# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062311778 -0.0029352428  0.0366062167  0.052132964  4.992276e-02
## 2013-02-28  0.0058914092 -0.0231051198 -0.0129691125  0.016175087  1.267839e-02
## 2013-03-28  0.0009845721 -0.0102351239  0.0129691125  0.040258234  3.726792e-02
## 2013-04-30  0.0096392475  0.0120849040  0.0489678996  0.001222682  1.903058e-02
## 2013-05-31 -0.0202141852 -0.0494832528 -0.0306553297  0.041975943  2.333469e-02
## 2013-06-28 -0.0157775228 -0.0547286224 -0.0271446482 -0.001402810 -1.343447e-02
## 2013-07-31  0.0026869076  0.0131598843  0.0518603429  0.063541125  5.038602e-02
## 2013-08-30 -0.0082979413 -0.0257057975 -0.0197464637 -0.034742970 -3.045144e-02
## 2013-09-30  0.0111438825  0.0695889591  0.0753385871  0.063873315  3.115600e-02
## 2013-10-31  0.0082922136  0.0408611785  0.0320818750  0.034234154  4.526689e-02
## 2013-11-29 -0.0025098460 -0.0025940275  0.0054493040  0.041661372  2.920669e-02
## 2013-12-31 -0.0055826433 -0.0040743613  0.0215281353  0.012891732  2.559620e-02
## 2014-01-31  0.0152910008 -0.0903223610 -0.0534132249 -0.035775230 -3.588454e-02
## 2014-02-28  0.0037573192  0.0332204073  0.0595051622  0.045257744  4.451031e-02
## 2014-03-31 -0.0014814735  0.0380214029 -0.0046026433  0.013315192  8.261430e-03
## 2014-04-30  0.0081829982  0.0077728593  0.0165294453 -0.023184118  6.927176e-03
## 2014-05-30  0.0117217854  0.0290910789  0.0158283476  0.006205219  2.294161e-02
## 2014-06-30 -0.0005759853  0.0237338365  0.0091655562  0.037718565  2.043459e-02
## 2014-07-31 -0.0025116546  0.0135559008 -0.0263800808 -0.052009344 -1.352872e-02
## 2014-08-29  0.0114304077  0.0279044700  0.0018005750  0.043657778  3.870454e-02
## 2014-09-30 -0.0061676686 -0.0808564624 -0.0395984113 -0.061260262 -1.389196e-02
## 2014-10-31  0.0105846512  0.0140964501 -0.0026548109  0.068874804  2.327752e-02
## 2014-11-28  0.0065488402 -0.0155414089  0.0006252304  0.004773647  2.710126e-02
## 2014-12-31  0.0014752801 -0.0404422264 -0.0407467275  0.025295514 -2.539261e-03
## 2015-01-30  0.0203148531 -0.0068955568  0.0062266688 -0.054627638 -3.007716e-02
## 2015-02-27 -0.0089880538  0.0431359589  0.0614504481  0.056914329  5.468149e-02
## 2015-03-31  0.0037401243 -0.0150861354 -0.0143888617  0.010156750 -1.583014e-02
## 2015-04-30 -0.0032327923  0.0662810801  0.0358166578 -0.018418048  9.785906e-03
## 2015-05-29 -0.0043840612 -0.0419109109  0.0019525724  0.007509806  1.277412e-02
## 2015-06-30 -0.0108249890 -0.0297466142 -0.0316788276  0.004171607 -2.052119e-02
## 2015-07-31  0.0085842853 -0.0651782587  0.0201146365 -0.027375427  2.233786e-02
## 2015-08-31 -0.0033638598 -0.0925122166 -0.0771524800 -0.047268345 -6.288647e-02
## 2015-09-30  0.0080813346 -0.0318248523 -0.0451947203 -0.038464794 -2.584726e-02
## 2015-10-30  0.0006856701  0.0618081665  0.0640256333  0.063589807  8.163492e-02
## 2015-11-30 -0.0038981400 -0.0255603364 -0.0075557175  0.024415310  3.648477e-03
## 2015-12-31 -0.0019189302 -0.0389472441 -0.0235951109 -0.052156952 -1.743373e-02
## 2016-01-29  0.0123302363 -0.0516364590 -0.0567578198 -0.060307023 -5.106844e-02
## 2016-02-29  0.0088313596 -0.0082116798 -0.0339139014  0.020605063 -8.265148e-04
## 2016-03-31  0.0087092134  0.1218789852  0.0637454309  0.089910749  6.510027e-02
## 2016-04-29  0.0025458016  0.0040791497  0.0219754396  0.021044068  3.933751e-03
## 2016-05-31  0.0001352616 -0.0376283058 -0.0008562978  0.004396951  1.686811e-02
## 2016-06-30  0.0191665935  0.0445822665 -0.0244911962  0.008292413  3.470069e-03
## 2016-07-29  0.0054298038  0.0524419681  0.0390001903  0.049348181  3.582198e-02
## 2016-08-31 -0.0021555911  0.0087987881  0.0053266973  0.011261287  1.196701e-03
## 2016-09-30  0.0005151818  0.0248728732  0.0132794022  0.008614720  5.787767e-05
## 2016-10-31 -0.0082047796 -0.0083121295 -0.0224039105 -0.038134748 -1.748876e-02
## 2016-11-30 -0.0259901048 -0.0451619574 -0.0179745666  0.125246148  3.617596e-02
## 2016-12-30  0.0025383814 -0.0025300743  0.0267029452  0.031491790  2.006896e-02
## 2017-01-31  0.0021262507  0.0644316436  0.0323818767 -0.012143599  1.773634e-02
## 2017-02-28  0.0064380692  0.0172578369  0.0118363924  0.013428729  3.853961e-02
## 2017-03-31 -0.0005532870  0.0361888681  0.0318056370 -0.006533506  1.248925e-03
## 2017-04-28  0.0090293148  0.0168663993  0.0239523668  0.005107971  9.877440e-03
## 2017-05-31  0.0068477169  0.0280599865  0.0348101130 -0.022862636  1.401422e-02
## 2017-06-30 -0.0001828723  0.0092238728  0.0029561419  0.029151767  6.354824e-03
## 2017-07-31  0.0033344998  0.0565942299  0.0261876545  0.007481442  2.034557e-02
## 2017-08-31  0.0093688155  0.0232439755 -0.0004483634 -0.027564599  2.913560e-03
## 2017-09-29 -0.0057318325 -0.0004463954  0.0233429150  0.082321751  1.994900e-02
## 2017-10-31  0.0009780035  0.0322783816  0.0166535960  0.005916156  2.329090e-02
## 2017-11-30 -0.0014838908 -0.0038965658  0.0068701724  0.036913231  3.010817e-02
## 2017-12-29  0.0047403732  0.0369252960  0.0133981377 -0.003731306  1.205468e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398281e-05 0.0001042128 4.178357e-05 -7.811953e-05 -9.030481e-06
## EEM  1.042128e-04 0.0017547061 1.039015e-03  6.437719e-04  6.795415e-04
## EFA  4.178357e-05 0.0010390149 1.064237e-03  6.490291e-04  6.975394e-04
## IJS -7.811953e-05 0.0006437719 6.490291e-04  1.565445e-03  8.290221e-04
## SPY -9.030481e-06 0.0006795415 6.975394e-04  8.290221e-04  7.408268e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.02347489
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##              AGG         EEM         EFA         IJS         SPY
## [1,] 0.000387421 0.009257137 0.005815632 0.005684458 0.002330246
rowSums(component_contribution)
## [1] 0.02347489
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%
    
    pivot_wider(names_from = asset, values_from = returns) %>%
    
    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062311778 -0.0029352428  0.0366062167  0.052132964  4.992276e-02
## 2013-02-28  0.0058914092 -0.0231051198 -0.0129691125  0.016175087  1.267839e-02
## 2013-03-28  0.0009845721 -0.0102351239  0.0129691125  0.040258234  3.726792e-02
## 2013-04-30  0.0096392475  0.0120849040  0.0489678996  0.001222682  1.903058e-02
## 2013-05-31 -0.0202141852 -0.0494832528 -0.0306553297  0.041975943  2.333469e-02
## 2013-06-28 -0.0157775228 -0.0547286224 -0.0271446482 -0.001402810 -1.343447e-02
## 2013-07-31  0.0026869076  0.0131598843  0.0518603429  0.063541125  5.038602e-02
## 2013-08-30 -0.0082979413 -0.0257057975 -0.0197464637 -0.034742970 -3.045144e-02
## 2013-09-30  0.0111438825  0.0695889591  0.0753385871  0.063873315  3.115600e-02
## 2013-10-31  0.0082922136  0.0408611785  0.0320818750  0.034234154  4.526689e-02
## 2013-11-29 -0.0025098460 -0.0025940275  0.0054493040  0.041661372  2.920669e-02
## 2013-12-31 -0.0055826433 -0.0040743613  0.0215281353  0.012891732  2.559620e-02
## 2014-01-31  0.0152910008 -0.0903223610 -0.0534132249 -0.035775230 -3.588454e-02
## 2014-02-28  0.0037573192  0.0332204073  0.0595051622  0.045257744  4.451031e-02
## 2014-03-31 -0.0014814735  0.0380214029 -0.0046026433  0.013315192  8.261430e-03
## 2014-04-30  0.0081829982  0.0077728593  0.0165294453 -0.023184118  6.927176e-03
## 2014-05-30  0.0117217854  0.0290910789  0.0158283476  0.006205219  2.294161e-02
## 2014-06-30 -0.0005759853  0.0237338365  0.0091655562  0.037718565  2.043459e-02
## 2014-07-31 -0.0025116546  0.0135559008 -0.0263800808 -0.052009344 -1.352872e-02
## 2014-08-29  0.0114304077  0.0279044700  0.0018005750  0.043657778  3.870454e-02
## 2014-09-30 -0.0061676686 -0.0808564624 -0.0395984113 -0.061260262 -1.389196e-02
## 2014-10-31  0.0105846512  0.0140964501 -0.0026548109  0.068874804  2.327752e-02
## 2014-11-28  0.0065488402 -0.0155414089  0.0006252304  0.004773647  2.710126e-02
## 2014-12-31  0.0014752801 -0.0404422264 -0.0407467275  0.025295514 -2.539261e-03
## 2015-01-30  0.0203148531 -0.0068955568  0.0062266688 -0.054627638 -3.007716e-02
## 2015-02-27 -0.0089880538  0.0431359589  0.0614504481  0.056914329  5.468149e-02
## 2015-03-31  0.0037401243 -0.0150861354 -0.0143888617  0.010156750 -1.583014e-02
## 2015-04-30 -0.0032327923  0.0662810801  0.0358166578 -0.018418048  9.785906e-03
## 2015-05-29 -0.0043840612 -0.0419109109  0.0019525724  0.007509806  1.277412e-02
## 2015-06-30 -0.0108249890 -0.0297466142 -0.0316788276  0.004171607 -2.052119e-02
## 2015-07-31  0.0085842853 -0.0651782587  0.0201146365 -0.027375427  2.233786e-02
## 2015-08-31 -0.0033638598 -0.0925122166 -0.0771524800 -0.047268345 -6.288647e-02
## 2015-09-30  0.0080813346 -0.0318248523 -0.0451947203 -0.038464794 -2.584726e-02
## 2015-10-30  0.0006856701  0.0618081665  0.0640256333  0.063589807  8.163492e-02
## 2015-11-30 -0.0038981400 -0.0255603364 -0.0075557175  0.024415310  3.648477e-03
## 2015-12-31 -0.0019189302 -0.0389472441 -0.0235951109 -0.052156952 -1.743373e-02
## 2016-01-29  0.0123302363 -0.0516364590 -0.0567578198 -0.060307023 -5.106844e-02
## 2016-02-29  0.0088313596 -0.0082116798 -0.0339139014  0.020605063 -8.265148e-04
## 2016-03-31  0.0087092134  0.1218789852  0.0637454309  0.089910749  6.510027e-02
## 2016-04-29  0.0025458016  0.0040791497  0.0219754396  0.021044068  3.933751e-03
## 2016-05-31  0.0001352616 -0.0376283058 -0.0008562978  0.004396951  1.686811e-02
## 2016-06-30  0.0191665935  0.0445822665 -0.0244911962  0.008292413  3.470069e-03
## 2016-07-29  0.0054298038  0.0524419681  0.0390001903  0.049348181  3.582198e-02
## 2016-08-31 -0.0021555911  0.0087987881  0.0053266973  0.011261287  1.196701e-03
## 2016-09-30  0.0005151818  0.0248728732  0.0132794022  0.008614720  5.787767e-05
## 2016-10-31 -0.0082047796 -0.0083121295 -0.0224039105 -0.038134748 -1.748876e-02
## 2016-11-30 -0.0259901048 -0.0451619574 -0.0179745666  0.125246148  3.617596e-02
## 2016-12-30  0.0025383814 -0.0025300743  0.0267029452  0.031491790  2.006896e-02
## 2017-01-31  0.0021262507  0.0644316436  0.0323818767 -0.012143599  1.773634e-02
## 2017-02-28  0.0064380692  0.0172578369  0.0118363924  0.013428729  3.853961e-02
## 2017-03-31 -0.0005532870  0.0361888681  0.0318056370 -0.006533506  1.248925e-03
## 2017-04-28  0.0090293148  0.0168663993  0.0239523668  0.005107971  9.877440e-03
## 2017-05-31  0.0068477169  0.0280599865  0.0348101130 -0.022862636  1.401422e-02
## 2017-06-30 -0.0001828723  0.0092238728  0.0029561419  0.029151767  6.354824e-03
## 2017-07-31  0.0033344998  0.0565942299  0.0261876545  0.007481442  2.034557e-02
## 2017-08-31  0.0093688155  0.0232439755 -0.0004483634 -0.027564599  2.913560e-03
## 2017-09-29 -0.0057318325 -0.0004463954  0.0233429150  0.082321751  1.994900e-02
## 2017-10-31  0.0009780035  0.0322783816  0.0166535960  0.005916156  2.329090e-02
## 2017-11-30 -0.0014838908 -0.0038965658  0.0068701724  0.036913231  3.010817e-02
## 2017-12-29  0.0047403732  0.0369252960  0.0133981377 -0.003731306  1.205468e-02
calculate_component_contribution <- function(.data, w) {
    
    # Covariance of asset returns
    covariance_matrix <- cov(.data)
    
    # Standard deviation of portfolio
    # Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
    
    # Component contribution
    # Similar to the formula for sd_portfolio
    # Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
    
    # Component contribution in percentage
    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()
    
    return(component_percentages)
}

asset_returns_wide_tbl %>% calculate_component_contribution(w = c(.25, .25, .2, .2, .1))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

column chart of component contribution

plot_data <- asset_returns_wide_tbl %>% 
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long from 
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution")

plot_data %>%
    
    ggplot(aes(x = Asset, y = Contribution)) +
    geom_col(fill = "cornflowerblue") +
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    theme(plot.title = element_text(hjust = 0.5)) +
    
    labs(title = "Percent Contribution to Portfolio Volatility")

Column Chart of Component Contribution and weight

plot_data <- asset_returns_wide_tbl %>% 
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long from 
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") %>%
    
    # Add weights
    add_column(weight = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long
    pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")

plot_data %>%
    
    ggplot(aes(x = Asset, y = value, fill = type)) +
    geom_col(positio = "dodge") +
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + 
    scale_fill_tq() +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme_tq() +
    
    labs(title = "Percent Contribution to Portfolio Volatilityand Weight",
         y = "Percent", 
         x = NULL)

6 Rolling Component Contribution