# Filter the data for the pitcher Josh Keevan
Brian_Foley_data <- data %>%
filter(Pitcher == "Keevan, Josh")
# Create a detailed table for each pitch
detailed_pitch_table <- Brian_Foley_data %>%
select(AutoPitchType, RelSpeed, SpinRate, SpinAxis, HorzBreak, InducedVertBreak, PitchCall, RelHeight, RelSide, Extension) %>%
rename(
ReleaseSpeed = RelSpeed,
Tilt = SpinAxis,
HorizontalBreak = HorzBreak,
InducedVerticalBreak = InducedVertBreak,
ReleaseHeight = RelHeight,
ReleaseSide = RelSide
) %>%
mutate(
ReleaseSpeed = round(ReleaseSpeed, 2),
SpinRate = round(SpinRate, 2),
Tilt = round(Tilt, 2),
HorizontalBreak = round(HorizontalBreak, 2),
InducedVerticalBreak = round(InducedVerticalBreak, 2),
ReleaseHeight = round(ReleaseHeight, 2),
ReleaseSide = round(ReleaseSide, 2),
Extension = round(Extension, 2),
ClockTilt = round((Tilt / 30) %% 12, 1) # Interpret Tilt as clock face
)
# Display the detailed table
knitr::kable(detailed_pitch_table, caption = "Detailed Pitch Table for Josh Keevan")
Detailed Pitch Table for Josh Keevan
Splitter |
84.36 |
2261.77 |
134.54 |
-16.45 |
17.63 |
StrikeCalled |
5.65 |
-0.44 |
5.79 |
4.5 |
Changeup |
76.01 |
1667.05 |
113.67 |
-13.10 |
7.28 |
FoulBallNotFieldable |
5.11 |
-0.95 |
6.60 |
3.8 |
Four-Seam |
85.67 |
2005.16 |
141.03 |
-13.16 |
17.52 |
BallCalled |
5.82 |
-0.35 |
5.59 |
4.7 |
Changeup |
83.10 |
2102.02 |
139.56 |
-15.38 |
19.57 |
FoulBallNotFieldable |
5.61 |
-0.69 |
5.64 |
4.7 |
Sinker |
85.31 |
2214.53 |
139.52 |
-14.81 |
18.67 |
FoulBallNotFieldable |
5.75 |
-0.42 |
5.78 |
4.7 |
Changeup |
75.87 |
1953.61 |
103.37 |
-19.71 |
6.26 |
BallCalled |
5.13 |
-0.86 |
5.69 |
3.4 |
Changeup |
77.53 |
1830.59 |
137.25 |
-5.75 |
7.66 |
BallCalled |
5.12 |
-1.00 |
5.89 |
4.6 |
Sinker |
85.31 |
2151.89 |
145.82 |
-13.64 |
21.39 |
StrikeSwinging |
5.70 |
-0.37 |
5.67 |
4.9 |
Changeup |
84.22 |
2287.55 |
130.86 |
-17.25 |
16.26 |
StrikeSwinging |
5.56 |
-0.46 |
5.89 |
4.4 |
Four-Seam |
85.91 |
2308.43 |
137.79 |
-14.94 |
17.79 |
BallCalled |
5.70 |
-0.41 |
5.67 |
4.6 |
Changeup |
84.11 |
2291.77 |
129.74 |
-18.27 |
16.59 |
FoulBallNotFieldable |
5.63 |
-0.24 |
5.62 |
4.3 |
Sinker |
85.15 |
2243.26 |
139.90 |
-13.60 |
17.60 |
FoulBallNotFieldable |
5.70 |
-0.36 |
5.98 |
4.7 |
Changeup |
77.16 |
1719.38 |
111.52 |
-18.40 |
8.81 |
StrikeCalled |
5.07 |
-0.79 |
6.28 |
3.7 |
Changeup |
83.68 |
2304.17 |
129.04 |
-19.16 |
16.96 |
BallCalled |
5.51 |
-0.36 |
5.90 |
4.3 |
Splitter |
84.93 |
2274.53 |
139.15 |
-15.89 |
19.78 |
BallCalled |
5.58 |
-0.34 |
6.06 |
4.6 |
Splitter |
83.11 |
2207.41 |
130.52 |
-18.30 |
17.10 |
BallCalled |
5.54 |
-0.40 |
6.04 |
4.4 |
Splitter |
83.97 |
2185.17 |
139.11 |
-15.98 |
19.88 |
BallCalled |
5.48 |
-0.48 |
5.92 |
4.6 |
Splitter |
83.97 |
2267.68 |
131.93 |
-17.99 |
17.59 |
FoulBallNotFieldable |
5.59 |
-0.57 |
5.83 |
4.4 |
Changeup |
84.06 |
2177.30 |
130.47 |
-17.26 |
16.02 |
InPlay |
5.54 |
-0.46 |
5.78 |
4.3 |
Changeup |
75.15 |
1726.61 |
113.41 |
-17.06 |
8.91 |
StrikeCalled |
5.07 |
-1.04 |
6.11 |
3.8 |
Changeup |
76.91 |
1836.87 |
112.52 |
-13.71 |
7.10 |
FoulBallNotFieldable |
5.19 |
-0.78 |
6.13 |
3.8 |
Changeup |
79.58 |
2148.35 |
137.59 |
-15.43 |
18.37 |
StrikeSwinging |
5.58 |
-0.40 |
6.07 |
4.6 |
# Calculate the total number of pitches
total_pitches <- nrow(detailed_pitch_table)
# Create a summary table
pitch_summary <- detailed_pitch_table %>%
group_by(AutoPitchType) %>%
summarise(
TotalPitches = n(),
Usage = sprintf("%.2f%%", n() / total_pitches * 100),
Balls = sum(PitchCall == "BallCalled"),
Strikes = sum(PitchCall != "BallCalled"), # Count everything not a ball as a strike
BallPercentage = sprintf('%.2f%%', Balls / TotalPitches * 100),
StrikePercentage = sprintf('%.2f%%', Strikes / TotalPitches * 100),
AvgVelocity = round(mean(ReleaseSpeed, na.rm = TRUE), 2),
AvgSpinRate = round(mean(SpinRate, na.rm = TRUE), 2),
AvgInducedVertBreak = round(mean(InducedVerticalBreak, na.rm = TRUE), 2),
AvgHorzBreak = round(mean(HorizontalBreak, na.rm = TRUE), 2),
AvgTilt = round(mean(Tilt, na.rm = TRUE), 2),
AvgClockTilt = round(mean(ClockTilt, na.rm = TRUE), 1), # Clock face interpretation
AvgReleaseHeight = round(mean(ReleaseHeight, na.rm = TRUE), 2),
AvgReleaseSide = round(mean(ReleaseSide, na.rm = TRUE), 2),
AvgExtension = round(mean(Extension, na.rm = TRUE), 2)
) %>%
select(AutoPitchType, Usage, everything())
# Display the total number of pitches
cat("Total number of pitches thrown: ", total_pitches, "\n")
## Total number of pitches thrown: 22
# Display the summary table
knitr::kable(pitch_summary, caption = "Summary Pitch Table for Josh Keevan")
Summary Pitch Table for Josh Keevan
Changeup |
54.55% |
12 |
3 |
9 |
25.00% |
75.00% |
79.78 |
2003.77 |
12.48 |
-15.87 |
124.08 |
4.1 |
5.34 |
-0.67 |
5.97 |
Four-Seam |
9.09% |
2 |
2 |
0 |
100.00% |
0.00% |
85.79 |
2156.80 |
17.66 |
-14.05 |
139.41 |
4.7 |
5.76 |
-0.38 |
5.63 |
Sinker |
13.64% |
3 |
0 |
3 |
0.00% |
100.00% |
85.26 |
2203.23 |
19.22 |
-14.02 |
141.75 |
4.8 |
5.72 |
-0.38 |
5.81 |
Splitter |
22.73% |
5 |
3 |
2 |
60.00% |
40.00% |
84.07 |
2239.31 |
18.40 |
-16.92 |
135.05 |
4.5 |
5.57 |
-0.45 |
5.93 |
# Calculate maximum fastball velocity
max_fb_velocity <- detailed_pitch_table %>%
filter(AutoPitchType %in% c("Four-Seam", "Two-Seam", "Sinker", "Cutter")) %>%
summarise(MaxFBVelocity = max(ReleaseSpeed, na.rm = TRUE)) %>%
pull(MaxFBVelocity)
# Display the maximum fastball velocity
cat("Josh Keevan maximum FB velocity: ", max_fb_velocity, "mph\n")
## Josh Keevan maximum FB velocity: 85.91 mph
# Prepare data for plotting pitch locations
pitch_location_data <- Brian_Foley_data %>%
select(AutoPitchType, PlateLocHeight, PlateLocSide, PitchCall) %>%
rename(
PitchHeight = PlateLocHeight,
PitchSide = PlateLocSide
) %>%
mutate(
SwingTake = ifelse(PitchCall %in% c("StrikeSwinging", "FoulBallNonSwinging", "FoulBallFieldable", "FoulBallNotFieldable", "InPlay"), "Swing", "Take"),
Chase = ifelse(SwingTake == "Swing" & (PitchSide < -0.75 | PitchSide > 0.75 | PitchHeight < 1.5 | PitchHeight > 3.5), "Chase", "Non-Chase")
)
# Create the scatter plot with specified strike zone boxes
ggplot(pitch_location_data, aes(x = PitchSide, y = PitchHeight, color = SwingTake, shape = Chase)) +
geom_point(size = 3) +
geom_rect(aes(xmin = -0.5, xmax = 0.5, ymin = 1.75, ymax = 3.25), fill = NA, color = "red", linetype = "solid", size = 1) +
geom_rect(aes(xmin = -0.75, xmax = 0.75, ymin = 1.5, ymax = 3.5), fill = NA, color = "black", linetype = "solid", size = 1) +
geom_rect(aes(xmin = -1.25, xmax = 1.25, ymin = 1.25, ymax = 3.75), fill = NA, color = "gray", linetype = "solid", size = 1) +
scale_x_continuous(limits = c(-2, 2)) +
scale_y_continuous(limits = c(0, 5)) +
coord_fixed(ratio = 1) +
labs(title = "Pitch Locations for Josh Keevan",
x = "Horizontal Location (feet)",
y = "Vertical Location (feet)",
color = "Swing/Take",
shape = "Chase") +
facet_wrap(~ AutoPitchType) +
theme_minimal() +
theme(
legend.position = "right",
panel.grid.major = element_line(color = "grey80"),
panel.grid.minor = element_line(color = "grey90"),
axis.text = element_text(color = "black"),
axis.title = element_text(color = "black"),
plot.title = element_text(color = "black"),
legend.background = element_rect(fill = "white", color = NA),
legend.key = element_rect(fill = "white", color = NA),
legend.text = element_text(color = "black"),
legend.title = element_text(color = "black")
)

# Create the scatter plot for horizontal and vertical breaks
ggplot(detailed_pitch_table, aes(x = HorizontalBreak, y = InducedVerticalBreak, color = AutoPitchType)) +
geom_point(size = 3) + # Increase point size
scale_x_continuous(limits = c(-25, 25)) + # Set horizontal limits to +/- 25 inches
scale_y_continuous(limits = c(-25, 25)) + # Set vertical limits to +/- 25 inches
labs(title = paste("Pitch Movement"),
x = "Horizontal Break (inches)",
y = "Induced Vertical Break (inches)",
color = "Pitch Type") +
theme_minimal() +
theme(
legend.position = "right",
panel.grid.major = element_line(color = "grey80"),
panel.grid.minor = element_line(color = "grey90"),
axis.text = element_text(color = "black"),
axis.title = element_text(color = "black"),
plot.title = element_text(color = "black"),
legend.background = element_rect(fill = "white", color = NA),
legend.key = element_rect(fill = "white", color = NA),
legend.text = element_text(color = "black"),
legend.title = element_text(color = "black")
)
