TP | FN | FP | TN | |
---|---|---|---|---|
Ahn | 19 | 0 | NA | NA |
Bock | 5 | 5 | 2 | 17 |
Chung | 5 | 0 | 48 | 114 |
Cordoba | 21 | 1 | NA | NA |
Espinosa | 5 | 0 | NA | NA |
Haliloglu | 3 | 0 | 1 | 73 |
Langer | 57 | 17 | NA | NA |
Liberman | 6 | 0 | NA | NA |
Nishanova | 26 | 4 | NA | NA |
Obenauer | 2 | 2 | 0 | 23 |
Oh | 9 | 0 | NA | NA |
Qian | 50 | 1 | 63 | 92 |
Reyes | 32 | 1 | NA | NA |
Robbins | 4 | 0 | 17 | 101 |
Taskin | 47 | 0 | NA | NA |
Taylor | 21 | 0 | NA | NA |
Yang | 21 | 0 | NA | NA |
Myers | 33 | 0 | NA | NA |
Taron | 19 | 0 | NA | NA |
Son | 6 | 0 | 6 | 23 |
Jafari | 31 | 0 | NA | NA |
Wang | 110 | 18 | NA | NA |
Multiple imputations of missing data in meta-analysis of diagnostic accuracy
Set-up and notation
Suppose there are
: number of true positives : number of false negatives : number of false positives : number of true negatives
These are the data we wish to collect for each
Let mada
(Sousa-Pinto 2022), for meta-analysis.
Methods
A motivating example
Consider the scenario where there are no non-cases in some study NA
. An example:
We aim to fill in the missing values fof
References
Sousa-Pinto, Philipp Doebler with contributions from Bernardo. 2022. “Mada: Meta-Analysis of Diagnostic Accuracy.” https://CRAN.R-project.org/package=mada.