Load the libraries and set the working directory

library(tidyverse)
library(tidyr)
library(leaflet)
setwd("C:/Users/dylan/OneDrive/Documents/Data 110 Summer")
cities500 <- read_csv("500CitiesLocalHealthIndicators.cdc.csv")

The GeoLocation variable has (lat, long) format

Split GeoLocation (lat, long) into two columns: lat and long

latlong <- cities500|>
  mutate(GeoLocation = str_replace_all(GeoLocation, "[()]", ""))|>
  separate(GeoLocation, into = c("lat", "long"), sep = ",", convert = TRUE)
head(latlong)
## # A tibble: 6 × 25
##    Year StateAbbr StateDesc  CityName  GeographicLevel DataSource Category      
##   <dbl> <chr>     <chr>      <chr>     <chr>           <chr>      <chr>         
## 1  2017 CA        California Hawthorne Census Tract    BRFSS      Health Outcom…
## 2  2017 CA        California Hawthorne City            BRFSS      Unhealthy Beh…
## 3  2017 CA        California Hayward   City            BRFSS      Health Outcom…
## 4  2017 CA        California Hayward   City            BRFSS      Unhealthy Beh…
## 5  2017 CA        California Hemet     City            BRFSS      Prevention    
## 6  2017 CA        California Indio     Census Tract    BRFSS      Health Outcom…
## # ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
## #   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
## #   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
## #   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
## #   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
## #   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

Filter the dataset

Remove the StateDesc that includes the United Sates, select Prevention as the category (of interest), filter for only measuring crude prevalence and select only 2017.

latlong_clean <- latlong |>
  filter(StateDesc != "United States") |>
  filter(Category == "Prevention") |>
  filter(Data_Value_Type == "Crude prevalence") |>
  filter(Year == 2017)
head(latlong_clean)
## # A tibble: 6 × 25
##    Year StateAbbr StateDesc  CityName   GeographicLevel DataSource Category  
##   <dbl> <chr>     <chr>      <chr>      <chr>           <chr>      <chr>     
## 1  2017 AL        Alabama    Montgomery City            BRFSS      Prevention
## 2  2017 CA        California Concord    City            BRFSS      Prevention
## 3  2017 CA        California Concord    City            BRFSS      Prevention
## 4  2017 CA        California Fontana    City            BRFSS      Prevention
## 5  2017 CA        California Richmond   Census Tract    BRFSS      Prevention
## 6  2017 FL        Florida    Davie      Census Tract    BRFSS      Prevention
## # ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
## #   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
## #   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
## #   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
## #   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
## #   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

What variables are included? (can any of them be removed?)

names(latlong_clean)
##  [1] "Year"                       "StateAbbr"                 
##  [3] "StateDesc"                  "CityName"                  
##  [5] "GeographicLevel"            "DataSource"                
##  [7] "Category"                   "UniqueID"                  
##  [9] "Measure"                    "Data_Value_Unit"           
## [11] "DataValueTypeID"            "Data_Value_Type"           
## [13] "Data_Value"                 "Low_Confidence_Limit"      
## [15] "High_Confidence_Limit"      "Data_Value_Footnote_Symbol"
## [17] "Data_Value_Footnote"        "PopulationCount"           
## [19] "lat"                        "long"                      
## [21] "CategoryID"                 "MeasureId"                 
## [23] "CityFIPS"                   "TractFIPS"                 
## [25] "Short_Question_Text"

Remove the variables that will not be used in the assignment

prevention <- latlong_clean |>
  select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote)
head(prevention)
## # A tibble: 6 × 18
##    Year StateAbbr StateDesc  CityName  GeographicLevel Category UniqueID Measure
##   <dbl> <chr>     <chr>      <chr>     <chr>           <chr>    <chr>    <chr>  
## 1  2017 AL        Alabama    Montgome… City            Prevent… 151000   Choles…
## 2  2017 CA        California Concord   City            Prevent… 616000   Visits…
## 3  2017 CA        California Concord   City            Prevent… 616000   Choles…
## 4  2017 CA        California Fontana   City            Prevent… 624680   Visits…
## 5  2017 CA        California Richmond  Census Tract    Prevent… 0660620… Choles…
## 6  2017 FL        Florida    Davie     Census Tract    Prevent… 1216475… Choles…
## # ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
## #   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
## #   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
md <- prevention |>
  filter(StateAbbr=="MD")
head(md)
## # A tibble: 6 × 18
##    Year StateAbbr StateDesc CityName  GeographicLevel Category  UniqueID Measure
##   <dbl> <chr>     <chr>     <chr>     <chr>           <chr>     <chr>    <chr>  
## 1  2017 MD        Maryland  Baltimore Census Tract    Preventi… 2404000… "Chole…
## 2  2017 MD        Maryland  Baltimore Census Tract    Preventi… 2404000… "Visit…
## 3  2017 MD        Maryland  Baltimore Census Tract    Preventi… 2404000… "Visit…
## 4  2017 MD        Maryland  Baltimore Census Tract    Preventi… 2404000… "Curre…
## 5  2017 MD        Maryland  Baltimore Census Tract    Preventi… 2404000… "Curre…
## 6  2017 MD        Maryland  Baltimore Census Tract    Preventi… 2404000… "Visit…
## # ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
## #   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
## #   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
prevention <- latlong_clean %>%
  select(-DataSource, -Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote)

head(prevention)
## # A tibble: 6 × 18
##    Year StateAbbr StateDesc  CityName  GeographicLevel Category UniqueID Measure
##   <dbl> <chr>     <chr>      <chr>     <chr>           <chr>    <chr>    <chr>  
## 1  2017 AL        Alabama    Montgome… City            Prevent… 151000   Choles…
## 2  2017 CA        California Concord   City            Prevent… 616000   Visits…
## 3  2017 CA        California Concord   City            Prevent… 616000   Choles…
## 4  2017 CA        California Fontana   City            Prevent… 624680   Visits…
## 5  2017 CA        California Richmond  Census Tract    Prevent… 0660620… Choles…
## 6  2017 FL        Florida    Davie     Census Tract    Prevent… 1216475… Choles…
## # ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
## #   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
## #   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
unique(latlong_clean$StateAbbr)
##  [1] "AL" "CA" "FL" "CT" "IL" "MN" "NY" "PA" "NC" "OH" "OK" "OR" "TX" "RI" "SC"
## [16] "SD" "TN" "UT" "VA" "WA" "AK" "WI" "AZ" "AR" "CO" "DE" "NV" "DC" "GA" "ID"
## [31] "HI" "MA" "MI" "IN" "KS" "KY" "IA" "LA" "MD" "ME" "NH" "NJ" "NM" "MO" "MS"
## [46] "NE" "MT" "ND" "WV" "VT" "WY"
unique(latlong_clean$Measure)
## [1] "Cholesterol screening among adults aged >=18 Years"                                                   
## [2] "Visits to doctor for routine checkup within the past Year among adults aged >=18 Years"               
## [3] "Current lack of health insurance among adults aged 18\x9664 Years"                                    
## [4] "Taking medicine for high blood pressure control among adults aged >=18 Years with high blood pressure"

The new data set “Prevention” is a manageable data set now.

For your assignment, work with the cleaned “Prevention” dataset

1. Once you run the above code, filter this dataset one more time for any particular subset.

Filter chunk here

subset <- prevention %>%
  filter(StateAbbr == "NY")

head(subset)
## # A tibble: 6 × 18
##    Year StateAbbr StateDesc CityName   GeographicLevel Category UniqueID Measure
##   <dbl> <chr>     <chr>     <chr>      <chr>           <chr>    <chr>    <chr>  
## 1  2017 NY        New York  Buffalo    Census Tract    Prevent… 3611000… "Chole…
## 2  2017 NY        New York  Rochester  Census Tract    Prevent… 3663000… "Curre…
## 3  2017 NY        New York  Rochester  Census Tract    Prevent… 3663000… "Visit…
## 4  2017 NY        New York  Rochester  Census Tract    Prevent… 3663000… "Chole…
## 5  2017 NY        New York  Schenecta… Census Tract    Prevent… 3665508… "Takin…
## 6  2017 NY        New York  New York   Census Tract    Prevent… 3651000… "Curre…
## # ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
## #   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
## #   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

2. Based on the GIS tutorial (Japan earthquakes), create one plot about something in your subsetted dataset.

First plot chunk here

ggplot(subset, aes(x = Data_Value)) +
  geom_histogram(binwidth = 1, fill = "blue", color = "black") +
  labs(title = "Distribution of Current Lack of Health Insurance (New York 2017)",
       x = "Crude Prevalence",
       y = "Frequency")
## Warning: Removed 111 rows containing non-finite outside the scale range
## (`stat_bin()`).

3. Now create a map of your subsetted dataset.

First map chunk here

map <- leaflet(subset) %>%
  addProviderTiles(providers$Esri.WorldStreetMap) %>%
  addCircles(lng = ~long, lat = ~lat, radius = 5, color = "blue", 
                   popup = ~paste("<b>City:</b>", CityName, "<br>",
                                  "<b>Crude Prevalence:</b>", Data_Value, "%"))
map

4. Refine your map to include a mousover tooltip

Refined map chunk here

map <- leaflet(subset) %>%
  addProviderTiles(providers$Esri.WorldStreetMap) %>%
  addCircleMarkers(
    lng = ~long, lat = ~lat, radius = 5, color = "blue",
    popup = ~paste("<b>City:</b>", CityName, "<br>",
                   "<b>Crude Prevalence:</b>", Data_Value, "%"),
    label = ~paste("City: ", CityName, "<br>",
                   "Crude Prevalence: ", Data_Value, "%"),
    labelOptions = labelOptions(noHide = FALSE, direction = 'auto'))
map

5. Write a paragraph

The produced plots and maps shed light on the availability of health insurance in different New York (State) cities (Buffalo, Rochester, Albany, New York City) in 2017. The distribution of the crude prevalence of adults between the ages of 18 and 64 who do not currently have health insurance is displayed in a histogram graphic. This data is visualized spatially in an interactive map that shows the prevalence rate of each city and provides tool hints for more in-depth information. By highlighting regions with greater numbers of uninsured people, this research may assist direct focused actions to increase access to healthcare.