Multiple imputations of missing data in meta-analysis of diagnostic accuracy

Author

Lu Mao

\[ \def\TPi{\mbox{TP}_i} \def\FNi{\mbox{FN}_i} \def\FPi{\mbox{FP}_i} \def\TNi{\mbox{TN}_i} \]

Set-up and notation

Suppose there are \(m\) studies to evaluate the diagnostic accuracy of some test. For the \(i\)th study, let

  • \(\TPi\): number of true positives
  • \(\FNi\): number of false negatives
  • \(\FPi\): number of false positives
  • \(\TNi\): number of true negatives

These are the data we wish to collect for each \(i=1,\ldots, m\). Write \(N_i=\TPi+\FNi\), the number of cases; \(\bar N_i=\FPi + \TNi\), the number of non-cases; and \(n_i = N_i + \bar N_i\), the total sample size.

Let \(p_i\) denote the sensitivity, \(q_i\) the specificity, and \(\pi_i\) the prevalence of cases in the \(i\)th study. If there is no missing data, we can easily estimate them by \(\hat p_i=\TPi/N_i\), \(\hat q_i=\TNi/\bar N_i\), and \(\hat\pi_i=N_i/n_i\), respectively. We can also feed the entire data \((\TPi, \FNi, \FPi, \TNi)\) \((i=1,\ldots, m)\) into any standard software, e.g., mada (Sousa-Pinto 2022), for meta-analysis.

Methods

A motivating example

Consider the scenario where there are no non-cases in some study \(i\), so \(\FNi\), \(\TNi=\)NA. An example:

TP FN FP TN
Ahn 19 0 NA NA
Bock 5 5 2 17
Chung 5 0 48 114
Cordoba 21 1 NA NA
Espinosa 5 0 NA NA
Haliloglu 3 0 1 73
Langer 57 17 NA NA
Liberman 6 0 NA NA
Nishanova 26 4 NA NA
Obenauer 2 2 0 23
Oh 9 0 NA NA
Qian 50 1 63 92
Reyes 32 1 NA NA
Robbins 4 0 17 101
Taskin 47 0 NA NA
Taylor 21 0 NA NA
Yang 21 0 NA NA
Myers 33 0 NA NA
Taron 19 0 NA NA
Son 6 0 6 23
Jafari 31 0 NA NA
Wang 110 18 NA NA

We aim to fill in the missing values fof \(\FNi\) and \(\TNi\) by multiple imputations (MI).

References

Sousa-Pinto, Philipp Doebler with contributions from Bernardo. 2022. “Mada: Meta-Analysis of Diagnostic Accuracy.” https://CRAN.R-project.org/package=mada.