Multiple imputations of missing data in meta-analysis of diagnostic accuracy

Author

Lu Mao

Set-up and notation

Suppose there are m studies to evaluate the diagnostic accuracy of some test. For the ith study, let

  • TPi: number of true positives
  • FNi: number of false negatives
  • FPi: number of false positives
  • TNi: number of true negatives

These are the data we wish to collect for each i=1,,m. Write Ni=TPi+FNi, the number of cases; N¯i=FPi+TNi, the number of non-cases; and ni=Ni+N¯i, the total sample size.

Let pi denote the sensitivity, qi the specificity, and πi the prevalence of cases in the ith study. If there is no missing data, we can easily estimate them by p^i=TPi/Ni, q^i=TNi/N¯i, and π^i=Ni/ni, respectively. We can also feed the entire data (TPi,FNi,FPi,TNi) (i=1,,m) into any standard software, e.g., mada (), for meta-analysis.

Methods

A motivating example

Consider the scenario where there are no non-cases in some study i, so FNi, TNi=NA. An example:

TP FN FP TN
Ahn 19 0 NA NA
Bock 5 5 2 17
Chung 5 0 48 114
Cordoba 21 1 NA NA
Espinosa 5 0 NA NA
Haliloglu 3 0 1 73
Langer 57 17 NA NA
Liberman 6 0 NA NA
Nishanova 26 4 NA NA
Obenauer 2 2 0 23
Oh 9 0 NA NA
Qian 50 1 63 92
Reyes 32 1 NA NA
Robbins 4 0 17 101
Taskin 47 0 NA NA
Taylor 21 0 NA NA
Yang 21 0 NA NA
Myers 33 0 NA NA
Taron 19 0 NA NA
Son 6 0 6 23
Jafari 31 0 NA NA
Wang 110 18 NA NA

We aim to fill in the missing values fof FNi and TNi by multiple imputations (MI).

References

Sousa-Pinto, Philipp Doebler with contributions from Bernardo. 2022. “Mada: Meta-Analysis of Diagnostic Accuracy.” https://CRAN.R-project.org/package=mada.