# if you haven't run this code before, you'll need to download the below packages first
# instructions on how to do this are included in the video
# but as a reminder, you use the packages tab to the right
library(psych) # for the describe() command
library(expss) # for the cross_cases() command
## Loading required package: maditr
##
## To modify variables or add new variables:
## let(mtcars, new_var = 42, new_var2 = new_var*hp) %>% head()
##
## Attaching package: 'maditr'
## The following object is masked from 'package:base':
##
## sort_by
# import our data for the lab
# for the homework, you will import the mydata.csv that we created in the Data Prep Lab
d2 <- read.csv(file="Data/mydata.csv", header = T)
table(d2$race_rc) #the table command shows us what the levels of this variable are, and how many participants in each level
##
## asian black hispanic multiracial nativeamer other
## 134 171 216 192 5 78
## white
## 1240
table(d2$age)
##
## 1 between 18 and 25 2 between 26 and 35 3 between 36 and 45 4 over 45
## 1871 111 37 17
hist(d2$moa_independence) #the hist command creates a histogram of the variable
hist(d2$moa_role)
hist(d2$moa_safety)
hist(d2$moa_maturity)
We analyzed the skew and kurtosis of our continuous variables and all were within the accepted range (-2/+2).(True for the lab!!! may not be true for hw!!!)
We analyzed the skew and kurtosis of our … and most were within the accepted range (-2/+2). However, some variables (list them in parentheses) were outside of the accepted range. For this analysis, we will use them anyway, but outside of this class this is bad practice.
describe(d2) #we use this to check univariate normality ... skew and kurtosis, (-2/+2)
## vars n mean sd median trimmed mad min max range skew
## race_rc* 1 2036 5.43 2.15 7.00 5.75 0.00 1.00 7 6.00 -0.87
## age* 2 2036 1.12 0.43 1.00 1.00 0.00 1.00 4 3.00 4.36
## moa_independence 3 2036 3.54 0.46 3.67 3.61 0.49 1.00 4 3.00 -1.49
## moa_role 4 2036 2.97 0.72 3.00 3.00 0.74 1.00 4 3.00 -0.33
## moa_safety 5 2036 3.21 0.65 3.25 3.27 0.74 1.00 4 3.00 -0.70
## moa_maturity 6 2036 3.61 0.43 3.67 3.67 0.49 1.33 4 2.67 -1.24
## kurtosis se
## race_rc* -0.89 0.05
## age* 20.52 0.01
## moa_independence 2.74 0.01
## moa_role -0.81 0.02
## moa_safety -0.09 0.01
## moa_maturity 1.74 0.01
cross_cases(d2, race_rc, age) #update variable2 and variable3 with your categorical variable names
|  age | ||||
|---|---|---|---|---|
| Â 1 between 18 and 25Â | Â 2 between 26 and 35Â | Â 3 between 36 and 45Â | Â 4 over 45Â | |
|  race_rc | ||||
|    asian | 129 | 4 | 1 | |
|    black | 137 | 27 | 3 | 4 |
|    hispanic | 192 | 18 | 6 | |
|    multiracial | 178 | 10 | 4 | |
|    nativeamer | 5 | |||
|    other | 70 | 5 | 3 | |
|    white | 1160 | 47 | 20 | 13 |
|    #Total cases | 1871 | 111 | 37 | 17 |
plot(d2$moa_independence, d2$mmoa_safety,
main="Scatterplot of moa_independence and moa_safety",
xlab = "moa_independence",
ylab = "mmoa_safety")
plot(d2$moa_role, d2$moa_maturity,
main="Scatterplot of moa_role and moa_maturity",
xlab = "moa_role",
ylab = "moa_maturity")
# boxplots use one categorical and one continuous variable
# make sure that you enter them in the right order!!!!!!!!
# categorical variable goes BEFORE the tilde
# continuous variable goes AFTER the tilde!
boxplot(data=d2, moa_safety~race_rc,
main="Boxplot of race_rc and moa_safety",
xlab = "race_rc",
ylab = "moa_safety")
boxplot(data=d2, moa_maturity~age,
main="Boxplot of age and moa_maturity",
xlab = "age",
ylab = "moa_maturity")