# Load packages
# Core
library(tidyverse)
library(tidyquant)
# time series
library(timetk)
Simulate future portfolio returns
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
market: “SPY”
from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AGG 0.25
## 2 EEM 0.25
## 3 EFA 0.2
## 4 IJS 0.2
## 5 SPY 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0204
## 2 2013-02-28 -0.00239
## 3 2013-03-28 0.0121
## 4 2013-04-30 0.0174
## 5 2013-05-31 -0.0128
## 6 2013-06-28 -0.0247
## 7 2013-07-31 0.0321
## 8 2013-08-30 -0.0224
## 9 2013-09-30 0.0511
## 10 2013-10-31 0.0301
## # ℹ 50 more rows
# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899133
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.0234749
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
## [1] 0.0259174146 -0.0368490344 0.0119352382 0.0108517577 -0.0301590534
## [6] 0.0083040637 0.0212925817 -0.0007544321 -0.0034891591 0.0680913286
## [11] -0.0102537486 0.0009733599 0.0224508505 0.0175006628 -0.0062418089
## [16] 0.0053362895 0.0403674272 -0.0070585139 0.0389783108 0.0124892351
## [21] -0.0383116458 0.0233869395 0.0118329785 0.0086511462 -0.0053666018
## [26] 0.0106128702 -0.0114469744 0.0031763933 0.0149133421 0.0237335581
## [31] 0.0228282154 -0.0010857455 0.0540071683 0.0132128471 -0.0009771709
## [36] -0.0491072965 -0.0014698466 0.0048012497 0.0174313470 -0.0120651273
## [41] -0.0125270465 0.0096121464 0.0230801869 0.0239777384 0.0034155217
## [46] 0.0103766110 -0.0434485742 0.0643203434 0.0481965989 0.0215070793
## [51] 0.0330703385 -0.0133855195 0.0009125400 0.0262661726 -0.0167542110
## [56] 0.0030823970 0.0131527157 0.0206187430 -0.0117624426 -0.0275000457
## [61] -0.0084854138 0.0017045908 -0.0188865125 0.0274072743 -0.0085364312
## [66] -0.0077686583 -0.0020333339 0.0373195391 0.0014195721 0.0212091183
## [71] 0.0014420771 0.0599745057 -0.0235587520 0.0163382272 0.0230763675
## [76] 0.0126332424 0.0132645032 -0.0160414391 0.0166984262 0.0265198529
## [81] 0.0138987910 0.0242776883 -0.0052693761 -0.0041975511 0.0035962081
## [86] 0.0317587567 -0.0079172198 0.0528821523 0.0426074975 0.0249461735
## [91] 0.0104000266 -0.0097451677 -0.0055280795 -0.0001097425 0.0547056103
## [96] 0.0253682638 0.0090137223 0.0192915144 -0.0072160430 0.0415620713
## [101] 0.0265120386 0.0166904362 0.0096594873 0.0149936467 0.0098064810
## [106] 0.0339558890 0.0179296249 0.0320419491 0.0008301255 0.0287742139
## [111] 0.0234955038 -0.0097825735 -0.0260446750 0.0106076573 -0.0008077891
## [116] 0.0166035789 0.0343196306 0.0154212802 -0.0048558609 -0.0168776875
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
## returns
## <dbl>
## 1 1
## 2 1.03
## 3 0.963
## 4 1.01
## 5 1.01
## 6 0.970
## 7 1.01
## 8 1.02
## 9 0.999
## 10 0.997
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
select(growth)
simulated_growth
## # A tibble: 121 × 1
## growth
## <dbl>
## 1 1
## 2 1.03
## 3 0.988
## 4 1.00
## 5 1.01
## 6 0.980
## 7 0.988
## 8 1.01
## 9 1.01
## 10 1.01
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 12.10556
simulated_accumulation <- function(initial_value, N, mean_return, sd_return) {
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(120, mean_return, sd_return)))
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
select(growth)
return(simulated_growth)
}
simulated_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
tail()
## # A tibble: 6 × 1
## growth
## <dbl>
## 1 171.
## 2 173.
## 3 177.
## 4 178.
## 5 176.
## 6 174.
dump(list = c("simulate_accumulation"),
file = "../00scripts/simulate_accumulation.R")
# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
set_names(paste0("sim", 1:sims))
starts
## sim1 sim2 sim3 sim4 sim5 sim6 sim7 sim8 sim9 sim10 sim11 sim12 sim13
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51
## 1 1 1 1 1 1 1 1 1 1 1 1
#Simulate
# for reproducible research
set.seed(1234)
monte_carlo_sim_51 <- starts %>%
# Simulate
map_dfc(.x = .,
.f = ~simulated_accumulation(initial_value = .x,
N = 120,
mean_return = mean_port_return,
sd_return = stddev_port_return)) %>%
# Add column
mutate(month = 1:nrow(.)) %>%
select(month, everything()) %>%
# Rearrange column names
set_names(c("month", names(starts))) %>%
# Transform to long form
pivot_longer(cols = -month, names_to = "sim", values_to = "growth")
monte_carlo_sim_51
## # A tibble: 6,171 × 3
## month sim growth
## <int> <chr> <dbl>
## 1 1 sim1 1
## 2 1 sim2 1
## 3 1 sim3 1
## 4 1 sim4 1
## 5 1 sim5 1
## 6 1 sim6 1
## 7 1 sim7 1
## 8 1 sim8 1
## 9 1 sim9 1
## 10 1 sim10 1
## # ℹ 6,161 more rows
# Find quantities
monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
pull(growth) %>%
quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
round(2)
## 0% 25% 50% 75% 100%
## 1.17 1.61 1.99 2.35 3.68
monte_carlo_sim_51 %>%
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5)) +
labs(title = "simulating growth for $1 over 120 months")
Line plot with max, median, and min
# Step 1 Summarize data into max, median, and min of last value
sim_summary <- monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
summarise(max = max(growth),
median = median(growth),
min = min(growth))
sim_summary
## # A tibble: 1 × 3
## max median min
## <dbl> <dbl> <dbl>
## 1 3.68 1.99 1.17
# Step 2 plot
monte_carlo_sim_51 %>%
# Filter for max, median, and min sim
group_by(sim) %>%
filter(last(growth) == sim_summary$max |
last(growth) == sim_summary$median |
last(growth) == sim_summary$min) %>%
ungroup() %>%
# Plot
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5)) +
theme(plot.subtitle = element_text(hjust = 0.5))
labs(title = "simulating growth for $1 over 120 months",
subtitle = "Maximum, Median, and Minimum Simulation")
## $title
## [1] "simulating growth for $1 over 120 months"
##
## $subtitle
## [1] "Maximum, Median, and Minimum Simulation"
##
## attr(,"class")
## [1] "labels"