -0.06470 0.08817 -0.734 0.48401
## log_gdp_percap -0.38147 0.10369 -3.679 0.00623 **
## former_british_colony 0.13879 0.43630 0.318 0.75855
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.12 on 5154 degrees of freedom
## (1072 observations deleted due to missingness)
## Multiple R-squared(full model): 0.4004 Adjusted R-squared: 0.3922
## Multiple R-squared(proj model): 0.08519 Adjusted R-squared: 0.07259
## F-statistic(full model, *iid*):48.48 on 71 and 5154 DF, p-value: < 2.2e-16
## F-statistic(proj model): 6.469 on 3 and 8 DF, p-value: 0.01563
v2caviol
##
## Call:
## felm(formula = v2caviol ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9823 -0.8524 -0.1211 0.7355 4.0344
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic 0.08826 0.13575 0.650 0.53384
## log_gdp_percap -0.40461 0.09298 -4.352 0.00244 **
## former_british_colony -0.36684 0.11282 -3.252 0.01167 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.205 on 5136 degrees of freedom
## (1090 observations deleted due to missingness)
## Multiple R-squared(full model): 0.3206 Adjusted R-squared: 0.3112
## Multiple R-squared(proj model): 0.09551 Adjusted R-squared: 0.08301
## F-statistic(full model, *iid*):34.14 on 71 and 5136 DF, p-value: < 2.2e-16
## F-statistic(proj model): 38.95 on 3 and 8 DF, p-value: 4.042e-05
v2cademmob
##
## Call:
## felm(formula = v2cademmob ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2584 -0.7762 -0.1526 0.6529 4.5797
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic 0.19138 0.08992 2.128 0.06595 .
## log_gdp_percap -0.13713 0.16112 -0.851 0.41945
## former_british_colony -0.41391 0.08660 -4.780 0.00139 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.13 on 5097 degrees of freedom
## (1129 observations deleted due to missingness)
## Multiple R-squared(full model): 0.2111 Adjusted R-squared: 0.2002
## Multiple R-squared(proj model): 0.03491 Adjusted R-squared: 0.02147
## F-statistic(full model, *iid*):19.21 on 71 and 5097 DF, p-value: < 2.2e-16
## F-statistic(proj model): 9.33 on 3 and 8 DF, p-value: 0.005446