1. Introduction

Body Mass Index is a simple calculation using a person’s height and weight. The formula is BMI = kg/m2 where kg is a person’s weight in kilograms and m2 is their height in metres squared.

2.1 Formula calculating BMI.

Formula for converting BMI.

\[ BMI = \frac{Weight}{Height^2} \] For example we want to calculate BMI for a person with weight = 68 kg and height = 1.62 m. \[ BMI = \frac{68}{1.62^2} \]

bmi <- round(68/1.62^2, digits = 1)

With this above, BMI is calculated 25.9

2.2 Function calculating BMI.

bmi_cal <- function(height, weight){
bmi <- round(height/weight^2, digits = 1)
return(bmi)
}

Example a persion with weight = 68 and height = 1.62 We can calculate and asign the name bmi as `bmi <- round(68/1.62^2, digits = 1)

bmi <- bmi_cal(68, 1.62)
print(bmi)
## [1] 25.9

`

Hence, weight = 68 and height = 1.62to function and we can culate BMIof this persion is 25.9

3.1 Formula for classifying of BMI.

We define BMI catogories as following.

3.2 Function classifying BMI

R function.

bmi_categories<- function(bm){
  b_m_i <- (ifelse(bm < 18.5, "Underweight",(ifelse (18.5<= bm & bm  <25 ,  "Normal Weight",(ifelse (25<= bm & bm <30, "Overweight",(ifelse (30<= bm, "Obese",""))))))))
  return(b_m_i)
}

We calculate using this function bmi_categories(bmi)

bmi_categories(bmi)
## [1] "Overweight"

Conclustion: This persion with weight = 68 and height = 1.62. BMI of this one is 25.9 and can be classified as Overweight

LS0tDQp0aXRsZTogIldyaXRpbmcgRnVuY3Rpb24gZm9yIGNhbGN1bGF0aW5nIGFuZCBjbGFzc2lmeWluZyBCTUkgaW4gUi1NYXJrZG93biINCmF1dGhvcjogIkhlbnJ5IERvLCBaYWxvIG51bWJlcjogIDA5ODU2NjE5MDgiDQpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6DQogICAgY29kZV9kb3dubG9hZDogeWVzIA0KICAgIGNvZGVfZm9sZGluZzogaGlkZQ0KICAgIHRvYzogeWVzDQogICAgdG9jX2Zsb2F0OiBubw0KICB3b3JkX2RvY3VtZW50czoNCiAgICB0b2M6IHllcw0KDQotLS0NCg0KYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9DQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUsIHdhcm5pbmcgPSBGQUxTRSwgbWVzc2FnZSA9IEZBTFNFKQ0KYGBgDQoNCiMjIDEuIEludHJvZHVjdGlvbg0KQm9keSBNYXNzIEluZGV4IGlzIGEgc2ltcGxlIGNhbGN1bGF0aW9uIHVzaW5nIGEgcGVyc29uJ3MgaGVpZ2h0IGFuZCB3ZWlnaHQuIFRoZSBmb3JtdWxhIGlzIEJNSSA9IGtnL20yIHdoZXJlIGtnIGlzIGEgcGVyc29uJ3Mgd2VpZ2h0IGluIGtpbG9ncmFtcyBhbmQgbTIgaXMgdGhlaXIgaGVpZ2h0IGluIG1ldHJlcyBzcXVhcmVkLiANCg0KIyMgMi4xIEZvcm11bGEgY2FsY3VsYXRpbmcgQk1JLg0KRm9ybXVsYSBmb3IgY29udmVydGluZyBCTUkuDQoNCiQkDQpCTUkgPSBcZnJhY3tXZWlnaHR9e0hlaWdodF4yfQ0KJCQNCkZvciBleGFtcGxlIHdlIHdhbnQgdG8gY2FsY3VsYXRlIEJNSSBmb3IgYSBwZXJzb24gd2l0aCB3ZWlnaHQgPSA2OCBrZyBhbmQgaGVpZ2h0ID0gMS42MiBtLg0KJCQNCkJNSSA9IFxmcmFjezY4fXsxLjYyXjJ9DQokJA0KYGBge3J9DQpibWkgPC0gcm91bmQoNjgvMS42Ml4yLCBkaWdpdHMgPSAxKQ0KYGBgDQpXaXRoIHRoaXMgYWJvdmUsIGBCTUlgIGlzIGNhbGN1bGF0ZWQgYHIgYm1pIGANCg0KIyMgMi4yIEZ1bmN0aW9uIGNhbGN1bGF0aW5nIEJNSS4NCmBgYHtyfQ0KYm1pX2NhbCA8LSBmdW5jdGlvbihoZWlnaHQsIHdlaWdodCl7DQpibWkgPC0gcm91bmQoaGVpZ2h0L3dlaWdodF4yLCBkaWdpdHMgPSAxKQ0KcmV0dXJuKGJtaSkNCn0NCmBgYA0KRXhhbXBsZSBhIHBlcnNpb24gd2l0aCBgd2VpZ2h0YCA9ICBgNjhgIGFuZCBgaGVpZ2h0YCA9ICBgMS42MmANCldlIGNhbiBjYWxjdWxhdGUgYW5kIGFzaWduIHRoZSBuYW1lIGBibWlgIGFzIGBibWkgPC0gcm91bmQoNjgvMS42Ml4yLCBkaWdpdHMgPSAxKQ0KDQpgYGB7ciBlY2hvPVRSVUV9DQpibWkgPC0gYm1pX2NhbCg2OCwgMS42MikNCnByaW50KGJtaSkNCmBgYA0KYA0KDQpIZW5jZSwgYHdlaWdodGAgPSAgYDY4YCBhbmQgYGhlaWdodGAgPSAgYDEuNjJgdG8gZnVuY3Rpb24gYW5kIHdlIGNhbiBjdWxhdGUgYEJNSWBvZiB0aGlzIHBlcnNpb24gaXMgICoqYGByIGJtaV9jYWwoNjgsIDEuNjIpYGAqKg0KDQojIyAzLjEgRm9ybXVsYSBmb3IgY2xhc3NpZnlpbmcgb2YgQk1JLg0KV2UgZGVmaW5lIEJNSSBjYXRvZ29yaWVzIGFzIGZvbGxvd2luZy4NCg0KLSBCTUkgPCAxOC41IGlzIHVuZGVyd2VpZ2h0LiANCi0gQk1JIHJhbmdlcyBmcm9tIDE4LjUgLT4gMjQuOTkgaXMgbm9ybWFsLiANCi0gQk1JIHJhbmdlcyBmcm9tIDIzIC0+IDI0Ljk5IGlzIG92ZXJ3ZWlnaHQuIA0KLSBCTUkgPiAyNSBpcyBvYmVzZS4gDQoNCiMjIDMuMiBGdW5jdGlvbiBjbGFzc2lmeWluZyBCTUkNCg0KUiBmdW5jdGlvbi4gDQpgYGB7ciBlY2hvPVRSVUV9DQpibWlfY2F0ZWdvcmllczwtIGZ1bmN0aW9uKGJtKXsNCiAgYl9tX2kgPC0gKGlmZWxzZShibSA8IDE4LjUsICJVbmRlcndlaWdodCIsKGlmZWxzZSAoMTguNTw9IGJtICYgYm0gIDwyNSAsICAiTm9ybWFsIFdlaWdodCIsKGlmZWxzZSAoMjU8PSBibSAmIGJtIDwzMCwgIk92ZXJ3ZWlnaHQiLChpZmVsc2UgKDMwPD0gYm0sICJPYmVzZSIsIiIpKSkpKSkpKQ0KICByZXR1cm4oYl9tX2kpDQp9DQpgYGANCg0KV2UgY2FsY3VsYXRlIHVzaW5nIHRoaXMgZnVuY3Rpb24gYGJtaV9jYXRlZ29yaWVzKGJtaSlgDQpgYGB7cn0NCmJtaV9jYXRlZ29yaWVzKGJtaSkNCmBgYA0KDQoNCg0KQ29uY2x1c3Rpb246IFRoaXMgcGVyc2lvbiB3aXRoIGB3ZWlnaHRgID0gIGA2OGAgYW5kIGBoZWlnaHRgID0gIGAxLjYyYC4gPHNwYW4gc3R5bGU9ImNvbG9yOnJlZDsiPiAqKmBCTUlgKiogIDwvc3Bhbj4gb2YgdGhpcyBvbmUgaXMgIGByIGJtaV9jYWwoNjgsIDEuNjIpYCBhbmQgY2FuIGJlIGNsYXNzaWZpZWQgYXMgPHNwYW4gc3R5bGU9ImNvbG9yOnJlZDsiPiAqKmBgciBibWlfY2F0ZWdvcmllcyhibWkpYGAqKiAgPC9zcGFuPg==