Rows: 810103 Columns: 24
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (17): StateAbbr, StateDesc, CityName, GeographicLevel, DataSource, Categ...
dbl (6): Year, Data_Value, Low_Confidence_Limit, High_Confidence_Limit, Cit...
num (1): PopulationCount
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
The GeoLocation variable has (lat, long) format
Split GeoLocation (lat, long) into two columns: lat and long
# A tibble: 6 × 25
Year StateAbbr StateDesc CityName GeographicLevel DataSource Category
<dbl> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 CA California Hawthorne Census Tract BRFSS Health Outcom…
2 2017 CA California Hawthorne City BRFSS Unhealthy Beh…
3 2017 CA California Hayward City BRFSS Health Outcom…
4 2017 CA California Hayward City BRFSS Unhealthy Beh…
5 2017 CA California Hemet City BRFSS Prevention
6 2017 CA California Indio Census Tract BRFSS Health Outcom…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
# DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
# Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
# Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
# PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
Filter the dataset
Remove the StateDesc that includes the United Sates, select Prevention as the category (of interest), filter for only measuring crude prevalence and select only 2017.
# A tibble: 6 × 18
Year StateAbbr StateDesc CityName GeographicLevel Category UniqueID Measure
<dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 MD Maryland Baltimore Census Tract Preventi… 2404000… "Chole…
2 2017 MD Maryland Baltimore Census Tract Preventi… 2404000… "Visit…
3 2017 MD Maryland Baltimore Census Tract Preventi… 2404000… "Visit…
4 2017 MD Maryland Baltimore Census Tract Preventi… 2404000… "Curre…
5 2017 MD Maryland Baltimore Census Tract Preventi… 2404000… "Curre…
6 2017 MD Maryland Baltimore Census Tract Preventi… 2404000… "Visit…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
# PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
The new dataset “Prevention” is a manageable dataset now.
For your assignment, work with the cleaned “Prevention” dataset
1. Once you run the above code, filter this dataset one more time for any particular subset.
Filter chunk here
# filter the subset for the population taking high blood pressure medicineBPMed_subset <- prevention %>%filter(MeasureId =="BPMED"&!is.na(Data_Value) &!is.na(long) &!is.na(lat) &!is.na(PopulationCount)) %>%#drop Na valuesfilter(StateAbbr !="AK"& StateAbbr !="HI") # drop Alsaka and Hawaii
# Convert PopulationCount to numeric BPMed_subset$PopulationCount <-as.numeric(as.character(BPMed_subset$PopulationCount))
Based on the GIS tutorial (Japan earthquakes), create one plot about something in your subsetted dataset.
First plot chunk here
library(viridis)
Loading required package: viridisLite
# Check the range of PopulationCount summary(BPMed_subset$PopulationCount)
Min. 1st Qu. Median Mean 3rd Qu. Max.
50 2474 3645 7423 4980 8175133
# Create ggplot visualizationggplot(BPMed_subset, aes(x = long, y = lat, colour = Data_Value, size = PopulationCount)) +geom_point() +scale_colour_viridis(name ="Population Count",alpha =1,begin =0,end =1,direction =1,option ="D") +scale_size_continuous(name ="Population",breaks =c(50000, 100000, 200000, 500000, 1000000, 1500000), # Define breaks for legendlabels =c("50k", "100k", "200k", "500k","1000k","1500k"), # Labels for legendrange =c(1, 10)) +# Adjust range for size scalinglabs(title ="Distribution of high blood pressure medication usage",x ="City Longitude",y ="City Latitude",colour ="Population Count",caption ="Note: Alaska and Hawaii States are dropped from the dataset.") +theme_bw() +theme(axis.text.x =element_text(size =10),plot.title =element_text(size =12, face ="bold", hjust =0.5))
3. Now create a map of your subsetted dataset.
First map chunk here
library(rnaturalearth)# Set up the base map layerworld_map <-map_data("world")
ggplot() +geom_polygon(data = world_map, aes(x = long, y = lat, group = group), fill ="lightgrey", color ="white" ) +geom_point(data = BPMed_subset, aes(x = long, y = lat, color = Data_Value, size = PopulationCount) ) +scale_color_gradient2(low ="white", high ="red", name ="BPMed Rate") +scale_size_continuous(name ="Population Count",breaks =c(50000, 100000, 200000, 500000, 1000000, 1500000), labels =c("50k", "100k", "200k", "500k","1000k","1500k"),range =c(1, 10)) +# Adjust range for size scalinglabs(title ="Distribution of high blood pressure medication usuage",x ="Longitude", y ="Latitude" ) +xlim(min(BPMed_subset$long, na.rm =TRUE) -5, max(BPMed_subset$long, na.rm =TRUE) +5 ) +ylim(min(BPMed_subset$lat, na.rm =TRUE) -5, max(BPMed_subset$lat, na.rm =TRUE) +5 ) +# Themes and aestheticstheme_minimal() +theme(legend.position ="right", legend.title =element_text(size =10), plot.title =element_text(size =12, face ="bold", hjust =0.5) ) +coord_fixed(1.3)
5. Write a paragraph
I developed three visualizations to analyze the prevalence of high blood pressure medication usage across various locations in the contiguous United States. Initially, I filtered the dataset to focus on populations using medication for high blood pressure, excluding Alaska and Hawaii due to their geographic distance and differing scales of longitude and latitude, which could distort static map visualizations. The first visualization employs ggplot to display cities across the USA, along with their latitude and longitude. The second visualization uses a static world map to depict the distribution of high blood pressure treatment rates. Using a color gradient, this map visually represents varying levels of treatment intensity, facilitating the identification of geographic areas with distinct medication usage rates. Additionally, I utilized leaflet to create an interactive map that enhances functionality by allowing users to click on cities. This interactive feature triggers popups displaying each city’s name alongside its specific rate of high blood pressure treatment, facilitating detailed exploration and analysis of regional health indicators.