d <- read.csv('C:/Users/naruk/OneDrive/ドキュメント/data.csv')


library(DT)
library(ggplot2)
library(tidyr)
library(dplyr)
## 
##  次のパッケージを付け加えます: 'dplyr'
##  以下のオブジェクトは 'package:stats' からマスクされています:
## 
##     filter, lag
##  以下のオブジェクトは 'package:base' からマスクされています:
## 
##     intersect, setdiff, setequal, union
d <- data.frame(
  month = c(6.1, 7.2, 10.1, 15.4, 20.2, 22.4, 25.4, 27.1, 24.4, 18.7, 11.4, 8.9), 
  proceeds = c(417, 397, 543, 718, 921, 1108, 1292, 1387, 1079, 785, 574, 458)
)


fit <- lm(proceeds ~ poly(month, 2, raw = TRUE), data = d)

library(sjPlot)
## Learn more about sjPlot with 'browseVignettes("sjPlot")'.
tab_model(fit)
  proceeds
Predictors Estimates CI p
(Intercept) 351.65 135.13 – 568.18 0.005
month [1st degree] 2.01 -28.47 – 32.49 0.885
month [2nd degree] 1.31 0.39 – 2.22 0.010
Observations 12
R2 / R2 adjusted 0.982 / 0.978
COL <- c(rgb(255,   0,   0,  105, max = 255), 
         rgb(  0,   0, 255,  105, max = 255), 
         rgb(  0, 155,   0,  105, max = 255), 
         rgb(140, 140, 140,  105, max = 255), 
         rgb(180, 180, 180,  105, max = 255))
month.p <- seq(0, 1400, 30)

conf <- predict(fit, newdata = data.frame(month = month.p),
                interval = 'confidence')

pred <- predict(fit, newdata = data.frame(month = month.p),
                interval = 'prediction')
matplot (x = d$month, y = d$proceeds,
         type = 'p', pch = 16, col = COL[1],
         main = 'チョコレート', 
         xlab = '気温[℃]', ylab = '売上[円]')

gray.area <- function(x, lwr, upr, col)
{
  polygon(c(x, rev(x)), c(lwr, rev(upr)), col = col, border = NA)
}
gray.area(month.p, conf[, 'lwr'], conf[, 'upr'], col = COL[4]) 

gray.area(month.p, pred[, 'lwr'], pred[, 'upr'], col = COL[5])  

matlines(x = month.p, y = conf[, 'fit'], col = COL[2], lwd = 3)

legend('topright',
       pch = c(16, NA, NA, NA), col = COL[-3],
       lty = c(NA, 1, NA, NA), lwd = c(NA, 3, NA, NA), 
       fill = c(NA, NA, COL[4], COL[5]), border = F,
       legend = c('電力需要 [gw]', '予測値', '95%信頼区間', '95%予測区間'))