1 Desempenhos de alunos de CFCs

1.1 Pacotes

library(lavaan)
library(semPlot)
library(semTools)
library(foreign)
library(tidyverse)
library(car)
library(dplyr)
library(rio)
library(ggplot2)
library(gridExtra)
library(ifaTools)
library(psych)
library(ggcorrplot)
library(polycor)

2 Dataset

CFC_data = import(file = "CFCsFull.csv")
CFC_data$V1 = NULL
names(CFC_data)
##  [1] "Estado" "Q1A"    "Q2A"    "Q3A"    "Q4A"    "Q5A"    "Q6A"    "Q7A"   
##  [9] "Q8A"    "Q9A"

2.1 View

CFC_data = CFC_data %>% mutate_at(vars(starts_with("Q")), ordered)
head(CFC_data)

2.2 Descrição

summary(CFC_data[, 2:10])
##  Q1A     Q2A     Q3A     Q4A     Q5A     Q6A     Q7A     Q8A     Q9A    
##  1:259   1:260   1:285   1:158   1:124   1:214   1:107   1:111   1: 89  
##  2:173   2:177   2:171   2:160   2:206   2:153   2:207   2:197   2:174  
##  3:103   3: 99   3: 89   3:139   3:128   3:109   3:167   3:168   3:178  
##  4:102   4:101   4: 92   4:180   4:179   4:161   4:156   4:161   4:196

3 Recomendação

O IDEAL É TER 5 PESSOAS POR ITEM DA ESCALA

Obtendo dados por estado

CFC_data_RS = CFC_data %>% dplyr::filter(Estado=="RS")
CFC_data_SP = CFC_data %>% dplyr::filter(Estado=="SP")
CFC_data_PR = CFC_data %>% dplyr::filter(Estado=="PR")

3.1 Dados com > 300 PESSOAS POR ESTADO

CFC_data_3UFs = rbind(CFC_data_PR, CFC_data_RS, CFC_data_SP)

4 Filtro

CFC_data_3UFs_N = CFC_data_3UFs %>% 
  dplyr::select(Q1A:Q9A) %>% 
  dplyr::select(ends_with('A')) %>% 
  mutate_all(~as.character(.) %>% 
               as.numeric())

4.1 Densidades dos itens

plot(density(CFC_data_3UFs_N$Q1A),
      lwd = 2,
      col = "#f72585")
lines(density(CFC_data_3UFs_N$Q2A),
      lwd = 2,
      col = "#b5179e")
lines(density(CFC_data_3UFs_N$Q3A),
      lwd = 2,
      col = "#7209b7")
lines(density(CFC_data_3UFs_N$Q4A),
      lwd = 2,
      col = "#560bad")
lines(density(CFC_data_3UFs_N$Q5A),
      lwd = 2,
      col = "#480ca8")
lines(density(CFC_data_3UFs_N$Q6A),
      lwd = 2,
      col = "#3f37c9")
lines(density(CFC_data_3UFs_N$Q7A),
      lwd = 2,
      col = "#4361ee")
lines(density(CFC_data_3UFs_N$Q8A),
      lwd = 2,
      col = "#4895ef")
lines(density(CFC_data_3UFs_N$Q9A),
      lwd = 2,
      col = "#4cc9f0")

5 CALCULO DE MATRIZ POLICORICA

CFC_EFA_MATRIZ = psych::mixedCor(CFC_data_3UFs_N, c=NULL, smooth = TRUE, p=1:9)
CFC_EFA_MATRIZ_POLI =  CFC_EFA_MATRIZ$rho

6 PLOTAGEM DE MATRIZ DE CORRELAÇÃO POLICORICA

ggcorrplot(CFC_EFA_MATRIZ_POLI) + annotate("text", x =3, y = 7, label = "BORAAAAAA", 
    color="BLACK", size=10, angle=45)+ annotate("text", x = 5, y = 3, label = "CARALEO", 
      color="BLACK", size=10, angle=45)

7 QUÃO FASTORÁVEL É ESTE BANCO

Critério 1: bartlett test p < 0.05

cortest.bartlett(CFC_EFA_MATRIZ_POLI)
## $chisq
## [1] 560.6496
## 
## $p.value
## [1] 2.201549e-95
## 
## $df
## [1] 36

Critério 2: Kaiser-Meyer-Olkin factor adequacy - MSA próximo de 1 (0 a 1)

KMO(CFC_EFA_MATRIZ_POLI)
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = CFC_EFA_MATRIZ_POLI)
## Overall MSA =  0.86
## MSA for each item = 
##  Q1A  Q2A  Q3A  Q4A  Q5A  Q6A  Q7A  Q8A  Q9A 
## 0.88 0.84 0.89 0.79 0.92 0.82 0.87 0.89 0.86

8 EXPLORANDO O NÚMERO DE FATORES COM O SCREE PLOT plot

O “eigen values” indica o quanto de informação eu posso extrair do fator em questão

fa.parallel(CFC_EFA_MATRIZ_POLI, n.obs = nrow(CFC_data_3UFs_N), fa = "fa", fm = "ml")

## Parallel analysis suggests that the number of factors =  3  and the number of components =  NA

9 EFA

9.1 EFA BASEADO EM RESULTADOS DA ANALISE PARALELA

“oblimin” = Rotação Obliqua: (Permite que todos fatores carreguem informação sobre os itens, no caso de rotações ortogonais, teríamos apenas um fator por item).

rotate: “none”, “varimax”, “quartimax”, “bentlerT”, “equamax”, “varimin”, “geominT” and “bifactor” are orthogonal rotations. “Promax”, “promax”, “oblimin”, “simplimax”, “bentlerQ,”geominQ” and “biquartimin” and “cluster” are possible oblique transformations of the solution. The default is to do a oblimin transformation, although versions prior to 2009 defaulted to varimax. SPSS seems to do a Kaiser normalization before doing Promax, this is done here by the call to “promax” which does the normalization before calling Promax in GPArotation.

“ml” = maximum likelihood factor analysis:

Factoring method fm=“minres” will do a minimum residual as will fm=“uls”. Both of these use a first derivative. fm=“ols” differs very slightly from “minres” in that it minimizes the entire residual matrix using an OLS procedure but uses the empirical first derivative. This will be slower. fm=“wls” will do a weighted least squares (WLS) solution, fm=“gls” does a generalized weighted least squares (GLS), fm=“pa” will do the principal factor solution, fm=“ml” will do a maximum likelihood factor analysis. fm=“minchi” will minimize the sample size weighted chi square when treating pairwise correlations with different number of subjects per pair. fm =“minrank” will do a minimum rank factor analysis. “old.min” will do minimal residual the way it was done prior to April, 2017 (see discussion below). fm=“alpha” will do alpha factor analysis as described in Kaiser and Coffey (1965)

CFC_EFA_4F = psych::fa(CFC_EFA_MATRIZ_POLI, nfactors = 4, fm = "ml",
                        rotate = "oblimin", n.obs = nrow(CFC_data_3UFs_N))
CFC_EFA_4F
## Factor Analysis using method =  ml
## Call: psych::fa(r = CFC_EFA_MATRIZ_POLI, nfactors = 4, n.obs = nrow(CFC_data_3UFs_N), 
##     rotate = "oblimin", fm = "ml")
## Standardized loadings (pattern matrix) based upon correlation matrix
##       ML3   ML2   ML4   ML1   h2    u2 com
## Q1A  0.00  0.01  0.01  0.99 1.00 0.005 1.0
## Q2A -0.01  0.02  0.93  0.00 0.88 0.122 1.0
## Q3A  0.14 -0.02  0.43  0.19 0.44 0.564 1.6
## Q4A -0.04  0.97 -0.06  0.03 0.88 0.120 1.0
## Q5A  0.13  0.71  0.01  0.05 0.66 0.339 1.1
## Q6A  0.01  0.88  0.09 -0.04 0.82 0.177 1.0
## Q7A  0.86  0.01  0.04 -0.03 0.76 0.239 1.0
## Q8A  0.82 -0.04  0.01  0.04 0.67 0.332 1.0
## Q9A  0.89  0.04 -0.04  0.00 0.81 0.195 1.0
## 
##                        ML3  ML2  ML4  ML1
## SS loadings           2.33 2.29 1.18 1.12
## Proportion Var        0.26 0.25 0.13 0.12
## Cumulative Var        0.26 0.51 0.64 0.77
## Proportion Explained  0.34 0.33 0.17 0.16
## Cumulative Proportion 0.34 0.67 0.84 1.00
## 
##  With factor correlations of 
##      ML3  ML2  ML4  ML1
## ML3 1.00 0.56 0.49 0.51
## ML2 0.56 1.00 0.43 0.46
## ML4 0.49 0.43 1.00 0.70
## ML1 0.51 0.46 0.70 1.00
## 
## Mean item complexity =  1.1
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  36  with the objective function =  5.89 with Chi Square =  3724.25
## df of  the model are 6  and the objective function was  0.02 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.02 
## 
## The harmonic n.obs is  637 with the empirical chi square  2.3  with prob <  0.89 
## The total n.obs was  637  with Likelihood Chi Square =  11.61  with prob <  0.071 
## 
## Tucker Lewis Index of factoring reliability =  0.991
## RMSEA index =  0.038  and the 90 % confidence intervals are  0 0.071
## BIC =  -27.13
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    ML3  ML2  ML4  ML1
## Correlation of (regression) scores with factors   0.95 0.97 0.95 1.00
## Multiple R square of scores with factors          0.91 0.93 0.90 0.99
## Minimum correlation of possible factor scores     0.82 0.87 0.79 0.99
fa.diagram(CFC_EFA_4F)

Tucker Lewis Index of factoring reliability = 1 | TLI > 0.9 = Bom
RMSEA index = 0 and the 90 % confidence intervals are 0 0.019 | RMSEA < 0.08 = Bom

9.2 EFA BASEADO EM 3 FATORES

CFC_EFA_3F = psych::fa(CFC_EFA_MATRIZ_POLI, nfactors = 3, fm = "ml",
                        rotate = "oblimin", n.obs = nrow(CFC_data_3UFs_N))
CFC_EFA_3F
## Factor Analysis using method =  ml
## Call: psych::fa(r = CFC_EFA_MATRIZ_POLI, nfactors = 3, n.obs = nrow(CFC_data_3UFs_N), 
##     rotate = "oblimin", fm = "ml")
## Standardized loadings (pattern matrix) based upon correlation matrix
##       ML1   ML2   ML3   h2   u2 com
## Q1A  0.08  0.05  0.71 0.62 0.38 1.0
## Q2A  0.00 -0.05  0.88 0.72 0.28 1.0
## Q3A -0.05  0.06  0.69 0.50 0.50 1.0
## Q4A  0.98 -0.03 -0.04 0.88 0.12 1.0
## Q5A  0.71  0.13  0.04 0.66 0.34 1.1
## Q6A  0.87  0.00  0.06 0.81 0.19 1.0
## Q7A  0.00  0.86  0.02 0.76 0.24 1.0
## Q8A -0.04  0.82  0.04 0.67 0.33 1.0
## Q9A  0.04  0.89 -0.04 0.81 0.19 1.0
## 
##                        ML1  ML2  ML3
## SS loadings           2.30 2.30 1.83
## Proportion Var        0.26 0.26 0.20
## Cumulative Var        0.26 0.51 0.71
## Proportion Explained  0.36 0.36 0.28
## Cumulative Proportion 0.36 0.72 1.00
## 
##  With factor correlations of 
##      ML1  ML2  ML3
## ML1 1.00 0.56 0.51
## ML2 0.56 1.00 0.59
## ML3 0.51 0.59 1.00
## 
## Mean item complexity =  1
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  36  with the objective function =  5.89 with Chi Square =  3724.25
## df of  the model are 12  and the objective function was  0.04 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.02 
## 
## The harmonic n.obs is  637 with the empirical chi square  4.14  with prob <  0.98 
## The total n.obs was  637  with Likelihood Chi Square =  24.32  with prob <  0.018 
## 
## Tucker Lewis Index of factoring reliability =  0.99
## RMSEA index =  0.04  and the 90 % confidence intervals are  0.016 0.063
## BIC =  -53.16
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    ML1  ML2  ML3
## Correlation of (regression) scores with factors   0.97 0.95 0.92
## Multiple R square of scores with factors          0.94 0.91 0.85
## Minimum correlation of possible factor scores     0.87 0.82 0.70

Tucker Lewis Index of factoring reliability = 0.998 | TLI > 0.9 = Bom
RMSEA index = 0.018 and the 90 % confidence intervals are 0.009 0.027 | RMSEA < 0.08 = Bom

9.3 Interpretação dos dados

Visualizando a matriz de cargas acima, o item Q4A é explicado majoritariamente pelo Fator ML1 \(0,96^2=92.16%\) enquanto o item Q9A é explicado majoritariamente pelo Fator ML2 0.88 \(0,88^2=77.44%\).

Standardized loadings (pattern matrix) based upon correlation matrix
ML1 ML2 ML3 h2 u2 com
Q1A 0.03 0.05 0.73 0.61 0.39 1
Q2A 0.00 -0.05 0.86 0.70 0.30 1
Q3A -0.01 0.04 0.66 0.47 0.53 1
Q4A 0.96 -0.03 -0.02 0.86 0.14 1
Q5A 0.77 0.06 0.02 0.68 0.32 1
Q6A 0.87 0.01 0.03 0.79 0.21 1
Q7A 0.03 0.86 -0.01 0.75 0.25 1
Q8A -0.07 0.83 0.06 0.68 0.32 1
Q9A 0.05 0.88 -0.02 0.80 0.20

Os Fatores ML1,2,3…São correlacionados entre si (arcos) e eles explicam (carregam) como os itens (Q1A, Q2A…) são endossados. Nesse caso o Fator ML1 está carragando informação para explicar Q4A, Q6A, Q5A. Assim temos ML1 - 0.9 -> Q6A; ou seja, \(0.9^2 = 0.81\). Dessa maneira ML1 esplica 81% da variabilidade de Q6A.

fa.diagram(CFC_EFA_3F)

9.4 EFA DE 5 FATORES

Baseado na linha tracejada o scree plot sugere 5 fatores

CFC_EFA_5F = psych::fa(CFC_EFA_MATRIZ_POLI, nfactors = 5, fm = "ml",
                        rotate = "oblimin", n.obs = nrow(CFC_data_3UFs_N))
CFC_EFA_5F
## Factor Analysis using method =  ml
## Call: psych::fa(r = CFC_EFA_MATRIZ_POLI, nfactors = 5, n.obs = nrow(CFC_data_3UFs_N), 
##     rotate = "oblimin", fm = "ml")
## Standardized loadings (pattern matrix) based upon correlation matrix
##       ML4   ML1   ML3   ML5   ML2   h2    u2 com
## Q1A  0.01  0.00  0.00  0.01  0.99 1.00 0.005 1.0
## Q2A  0.02 -0.02  0.01  0.87  0.01 0.78 0.218 1.0
## Q3A -0.02  0.11 -0.01  0.54  0.12 0.46 0.536 1.2
## Q4A  0.97 -0.02 -0.01 -0.07  0.04 0.88 0.117 1.0
## Q5A  0.71  0.08  0.06  0.00  0.05 0.66 0.339 1.1
## Q6A  0.88  0.01  0.00  0.11 -0.06 0.82 0.176 1.0
## Q7A  0.01  0.00  0.99  0.00  0.00 1.00 0.005 1.0
## Q8A  0.00  0.41  0.34  0.05  0.07 0.60 0.402 2.0
## Q9A  0.02  0.99  0.00  0.00  0.00 1.00 0.005 1.0
## 
##                        ML4  ML1  ML3  ML5  ML2
## SS loadings           2.29 1.36 1.25 1.20 1.10
## Proportion Var        0.25 0.15 0.14 0.13 0.12
## Cumulative Var        0.25 0.41 0.54 0.68 0.80
## Proportion Explained  0.32 0.19 0.17 0.17 0.15
## Cumulative Proportion 0.32 0.51 0.68 0.85 1.00
## 
##  With factor correlations of 
##      ML4  ML1  ML3  ML5  ML2
## ML4 1.00 0.51 0.48 0.45 0.46
## ML1 0.51 1.00 0.78 0.45 0.45
## ML3 0.48 0.78 1.00 0.47 0.44
## ML5 0.45 0.45 0.47 1.00 0.74
## ML2 0.46 0.45 0.44 0.74 1.00
## 
## Mean item complexity =  1.1
## Test of the hypothesis that 5 factors are sufficient.
## 
## df null model =  36  with the objective function =  5.89 with Chi Square =  3724.25
## df of  the model are 1  and the objective function was  0.01 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic n.obs is  637 with the empirical chi square  1.34  with prob <  0.25 
## The total n.obs was  637  with Likelihood Chi Square =  5.25  with prob <  0.022 
## 
## Tucker Lewis Index of factoring reliability =  0.958
## RMSEA index =  0.082  and the 90 % confidence intervals are  0.025 0.156
## BIC =  -1.2
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    ML4  ML1  ML3  ML5  ML2
## Correlation of (regression) scores with factors   0.97 1.00 1.00 0.92 1.00
## Multiple R square of scores with factors          0.93 0.99 0.99 0.85 0.99
## Minimum correlation of possible factor scores     0.87 0.99 0.99 0.69 0.99
fa.diagram(CFC_EFA_5F)

Tucker Lewis Index of factoring reliability = 0.998 | TLI > 0.9 = Bom
RMSEA index = 0.016 and the 90 % confidence intervals are 0 0.048 | RMSEA < 0.08 = Bom

9.5 EFA BI FATORIAL

Com fatores não correlacionados. Esta função entrega o valor de Ômega, que é como um Coeficiente Alfa de Cronbach (α ).

omega(CFC_EFA_MATRIZ_POLI, nfactors = 3, fm = "wls", rotate = "oblimin", 
      n.obs = nrow(CFC_data_3UFs_N), title = "EFA CFC BiFactor")

## EFA CFC BiFactor 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.89 
## G.6:                   0.92 
## Omega Hierarchical:    0.75 
## Omega H asymptotic:    0.79 
## Omega Total            0.94 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##        g   F1*   F2*   F3*   h2   h2   u2   p2  com
## Q1A 0.62              0.49 0.63 0.63 0.37 0.61 1.92
## Q2A 0.60              0.59 0.71 0.71 0.29 0.51 2.00
## Q3A 0.52              0.48 0.50 0.50 0.50 0.54 2.00
## Q4A 0.62  0.70             0.88 0.88 0.12 0.44 1.98
## Q5A 0.62  0.52             0.66 0.66 0.34 0.59 1.97
## Q6A 0.65  0.63             0.82 0.82 0.18 0.51 2.01
## Q7A 0.71        0.51       0.76 0.76 0.24 0.66 1.82
## Q8A 0.66        0.49       0.67 0.67 0.33 0.64 1.86
## Q9A 0.72        0.53       0.81 0.81 0.19 0.65 1.84
## 
## With Sums of squares  of:
##    g  F1*  F2*  F3*   h2 
## 3.67 1.16 0.78 0.82 4.70 
## 
## general/max  0.78   max/min =   5.99
## mean percent general =  0.57    with sd =  0.08 and cv of  0.13 
## Explained Common Variance of the general factor =  0.57 
## 
## The degrees of freedom are 12  and the fit is  0.04 
## The number of observations was  637  with Chi Square =  24.79  with prob <  0.016
## The root mean square of the residuals is  0.01 
## The df corrected root mean square of the residuals is  0.02
## RMSEA index =  0.041  and the 10 % confidence intervals are  0.017 0.064
## BIC =  -52.69
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 27  and the fit is  2.14 
## The number of observations was  637  with Chi Square =  1353.99  with prob <  1.4e-268
## The root mean square of the residuals is  0.16 
## The df corrected root mean square of the residuals is  0.18 
## 
## RMSEA index =  0.278  and the 10 % confidence intervals are  0.265 0.291
## BIC =  1179.66 
## 
## Measures of factor score adequacy             
##                                                  g  F1*  F2*  F3*
## Correlation of scores with factors            0.87 0.83 0.71 0.75
## Multiple R square of scores with factors      0.75 0.70 0.50 0.56
## Minimum correlation of factor score estimates 0.51 0.39 0.00 0.11
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*  F2*  F3*
## Omega total for total scores and subscales    0.94 0.92 0.90 0.82
## Omega general for total scores and subscales  0.75 0.47 0.58 0.46
## Omega group for total scores and subscales    0.19 0.45 0.31 0.37

Aqui podemos ler “With Sums of squares of” como “With eigenvalues of”. Dessa maneira o fator geral “g”, explica muito mais que os fatores F1, F2 e F3 que correspondem aos fatorews ML1, ML2 e ML3.

With Sums of squares of:
g F1* F2* F3*
3.80 1.15 0.70 0.69 4.56

Além disso, como os fatores são não correlacionados, podemos perceber que a matriz acima é uma matriz esparsa, com cada item possuindo a carga de um fator apenas.

10 DIRETO DOS DADOS

10.1 Scree ploty

fa.parallel(CFC_data_3UFs_N, fa="fa", fm = "ml")

## Parallel analysis suggests that the number of factors =  3  and the number of components =  NA
CFC_EFA_3F = psych::fa(CFC_data_3UFs_N, nfactors = 3, fm = "ml", rotate = "oblimin")
CFC_EFA_3F
## Factor Analysis using method =  ml
## Call: psych::fa(r = CFC_data_3UFs_N, nfactors = 3, rotate = "oblimin", 
##     fm = "ml")
## Standardized loadings (pattern matrix) based upon correlation matrix
##       ML1   ML2   ML3   h2   u2 com
## Q1A  0.07  0.06  0.66 0.53 0.47 1.0
## Q2A  0.00 -0.05  0.81 0.62 0.38 1.0
## Q3A -0.05  0.05  0.64 0.41 0.59 1.0
## Q4A  0.93 -0.03 -0.04 0.81 0.19 1.0
## Q5A  0.67  0.12  0.04 0.58 0.42 1.1
## Q6A  0.83  0.00  0.06 0.73 0.27 1.0
## Q7A  0.00  0.82  0.01 0.68 0.32 1.0
## Q8A -0.04  0.76  0.06 0.60 0.40 1.0
## Q9A  0.04  0.85 -0.04 0.72 0.28 1.0
## 
##                        ML1  ML2  ML3
## SS loadings           2.07 2.06 1.56
## Proportion Var        0.23 0.23 0.17
## Cumulative Var        0.23 0.46 0.63
## Proportion Explained  0.36 0.36 0.27
## Cumulative Proportion 0.36 0.73 1.00
## 
##  With factor correlations of 
##      ML1  ML2  ML3
## ML1 1.00 0.54 0.48
## ML2 0.54 1.00 0.56
## ML3 0.48 0.56 1.00
## 
## Mean item complexity =  1
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  36  with the objective function =  4.31 with Chi Square =  2726.97
## df of  the model are 12  and the objective function was  0.02 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.02 
## 
## The harmonic n.obs is  637 with the empirical chi square  3.61  with prob <  0.99 
## The total n.obs was  637  with Likelihood Chi Square =  12.82  with prob <  0.38 
## 
## Tucker Lewis Index of factoring reliability =  0.999
## RMSEA index =  0.01  and the 90 % confidence intervals are  0 0.042
## BIC =  -64.66
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    ML1  ML2  ML3
## Correlation of (regression) scores with factors   0.95 0.93 0.89
## Multiple R square of scores with factors          0.90 0.87 0.79
## Minimum correlation of possible factor scores     0.79 0.74 0.59

Utilizando a base direta, sem processamento o RMSEA melhora. No entanto, com os dados não tratados (sem a matriz) não é possível gerar informações como o ggcorrplot.

Tucker Lewis Index of factoring reliability = 0.999 | TLI > 0.9 = Bom
RMSEA index = 0.008 and the 90 % confidence intervals are 0 0.019 | RMSEA < 0.08 = Bom

fa.diagram(CFC_EFA_3F)

11 ANÁLISE DE REDE

library(EGAnet)
CFC_data_3UFs_NET = CFC_data_3UFs %>% 
  dplyr::select(Q1A:Q9A) %>% 
  dplyr::select(ends_with('A'))
CFC_data_3UFs_NET_OUT = EGA(CFC_data_3UFs_NET, model = "glasso", plot.EGA = FALSE)
CFC_data_3UFs_NET_OUT
## Number of communities: 3 
## 
## Q1A Q2A Q3A Q4A Q5A Q6A Q7A Q8A Q9A 
##   2   2   2   1   1   1   3   3   3 
## 
## Methods:
##                                                          
## Correlations =          auto (from qgraph)               
## Model =                 glasso                           
## Algorithm =             walktrap                         
## Unidimensional Method = louvain with consensus clustering
par(mfrow=c(1,1))
plot(CFC_data_3UFs_NET_OUT, label.cex=2)

11.1 CFA DA REDE

CFA_CFC_NET_OUT = CFA(ega.obj = CFC_data_3UFs_NET_OUT, data = CFC_data_3UFs_NET, estimator = "WLSMV",
                       plot.CFA = FALSE)
## [1] "Q4A" "Q5A" "Q6A"
## [1] "Q1A" "Q2A" "Q3A"
## [1] "Q7A" "Q8A" "Q9A"
CFA_CFC_NET_OUT = CFA(ega.obj = CFC_data_3UFs_NET_OUT, data = CFC_data_3UFs_NET, estimator = "WLSMV",
                       plot.CFA = TRUE)
## [1] "Q4A" "Q5A" "Q6A"
## [1] "Q1A" "Q2A" "Q3A"
## [1] "Q7A" "Q8A" "Q9A"

summary(CFA_CFC_NET_OUT)
##              Length Class          Mode     
## fit          1      lavaan         S4       
## summary      3      summaryDefault character
## fit.measures 5      lavaan.vector  numeric

12 SEM

summary.factor(CFC_data$Q1A)
##   1   2   3   4 
## 259 173 103 102

12.1 Modelo

Cada espectro ou constructo (Habilidade, Depressão e CNH) vai explicar cada item (cada “X” explica ois vários “Ys”). Dessa forma os constructos (variáveis latentes) são correlacionados com os itens para explicar a variancia dos itens associados ao fator. Portanto, a direcionalidade é do fator para os itens.

  • WLSMV: para itens ordinais (não contínuos)
modelo = '
Habilidade =~  Q1A + Q2A + Q3A  
Experiencia =~ Q4A +  Q5A + Q6A  
CNH =~ Q7A + Q8A + Q9A 
'

12.2 CFA

AJUSTE_CFC_COR = cfa(modelo, data = CFC_data, std.lv=T, estimator = "WLSMV", ordered=colnames(CFC_data), )
summary(AJUSTE_CFC_COR, fit.measures=T, standardized=TRUE)
## lavaan 0.6.17 ended normally after 20 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        39
## 
##   Number of observations                           637
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                26.472      55.569
##   Degrees of freedom                                24          24
##   P-value (Chi-square)                           0.330       0.000
##   Scaling correction factor                                  0.515
##   Shift parameter                                            4.185
##     simple second-order correction                                
## 
## Model Test Baseline Model:
## 
##   Test statistic                             13564.460    6826.589
##   Degrees of freedom                                36          36
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.992
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       0.995
##   Tucker-Lewis Index (TLI)                       1.000       0.993
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.989
##   Robust Tucker-Lewis Index (TLI)                            0.984
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.013       0.045
##   90 Percent confidence interval - lower         0.000       0.030
##   90 Percent confidence interval - upper         0.036       0.061
##   P-value H_0: RMSEA <= 0.050                    0.999       0.660
##   P-value H_0: RMSEA >= 0.080                    0.000       0.000
##                                                                   
##   Robust RMSEA                                               0.051
##   90 Percent confidence interval - lower                     0.025
##   90 Percent confidence interval - upper                     0.074
##   P-value H_0: Robust RMSEA <= 0.050                         0.452
##   P-value H_0: Robust RMSEA >= 0.080                         0.019
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.027       0.027
## 
## Parameter Estimates:
## 
##   Parameterization                               Delta
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Habilidade =~                                                         
##     Q1A               0.841    0.026   32.428    0.000    0.841    0.841
##     Q2A               0.794    0.027   29.226    0.000    0.794    0.794
##     Q3A               0.696    0.032   21.727    0.000    0.696    0.696
##   Experiencia =~                                                        
##     Q4A               0.901    0.014   63.716    0.000    0.901    0.901
##     Q5A               0.836    0.018   46.283    0.000    0.836    0.836
##     Q6A               0.917    0.016   58.660    0.000    0.917    0.917
##   CNH =~                                                                
##     Q7A               0.874    0.017   52.189    0.000    0.874    0.874
##     Q8A               0.811    0.020   40.460    0.000    0.811    0.811
##     Q9A               0.898    0.016   56.899    0.000    0.898    0.898
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Habilidade ~~                                                         
##     Experiencia       0.553    0.036   15.258    0.000    0.553    0.553
##     CNH               0.614    0.035   17.297    0.000    0.614    0.614
##   Experiencia ~~                                                        
##     CNH               0.592    0.033   18.167    0.000    0.592    0.592
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Q1A|t1           -0.236    0.050   -4.707    0.000   -0.236   -0.236
##     Q1A|t2            0.463    0.052    8.952    0.000    0.463    0.463
##     Q1A|t3            0.994    0.060   16.639    0.000    0.994    0.994
##     Q2A|t1           -0.232    0.050   -4.628    0.000   -0.232   -0.232
##     Q2A|t2            0.485    0.052    9.342    0.000    0.485    0.485
##     Q2A|t3            1.000    0.060   16.707    0.000    1.000    1.000
##     Q3A|t1           -0.132    0.050   -2.652    0.008   -0.132   -0.132
##     Q3A|t2            0.571    0.053   10.816    0.000    0.571    0.571
##     Q3A|t3            1.061    0.061   17.297    0.000    1.061    1.061
##     Q4A|t1           -0.681    0.054  -12.578    0.000   -0.681   -0.681
##     Q4A|t2           -0.002    0.050   -0.040    0.968   -0.002   -0.002
##     Q4A|t3            0.575    0.053   10.893    0.000    0.575    0.575
##     Q5A|t1           -0.861    0.057  -15.101    0.000   -0.861   -0.861
##     Q5A|t2            0.045    0.050    0.911    0.363    0.045    0.045
##     Q5A|t3            0.580    0.053   10.971    0.000    0.580    0.580
##     Q6A|t1           -0.424    0.051   -8.248    0.000   -0.424   -0.424
##     Q6A|t2            0.192    0.050    3.838    0.000    0.192    0.192
##     Q6A|t3            0.666    0.054   12.350    0.000    0.666    0.666
##     Q7A|t1           -0.962    0.059  -16.299    0.000   -0.962   -0.962
##     Q7A|t2           -0.018    0.050   -0.356    0.722   -0.018   -0.018
##     Q7A|t3            0.691    0.054   12.730    0.000    0.691    0.691
##     Q8A|t1           -0.937    0.059  -16.023    0.000   -0.937   -0.937
##     Q8A|t2           -0.041    0.050   -0.831    0.406   -0.041   -0.041
##     Q8A|t3            0.666    0.054   12.350    0.000    0.666    0.666
##     Q9A|t1           -1.082    0.062  -17.488    0.000   -1.082   -1.082
##     Q9A|t2           -0.220    0.050   -4.391    0.000   -0.220   -0.220
##     Q9A|t3            0.502    0.052    9.653    0.000    0.502    0.502
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Q1A               0.292                               0.292    0.292
##    .Q2A               0.369                               0.369    0.369
##    .Q3A               0.516                               0.516    0.516
##    .Q4A               0.189                               0.189    0.189
##    .Q5A               0.302                               0.302    0.302
##    .Q6A               0.159                               0.159    0.159
##    .Q7A               0.236                               0.236    0.236
##    .Q8A               0.343                               0.343    0.343
##    .Q9A               0.194                               0.194    0.194
##     Habilidade        1.000                               1.000    1.000
##     Experiencia       1.000                               1.000    1.000
##     CNH               1.000                               1.000    1.000
lavaan::summary(AJUSTE_CFC_COR, rsquare=TRUE)
## lavaan 0.6.17 ended normally after 20 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        39
## 
##   Number of observations                           637
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                26.472      55.569
##   Degrees of freedom                                24          24
##   P-value (Chi-square)                           0.330       0.000
##   Scaling correction factor                                  0.515
##   Shift parameter                                            4.185
##     simple second-order correction                                
## 
## Parameter Estimates:
## 
##   Parameterization                               Delta
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Habilidade =~                                       
##     Q1A               0.841    0.026   32.428    0.000
##     Q2A               0.794    0.027   29.226    0.000
##     Q3A               0.696    0.032   21.727    0.000
##   Experiencia =~                                      
##     Q4A               0.901    0.014   63.716    0.000
##     Q5A               0.836    0.018   46.283    0.000
##     Q6A               0.917    0.016   58.660    0.000
##   CNH =~                                              
##     Q7A               0.874    0.017   52.189    0.000
##     Q8A               0.811    0.020   40.460    0.000
##     Q9A               0.898    0.016   56.899    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Habilidade ~~                                       
##     Experiencia       0.553    0.036   15.258    0.000
##     CNH               0.614    0.035   17.297    0.000
##   Experiencia ~~                                      
##     CNH               0.592    0.033   18.167    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     Q1A|t1           -0.236    0.050   -4.707    0.000
##     Q1A|t2            0.463    0.052    8.952    0.000
##     Q1A|t3            0.994    0.060   16.639    0.000
##     Q2A|t1           -0.232    0.050   -4.628    0.000
##     Q2A|t2            0.485    0.052    9.342    0.000
##     Q2A|t3            1.000    0.060   16.707    0.000
##     Q3A|t1           -0.132    0.050   -2.652    0.008
##     Q3A|t2            0.571    0.053   10.816    0.000
##     Q3A|t3            1.061    0.061   17.297    0.000
##     Q4A|t1           -0.681    0.054  -12.578    0.000
##     Q4A|t2           -0.002    0.050   -0.040    0.968
##     Q4A|t3            0.575    0.053   10.893    0.000
##     Q5A|t1           -0.861    0.057  -15.101    0.000
##     Q5A|t2            0.045    0.050    0.911    0.363
##     Q5A|t3            0.580    0.053   10.971    0.000
##     Q6A|t1           -0.424    0.051   -8.248    0.000
##     Q6A|t2            0.192    0.050    3.838    0.000
##     Q6A|t3            0.666    0.054   12.350    0.000
##     Q7A|t1           -0.962    0.059  -16.299    0.000
##     Q7A|t2           -0.018    0.050   -0.356    0.722
##     Q7A|t3            0.691    0.054   12.730    0.000
##     Q8A|t1           -0.937    0.059  -16.023    0.000
##     Q8A|t2           -0.041    0.050   -0.831    0.406
##     Q8A|t3            0.666    0.054   12.350    0.000
##     Q9A|t1           -1.082    0.062  -17.488    0.000
##     Q9A|t2           -0.220    0.050   -4.391    0.000
##     Q9A|t3            0.502    0.052    9.653    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .Q1A               0.292                           
##    .Q2A               0.369                           
##    .Q3A               0.516                           
##    .Q4A               0.189                           
##    .Q5A               0.302                           
##    .Q6A               0.159                           
##    .Q7A               0.236                           
##    .Q8A               0.343                           
##    .Q9A               0.194                           
##     Habilidade        1.000                           
##     Experiencia       1.000                           
##     CNH               1.000                           
## 
## R-Square:
##                    Estimate
##     Q1A               0.708
##     Q2A               0.631
##     Q3A               0.484
##     Q4A               0.811
##     Q5A               0.698
##     Q6A               0.841
##     Q7A               0.764
##     Q8A               0.657
##     Q9A               0.806
# AJUSTE_CFC_COR = cfa(modelo, data = CFC_data, std.lv=T, estimator = "WLSMV")
# summary(AJUSTE_CFC_COR, fit.measures=T, standardized=TRUE)

12.2.1 Verificação

User Model versus Baseline Model: Comparative Fit Index (CFI) 0.999 0.997 | Critério CFI: > 0.9
Tucker-Lewis Index (TLI) 0.999 0.996 | Critério TLI: > 0.9
RMSEA 0.022 0.0355 | Critério TLI: < 0.08

12.2.2 Carga Fatorial (fatcor loadings)

Para explicar o quanto a Habilidade (fator latente) explica a variância dos itens, os coeficientes deverão ser elevados ao quadrado para obter o percentual.
Desse modo, o fator Habilidade explica 64% da variabilidade no item Q2A \(0.801^2=64.16\).

12.2.3 Thresholds

Os thresholds indicam o ponto onde há 50% de chance para responder um valor ou outro (os valores 1 ou 2 são equiprováveis para o valor de fator latente. Ou seja, no exemplo de Q2A|t1 -0.172 é a quantidade de “habilidade” que indica que o indivíduo possui 50% de chance de responder 1 ou 2 para o item Q2A. Do mesmo modo, para Q2A|t2; o nível 0.545 indica o quando de “habilidade” ou fator latente é necessário possuir para ficar no limiar(50%) para responder 2 ou 3 no item Q2A. Por fim 1.049 é o quanto de fator latente o indivíduo precisa possuir para ficar no limiar entre 3 e 4, Q2A|t3.

É importante que cada fator latente atravesse cada espectro t1, t2 e t3, pois isso indica que o item pega desde quem tem pouco fator latente até muito.
No caso do item Q1A, ele exige muito fator latente para discriminar, pois o valor positivo (Q1A|t3 = 1.133 ) acima de 1.0 (correspondendo a 1 escore Z) indica a presença de muito fator latente/habilidade para discriminar o item.

Em resumo o factor loading informa o quanto o item é informado a partir do nível do traço/fator latente. O theshold por sua vez, informa a dificuldade (necessidade de habilidade) ou o quanto de fator latent é necessário para endossar os items (atitudes)

12.2.3.1 Covariâncias

Informa a associação entre os fatores latentes. Por exemplo, Habilidade está muito correlacionado com CNH (0.659).

12.3 Confiabilidade

Todos os fatores latentes apresental um Alfa de Cronbach (α ) > 0.8 indicando alta confiabilidade. O mesmo ocorre com ômega acima de 0.8.

semTools::reliability(AJUSTE_CFC_COR)
##           Habilidade Experiencia       CNH
## alpha      0.7586045   0.8713943 0.8561321
## alpha.ord  0.8204260   0.9107757 0.8958506
## omega      0.7685805   0.8804376 0.8583869
## omega2     0.7685805   0.8804376 0.8583869
## omega3     0.7676358   0.8863171 0.8575766
## avevar     0.6076032   0.7835445 0.7422843

12.3.1 Plotagem

semPaths(AJUSTE_CFC_COR, "std", layout = "tree2", edge.label.cex = 0.9, 
         residuals =  F, intercepts = F, posCol = c("skyblue3"))

semPaths(AJUSTE_CFC_COR, "std",  edge.label.cex = 0.9, 
         residuals =  T, intercepts = F, posCol = c("skyblue3"))

semPaths(AJUSTE_CFC_COR, residuals =  T, intercepts = F, "std", sizeMan = 6,posCol = c("skyblue3"),
         edge.label.cex = 1.2, layout = "circle")

12.4 Modelo de Segunda Ordem

modelo = '
Habilidade =~  Q1A + Q2A + Q3A  
Experiencia =~ Q4A +  Q5A + Q6A  
CNH =~ Q7A + Q8A + Q9A 
EfeitoPositivo =~ Habilidade + Experiencia + CNH
'
AJUSTE_CFC_SEGUNDA_ORDEM = cfa(modelo, data = CFC_data, std.lv=T, estimator = "WLSMV")

Nesse caso, os factor loadings devem ser verificados na coluna “Std.all”.

summary(AJUSTE_CFC_SEGUNDA_ORDEM, fit.measures=T, standardized=TRUE)
## lavaan 0.6.17 ended normally after 28 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        39
## 
##   Number of observations                           637
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                26.472      55.569
##   Degrees of freedom                                24          24
##   P-value (Chi-square)                           0.330       0.000
##   Scaling correction factor                                  0.515
##   Shift parameter                                            4.185
##     simple second-order correction                                
## 
## Model Test Baseline Model:
## 
##   Test statistic                             13564.460    6826.589
##   Degrees of freedom                                36          36
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.992
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       0.995
##   Tucker-Lewis Index (TLI)                       1.000       0.993
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.989
##   Robust Tucker-Lewis Index (TLI)                            0.984
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.013       0.045
##   90 Percent confidence interval - lower         0.000       0.030
##   90 Percent confidence interval - upper         0.036       0.061
##   P-value H_0: RMSEA <= 0.050                    0.999       0.660
##   P-value H_0: RMSEA >= 0.080                    0.000       0.000
##                                                                   
##   Robust RMSEA                                               0.051
##   90 Percent confidence interval - lower                     0.025
##   90 Percent confidence interval - upper                     0.074
##   P-value H_0: Robust RMSEA <= 0.050                         0.452
##   P-value H_0: Robust RMSEA >= 0.080                         0.019
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.027       0.027
## 
## Parameter Estimates:
## 
##   Parameterization                               Delta
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Habilidade =~                                                          
##     Q1A                0.550    0.040   13.737    0.000    0.841    0.841
##     Q2A                0.519    0.036   14.357    0.000    0.794    0.794
##     Q3A                0.455    0.034   13.552    0.000    0.696    0.696
##   Experiencia =~                                                         
##     Q4A                0.615    0.032   19.469    0.000    0.901    0.901
##     Q5A                0.571    0.031   18.438    0.000    0.836    0.836
##     Q6A                0.627    0.034   18.525    0.000    0.917    0.917
##   CNH =~                                                                 
##     Q7A                0.512    0.043   11.988    0.000    0.874    0.874
##     Q8A                0.474    0.039   12.017    0.000    0.811    0.811
##     Q9A                0.525    0.043   12.120    0.000    0.898    0.898
##   EfeitoPositivo =~                                                      
##     Habilidade         1.159    0.129    8.992    0.000    0.757    0.757
##     Experiencia        1.069    0.104   10.304    0.000    0.730    0.730
##     CNH                1.385    0.172    8.077    0.000    0.811    0.811
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Q1A|t1           -0.236    0.050   -4.707    0.000   -0.236   -0.236
##     Q1A|t2            0.463    0.052    8.952    0.000    0.463    0.463
##     Q1A|t3            0.994    0.060   16.639    0.000    0.994    0.994
##     Q2A|t1           -0.232    0.050   -4.628    0.000   -0.232   -0.232
##     Q2A|t2            0.485    0.052    9.342    0.000    0.485    0.485
##     Q2A|t3            1.000    0.060   16.707    0.000    1.000    1.000
##     Q3A|t1           -0.132    0.050   -2.652    0.008   -0.132   -0.132
##     Q3A|t2            0.571    0.053   10.816    0.000    0.571    0.571
##     Q3A|t3            1.061    0.061   17.297    0.000    1.061    1.061
##     Q4A|t1           -0.681    0.054  -12.578    0.000   -0.681   -0.681
##     Q4A|t2           -0.002    0.050   -0.040    0.968   -0.002   -0.002
##     Q4A|t3            0.575    0.053   10.893    0.000    0.575    0.575
##     Q5A|t1           -0.861    0.057  -15.101    0.000   -0.861   -0.861
##     Q5A|t2            0.045    0.050    0.911    0.363    0.045    0.045
##     Q5A|t3            0.580    0.053   10.971    0.000    0.580    0.580
##     Q6A|t1           -0.424    0.051   -8.248    0.000   -0.424   -0.424
##     Q6A|t2            0.192    0.050    3.838    0.000    0.192    0.192
##     Q6A|t3            0.666    0.054   12.350    0.000    0.666    0.666
##     Q7A|t1           -0.962    0.059  -16.299    0.000   -0.962   -0.962
##     Q7A|t2           -0.018    0.050   -0.356    0.722   -0.018   -0.018
##     Q7A|t3            0.691    0.054   12.730    0.000    0.691    0.691
##     Q8A|t1           -0.937    0.059  -16.023    0.000   -0.937   -0.937
##     Q8A|t2           -0.041    0.050   -0.831    0.406   -0.041   -0.041
##     Q8A|t3            0.666    0.054   12.350    0.000    0.666    0.666
##     Q9A|t1           -1.082    0.062  -17.488    0.000   -1.082   -1.082
##     Q9A|t2           -0.220    0.050   -4.391    0.000   -0.220   -0.220
##     Q9A|t3            0.502    0.052    9.653    0.000    0.502    0.502
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Q1A               0.292                               0.292    0.292
##    .Q2A               0.369                               0.369    0.369
##    .Q3A               0.516                               0.516    0.516
##    .Q4A               0.189                               0.189    0.189
##    .Q5A               0.302                               0.302    0.302
##    .Q6A               0.159                               0.159    0.159
##    .Q7A               0.236                               0.236    0.236
##    .Q8A               0.343                               0.343    0.343
##    .Q9A               0.194                               0.194    0.194
##    .Habilidade        1.000                               0.427    0.427
##    .Experiencia       1.000                               0.467    0.467
##    .CNH               1.000                               0.343    0.343
##     EfeitoPositivo    1.000                               1.000    1.000
semTools::reliability(AJUSTE_CFC_SEGUNDA_ORDEM)
##           Habilidade Experiencia       CNH
## alpha      0.7586045   0.8713943 0.8561321
## alpha.ord  0.8204260   0.9107757 0.8958506
## omega      0.7685806   0.8804376 0.8583870
## omega2     0.7685806   0.8804376 0.8583870
## omega3     0.7676360   0.8863171 0.8575767
## avevar     0.6076034   0.7835445 0.7422844
semPaths(AJUSTE_CFC_SEGUNDA_ORDEM, "std", layout = "tree2", edge.label.cex = 0.9, 
         residuals =  T, intercepts = F, posCol = c("skyblue3"))

semPaths(AJUSTE_CFC_SEGUNDA_ORDEM, residuals =  T, intercepts = F, "std", sizeMan = 6,posCol = c("skyblue3"),
         edge.label.cex = 1.2, layout = "circle")

12.5 Modelo com fatores não correlacionados (modelo ortogonal)

modelo = '
Habilidade =~  Q1A + Q2A + Q3A  
Experiencia =~ Q4A +  Q5A + Q6A  
CNH =~ Q7A + Q8A + Q9A 
Habilidade ~0* Experiencia
Habilidade ~0* CNH
Experiencia ~0* CNH
'
AJUSTE_CFC_NAO_COR = cfa(modelo, data = CFC_data, std.lv=T, estimator = "WLSMV")
summary(AJUSTE_CFC_NAO_COR, fit.measures=T, standardized=TRUE)
## lavaan 0.6.17 ended normally after 1 iteration
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        36
## 
##   Number of observations                           637
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3196.158    1604.472
##   Degrees of freedom                                27          27
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  2.009
##   Shift parameter                                           13.561
##     simple second-order correction                                
## 
## Model Test Baseline Model:
## 
##   Test statistic                             13564.460    6826.589
##   Degrees of freedom                                36          36
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.992
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.766       0.768
##   Tucker-Lewis Index (TLI)                       0.688       0.690
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.866
##   Robust Tucker-Lewis Index (TLI)                            0.821
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.430       0.303
##   90 Percent confidence interval - lower         0.417       0.291
##   90 Percent confidence interval - upper         0.442       0.316
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    1.000       1.000
##                                                                   
##   Robust RMSEA                                               0.170
##   90 Percent confidence interval - lower                     0.154
##   90 Percent confidence interval - upper                     0.187
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.322       0.322
## 
## Parameter Estimates:
## 
##   Parameterization                               Delta
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Habilidade =~                                                         
##     Q1A               0.791    0.030   26.346    0.000    0.791    0.791
##     Q2A               0.834    0.029   28.792    0.000    0.834    0.834
##     Q3A               0.708    0.030   23.241    0.000    0.708    0.708
##   Experiencia =~                                                        
##     Q4A               0.930    0.013   72.467    0.000    0.930    0.930
##     Q5A               0.803    0.019   42.125    0.000    0.803    0.803
##     Q6A               0.907    0.015   59.294    0.000    0.907    0.907
##   CNH =~                                                                
##     Q7A               0.873    0.017   50.777    0.000    0.873    0.873
##     Q8A               0.819    0.021   39.854    0.000    0.819    0.819
##     Q9A               0.892    0.018   50.864    0.000    0.892    0.892
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Habilidade ~                                                          
##     Experiencia       0.000                               0.000    0.000
##     CNH               0.000                               0.000    0.000
##   Experiencia ~                                                         
##     CNH               0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Q1A|t1           -0.236    0.050   -4.707    0.000   -0.236   -0.236
##     Q1A|t2            0.463    0.052    8.952    0.000    0.463    0.463
##     Q1A|t3            0.994    0.060   16.639    0.000    0.994    0.994
##     Q2A|t1           -0.232    0.050   -4.628    0.000   -0.232   -0.232
##     Q2A|t2            0.485    0.052    9.342    0.000    0.485    0.485
##     Q2A|t3            1.000    0.060   16.707    0.000    1.000    1.000
##     Q3A|t1           -0.132    0.050   -2.652    0.008   -0.132   -0.132
##     Q3A|t2            0.571    0.053   10.816    0.000    0.571    0.571
##     Q3A|t3            1.061    0.061   17.297    0.000    1.061    1.061
##     Q4A|t1           -0.681    0.054  -12.578    0.000   -0.681   -0.681
##     Q4A|t2           -0.002    0.050   -0.040    0.968   -0.002   -0.002
##     Q4A|t3            0.575    0.053   10.893    0.000    0.575    0.575
##     Q5A|t1           -0.861    0.057  -15.101    0.000   -0.861   -0.861
##     Q5A|t2            0.045    0.050    0.911    0.363    0.045    0.045
##     Q5A|t3            0.580    0.053   10.971    0.000    0.580    0.580
##     Q6A|t1           -0.424    0.051   -8.248    0.000   -0.424   -0.424
##     Q6A|t2            0.192    0.050    3.838    0.000    0.192    0.192
##     Q6A|t3            0.666    0.054   12.350    0.000    0.666    0.666
##     Q7A|t1           -0.962    0.059  -16.299    0.000   -0.962   -0.962
##     Q7A|t2           -0.018    0.050   -0.356    0.722   -0.018   -0.018
##     Q7A|t3            0.691    0.054   12.730    0.000    0.691    0.691
##     Q8A|t1           -0.937    0.059  -16.023    0.000   -0.937   -0.937
##     Q8A|t2           -0.041    0.050   -0.831    0.406   -0.041   -0.041
##     Q8A|t3            0.666    0.054   12.350    0.000    0.666    0.666
##     Q9A|t1           -1.082    0.062  -17.488    0.000   -1.082   -1.082
##     Q9A|t2           -0.220    0.050   -4.391    0.000   -0.220   -0.220
##     Q9A|t3            0.502    0.052    9.653    0.000    0.502    0.502
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Q1A               0.374                               0.374    0.374
##    .Q2A               0.304                               0.304    0.304
##    .Q3A               0.499                               0.499    0.499
##    .Q4A               0.135                               0.135    0.135
##    .Q5A               0.356                               0.356    0.356
##    .Q6A               0.177                               0.177    0.177
##    .Q7A               0.237                               0.237    0.237
##    .Q8A               0.329                               0.329    0.329
##    .Q9A               0.205                               0.205    0.205
##    .Habilidade        1.000                               1.000    1.000
##    .Experiencia       1.000                               1.000    1.000
##     CNH               1.000                               1.000    1.000
semTools::reliability(AJUSTE_CFC_NAO_COR)
##           Habilidade Experiencia       CNH
## alpha      0.7586045   0.8713943 0.8561321
## alpha.ord  0.8204260   0.9107757 0.8958506
## omega      0.7685326   0.8781469 0.8586901
## omega2     0.7685326   0.8781469 0.8586901
## omega3     0.7685326   0.8781469 0.8586901
## avevar     0.6077639   0.7774797 0.7428473
semPaths(AJUSTE_CFC_NAO_COR, "std", layout = "tree2", edge.label.cex = 0.9, 
         residuals =  T, intercepts = F, posCol = c("skyblue3"))

semPaths(AJUSTE_CFC_NAO_COR, residuals =  T, intercepts = F, "std", sizeMan = 6,posCol = c("skyblue3"),
         edge.label.cex = 1.2, layout = "circle")

12.6 Bifatorial

modelo = '
Habilidade =~  Q1A + Q2A + Q3A  
Experiencia =~ Q4A +  Q5A + Q6A  
CNH =~ Q7A + Q8A + Q9A 
EfeitoNegativo =~ Q1A + Q2A + Q3A + Q4A +  Q5A + Q6A + Q7A + Q8A + Q9A 
EfeitoNegativo ~0* Habilidade
EfeitoNegativo ~0* Experiencia
EfeitoNegativo ~0* CNH
Habilidade ~0* Experiencia
Habilidade ~0* CNH
Experiencia ~0* CNH
'
AJUSTE_CFC_BIFAT = cfa(modelo, data = CFC_data, std.lv=T, estimator = "WLSMV")
summary(AJUSTE_CFC_BIFAT, fit.measures=T, standardized=TRUE)
## lavaan 0.6.17 ended normally after 29 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        45
## 
##   Number of observations                           637
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 7.606      22.693
##   Degrees of freedom                                18          18
##   P-value (Chi-square)                           0.984       0.203
##   Scaling correction factor                                  0.390
##   Shift parameter                                            3.208
##     simple second-order correction                                
## 
## Model Test Baseline Model:
## 
##   Test statistic                             13564.460    6826.589
##   Degrees of freedom                                36          36
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.992
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       0.999
##   Tucker-Lewis Index (TLI)                       1.002       0.999
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.999
##   Robust Tucker-Lewis Index (TLI)                            0.998
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.020
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.000       0.043
##   P-value H_0: RMSEA <= 0.050                    1.000       0.989
##   P-value H_0: RMSEA >= 0.080                    0.000       0.000
##                                                                   
##   Robust RMSEA                                               0.018
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.055
##   P-value H_0: Robust RMSEA <= 0.050                         0.914
##   P-value H_0: Robust RMSEA >= 0.080                         0.001
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.016       0.016
## 
## Parameter Estimates:
## 
##   Parameterization                               Delta
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Habilidade =~                                                          
##     Q1A                0.460    0.054    8.541    0.000    0.460    0.460
##     Q2A                0.595    0.059   10.038    0.000    0.595    0.595
##     Q3A                0.479    0.057    8.437    0.000    0.479    0.479
##   Experiencia =~                                                         
##     Q4A                0.727    0.039   18.685    0.000    0.727    0.727
##     Q5A                0.469    0.040   11.590    0.000    0.469    0.469
##     Q6A                0.610    0.041   15.010    0.000    0.610    0.610
##   CNH =~                                                                 
##     Q7A                0.506    0.052    9.747    0.000    0.506    0.506
##     Q8A                0.507    0.056    9.072    0.000    0.507    0.507
##     Q9A                0.507    0.054    9.420    0.000    0.507    0.507
##   EfeitoNegativo =~                                                      
##     Q1A                0.655    0.037   17.796    0.000    0.655    0.655
##     Q2A                0.589    0.040   14.629    0.000    0.589    0.589
##     Q3A                0.518    0.044   11.727    0.000    0.518    0.518
##     Q4A                0.606    0.038   15.789    0.000    0.606    0.606
##     Q5A                0.669    0.034   19.801    0.000    0.669    0.669
##     Q6A                0.660    0.036   18.225    0.000    0.660    0.660
##     Q7A                0.711    0.036   19.855    0.000    0.711    0.711
##     Q8A                0.644    0.039   16.378    0.000    0.644    0.644
##     Q9A                0.734    0.036   20.354    0.000    0.734    0.734
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   EfeitoNegativo ~                                                      
##     Habilidade        0.000                               0.000    0.000
##     Experiencia       0.000                               0.000    0.000
##     CNH               0.000                               0.000    0.000
##   Habilidade ~                                                          
##     Experiencia       0.000                               0.000    0.000
##     CNH               0.000                               0.000    0.000
##   Experiencia ~                                                         
##     CNH               0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Q1A|t1           -0.236    0.050   -4.707    0.000   -0.236   -0.236
##     Q1A|t2            0.463    0.052    8.952    0.000    0.463    0.463
##     Q1A|t3            0.994    0.060   16.639    0.000    0.994    0.994
##     Q2A|t1           -0.232    0.050   -4.628    0.000   -0.232   -0.232
##     Q2A|t2            0.485    0.052    9.342    0.000    0.485    0.485
##     Q2A|t3            1.000    0.060   16.707    0.000    1.000    1.000
##     Q3A|t1           -0.132    0.050   -2.652    0.008   -0.132   -0.132
##     Q3A|t2            0.571    0.053   10.816    0.000    0.571    0.571
##     Q3A|t3            1.061    0.061   17.297    0.000    1.061    1.061
##     Q4A|t1           -0.681    0.054  -12.578    0.000   -0.681   -0.681
##     Q4A|t2           -0.002    0.050   -0.040    0.968   -0.002   -0.002
##     Q4A|t3            0.575    0.053   10.893    0.000    0.575    0.575
##     Q5A|t1           -0.861    0.057  -15.101    0.000   -0.861   -0.861
##     Q5A|t2            0.045    0.050    0.911    0.363    0.045    0.045
##     Q5A|t3            0.580    0.053   10.971    0.000    0.580    0.580
##     Q6A|t1           -0.424    0.051   -8.248    0.000   -0.424   -0.424
##     Q6A|t2            0.192    0.050    3.838    0.000    0.192    0.192
##     Q6A|t3            0.666    0.054   12.350    0.000    0.666    0.666
##     Q7A|t1           -0.962    0.059  -16.299    0.000   -0.962   -0.962
##     Q7A|t2           -0.018    0.050   -0.356    0.722   -0.018   -0.018
##     Q7A|t3            0.691    0.054   12.730    0.000    0.691    0.691
##     Q8A|t1           -0.937    0.059  -16.023    0.000   -0.937   -0.937
##     Q8A|t2           -0.041    0.050   -0.831    0.406   -0.041   -0.041
##     Q8A|t3            0.666    0.054   12.350    0.000    0.666    0.666
##     Q9A|t1           -1.082    0.062  -17.488    0.000   -1.082   -1.082
##     Q9A|t2           -0.220    0.050   -4.391    0.000   -0.220   -0.220
##     Q9A|t3            0.502    0.052    9.653    0.000    0.502    0.502
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Q1A               0.359                               0.359    0.359
##    .Q2A               0.298                               0.298    0.298
##    .Q3A               0.502                               0.502    0.502
##    .Q4A               0.104                               0.104    0.104
##    .Q5A               0.332                               0.332    0.332
##    .Q6A               0.192                               0.192    0.192
##    .Q7A               0.238                               0.238    0.238
##    .Q8A               0.327                               0.327    0.327
##    .Q9A               0.204                               0.204    0.204
##    .Habilidade        1.000                               1.000    1.000
##    .Experiencia       1.000                               1.000    1.000
##     CNH               1.000                               1.000    1.000
##    .EfeitoNegativo    1.000                               1.000    1.000
semTools::reliability(AJUSTE_CFC_BIFAT)
##           Habilidade Experiencia       CNH EfeitoNegativo
## alpha      0.7586045   0.8713943 0.8561321      0.8650410
## alpha.ord  0.8204260   0.9107757 0.8958506      0.8946570
## omega      0.3875913   0.4506366 0.3554737      0.6148398
## omega2     0.3173885   0.3915203 0.2874596      0.7260001
## omega3     0.3173886   0.3915203 0.2874596      0.7264330
## avevar            NA          NA        NA             NA
semPaths(AJUSTE_CFC_BIFAT, "std", layout = "tree2", edge.label.cex = 0.9, 
         residuals =  T, intercepts = F, posCol = c("skyblue3"))

semPaths(AJUSTE_CFC_NAO_COR, residuals =  T, intercepts = F, "std", sizeMan = 6,posCol = c("skyblue3"),
         edge.label.cex = 1.2, layout = "circle")