ANALYZING SURVEY DATA

Reading the data

To take a look at survey data, we will work with a dataset adaptedfrom Pew Research Center’s American Trends Panel, Wave 67, 05/2020 Available online at www.pewresearch.org/american-trends-panel-datasets. You can download the data and its description from: http://kateto.net/css/pew_data.zip

First we will read the data, which is stored in a CSV file. In their documentation, PEW note that “Refused” answers are coded as 99 As we read in the data, we can tell R to replace 99 with NA (missing)

ID covid_trump covid_state covid_local covid_pubhealth covid_media covid_doctors cov_threat_us cov_threat_me cov_threat_econ cov_threat_fin cov_evidence cov_understand soc_distance covid_usa covid_uk covid_italy covid_china covid_vaccine covid_drug covid_outbreak vaccinate diagnose vulnerable know_covid know_dead employ household fired paycut fired_house paycut_house metro region division age_cat sex edu_cat edu hispanic race race_ethn citizen marital religion evang attendance party party_lean party_comb income registered ideology covid_news weight
100197 4 1 2 3 2 1 2 2 1 2 2 2 1 4 3 3 4 2 2 2 1 2 3 2 2 3 1 2 2 NA NA 1 2 4 4 2 2 3 2 1 1 1 3 2 2 1 2 NA 2 3 1 3 1 0.3358435
100260 1 3 3 1 4 1 2 2 1 3 1 1 2 2 2 2 2 2 2 3 1 2 2 2 2 2 1 2 1 NA NA 1 4 9 4 1 1 5 2 1 1 1 6 12 NA 5 1 NA 1 6 1 1 2 0.6853309
100314 1 3 3 1 4 1 2 2 1 2 1 3 1 1 1 1 4 2 2 2 1 2 1 2 2 3 2 2 2 2 2 2 2 3 4 1 2 3 2 1 1 1 2 1 2 5 1 NA 1 4 1 3 1 0.4115706
100363 3 1 2 2 2 1 1 2 1 2 1 1 1 2 2 3 4 2 1 2 3 2 2 2 2 2 3 1 2 2 2 1 1 2 2 2 1 6 2 1 1 1 1 2 2 4 2 NA 2 9 1 3 1 0.4192119
100446 4 1 1 2 2 1 1 2 1 2 3 3 1 3 3 3 3 2 2 2 2 2 2 1 2 1 3 2 2 2 2 1 1 1 3 2 1 6 2 3 5 1 6 11 NA 5 2 NA 2 8 1 4 1 0.4075220
100637 2 4 4 4 4 3 2 3 2 3 NA 3 2 3 4 4 4 2 2 3 3 2 2 2 2 2 3 2 1 2 2 1 3 5 3 2 2 4 2 1 1 1 1 1 1 3 3 1 1 4 1 2 2 0.7107867
100803 3 1 1 1 3 1 1 3 1 3 1 2 1 2 3 4 4 1 1 2 3 2 2 2 2 3 2 2 2 2 2 2 2 4 3 2 1 5 2 1 1 1 1 1 1 2 1 NA 1 9 1 2 2 0.3617818
101400 4 1 2 1 1 1 1 2 1 3 NA 1 1 3 3 3 2 2 2 2 2 2 2 2 2 1 1 2 2 NA NA 1 2 4 3 2 1 5 2 1 1 1 6 9 NA 6 2 NA 2 6 1 4 NA 0.4702400
101437 1 2 2 2 3 2 3 3 1 3 NA 2 3 1 2 2 3 2 2 3 4 2 1 2 2 3 1 2 2 NA NA 2 2 4 3 2 2 3 2 1 1 1 3 1 1 2 3 1 1 2 1 2 2 0.9032605
101472 4 3 3 2 3 2 2 2 1 2 1 2 1 3 3 3 4 2 2 2 1 2 2 1 2 1 2 2 2 2 2 1 3 7 2 1 1 6 2 1 1 1 1 2 2 5 3 1 1 7 3 3 2 3.5604798
101493 1 4 4 4 3 1 2 2 1 1 NA 3 1 4 4 4 4 1 1 NA 1 2 1 2 2 3 2 2 2 2 2 1 4 9 3 1 2 3 1 1 3 1 1 10 NA 6 1 NA 1 6 1 2 1 0.7702067
102009 4 3 2 2 2 2 1 2 1 2 3 2 1 4 3 3 3 3 2 1 2 2 3 1 1 3 2 2 2 2 2 1 3 7 4 1 2 3 2 1 1 1 1 10 NA 6 2 NA 2 9 1 4 1 0.2650663
102932 4 4 3 2 2 3 1 1 1 3 NA 3 2 4 3 4 4 3 2 2 1 2 2 2 2 3 NA 2 2 NA NA 2 3 7 4 1 1 6 2 1 1 1 1 12 NA 6 2 NA 2 9 1 5 1 0.1953622
103060 4 3 2 3 2 1 1 1 1 3 NA 2 1 4 4 4 3 3 2 2 1 2 1 2 2 3 2 2 2 2 2 1 3 5 4 2 2 4 2 1 1 1 1 12 NA 6 2 NA 2 NA 1 3 1 0.7646925
103379 1 2 4 2 4 2 1 1 1 2 NA 2 1 1 2 3 4 2 2 2 1 2 1 2 2 2 2 2 1 2 2 1 3 5 4 1 2 3 2 1 1 1 1 1 1 2 1 NA 1 9 1 2 1 0.4511522
103406 4 4 2 1 2 2 1 2 1 2 3 2 1 3 3 4 2 2 2 2 2 2 2 1 1 1 5 2 2 2 2 1 3 5 2 2 1 6 2 1 1 1 1 2 2 3 2 NA 2 6 1 4 2 0.3455775
103519 4 1 1 2 2 1 1 1 1 1 NA 2 1 2 2 3 1 2 1 1 1 2 2 1 2 1 2 2 2 2 2 1 2 3 3 1 1 6 2 1 1 1 1 2 2 3 3 2 2 9 1 3 1 0.2417055
103538 4 2 2 3 2 2 1 2 1 2 NA 2 1 3 3 3 3 2 2 3 1 2 2 2 2 1 2 2 2 2 2 1 4 8 3 1 1 5 2 1 1 1 1 2 2 5 3 2 2 9 1 3 2 0.5596834
103677 1 4 2 3 4 2 3 2 1 1 NA 2 3 2 2 3 4 2 3 3 1 2 1 1 1 3 4 2 1 2 1 1 1 2 2 1 2 4 2 1 1 1 1 2 2 4 4 1 1 9 1 1 1 0.8002977
103956 4 1 3 1 1 1 1 1 1 2 NA 1 1 4 4 3 3 3 2 1 1 2 1 2 2 3 2 2 2 2 2 1 2 3 4 2 1 5 2 1 1 1 2 11 NA 5 2 NA 2 4 1 4 1 0.6997906
104210 4 2 2 1 3 2 1 1 1 1 NA 1 1 4 2 4 4 2 2 1 1 2 1 2 2 1 3 1 1 2 2 1 1 2 2 2 3 2 2 1 1 1 2 12 NA 6 4 2 2 2 1 5 3 2.1818386
104272 4 2 2 2 3 1 1 3 1 3 1 2 1 3 3 4 2 1 1 3 2 2 2 1 1 1 4 2 2 2 1 1 2 3 2 1 2 3 2 1 1 1 1 2 2 5 2 NA 2 8 1 4 3 0.5020843
104368 2 2 2 2 1 1 1 1 1 3 1 1 1 3 3 3 3 2 1 2 1 2 1 2 2 3 1 1 1 NA NA 1 3 7 4 1 3 2 2 1 1 1 5 1 1 1 3 1 1 3 1 2 1 0.9652520
104417 4 2 2 2 2 2 1 1 1 3 2 1 1 4 3 3 2 3 3 1 1 2 1 1 1 3 2 2 2 2 2 1 2 4 4 2 1 6 2 1 1 1 1 1 2 3 2 NA 2 8 1 4 1 0.3182606
104491 4 1 1 2 1 1 1 1 1 3 NA 2 1 4 2 1 3 2 2 2 1 2 1 2 2 3 1 2 2 NA NA 1 4 9 4 2 2 3 2 1 1 1 1 12 NA 6 2 NA 2 6 1 5 2 0.8621568
104689 4 1 1 2 2 1 1 3 1 2 NA 1 1 2 2 2 2 1 1 2 1 2 2 2 2 3 4 2 2 2 2 2 2 3 4 2 3 2 2 1 1 1 5 1 2 2 2 NA 2 3 1 3 1 0.9241096
104727 2 3 2 2 4 2 2 2 1 1 NA 3 2 2 2 2 2 2 2 3 3 2 2 2 2 1 2 1 2 1 2 2 2 3 3 1 3 2 2 1 1 1 1 2 2 5 1 NA 1 8 1 3 3 4.2711581
104937 4 2 2 2 1 1 1 2 1 2 3 1 1 3 3 3 2 2 3 2 1 2 2 1 2 3 1 2 2 NA NA 1 3 5 4 1 1 6 2 1 1 1 3 12 NA 6 2 NA 2 8 1 3 1 0.4087059
105124 1 2 3 1 4 2 2 2 1 2 1 2 1 2 3 4 4 2 2 2 1 2 1 2 2 1 2 2 2 2 2 1 3 5 3 1 1 6 2 1 1 1 1 2 2 1 1 NA 1 9 1 1 1 0.2966438
105205 1 4 1 3 4 1 2 3 1 1 3 2 2 2 2 2 4 1 1 1 2 2 2 2 2 3 2 2 2 2 2 1 2 3 3 2 2 4 2 1 1 1 1 2 2 2 1 NA 1 8 1 2 2 0.6415607
105269 4 3 2 2 2 1 1 1 1 1 NA 2 1 4 3 4 4 2 2 2 1 2 2 1 2 1 2 2 2 2 2 1 2 4 4 1 1 6 2 1 1 1 1 2 2 3 3 2 2 6 1 3 1 0.2538791
105959 4 2 2 2 2 2 1 1 1 3 3 1 1 4 3 3 2 2 2 1 1 2 1 2 2 3 2 2 2 2 2 1 4 9 3 2 1 6 2 1 1 1 2 2 2 5 2 NA 2 3 1 4 2 0.2506579
106068 4 4 4 3 3 2 1 2 1 1 NA 2 1 4 4 4 3 2 3 1 1 2 1 1 2 1 3 2 2 2 2 1 1 2 4 1 1 6 2 1 1 1 1 9 NA 6 2 NA 2 8 1 5 1 0.3323327
106180 2 2 2 4 4 1 2 3 1 2 1 3 3 2 2 2 4 2 2 2 3 2 2 2 2 1 4 2 2 2 2 1 3 7 3 1 2 4 2 1 1 1 1 1 1 1 1 NA 1 6 1 1 2 0.6975281
106297 4 1 1 1 1 1 1 2 1 3 3 1 1 4 3 3 3 1 1 3 1 2 2 2 2 3 3 2 2 2 2 1 4 9 4 1 1 6 2 1 1 1 1 1 NA 2 2 NA 2 NA 1 3 2 0.1974483
106444 4 2 2 3 2 1 1 1 1 2 NA 2 1 3 3 3 3 3 2 2 1 2 2 2 2 3 2 2 2 2 2 1 1 2 4 2 1 5 2 1 1 1 1 2 2 5 2 NA 2 8 1 4 1 0.4163360
106590 2 4 3 1 4 2 1 1 1 1 1 1 1 1 2 3 2 1 1 1 2 2 1 1 2 1 2 2 2 2 2 1 4 9 3 2 1 6 2 1 1 1 1 12 NA 5 3 1 1 8 1 3 2 0.3233775
106885 2 3 3 3 4 2 2 2 1 3 NA 2 1 2 2 3 4 2 2 2 4 2 1 2 2 3 2 2 2 1 1 1 4 9 4 2 1 5 1 5 3 1 1 2 2 1 1 NA 1 9 1 1 1 0.3499207
106960 4 1 2 2 2 2 1 2 1 2 3 2 1 3 2 3 NA 2 2 1 1 2 3 2 2 3 2 2 2 2 2 1 2 3 4 2 2 3 2 1 1 1 1 2 2 2 2 NA 2 5 1 3 2 0.7213331
107017 2 2 2 2 3 1 1 2 1 1 NA 2 1 2 2 3 3 2 2 2 1 2 1 2 2 3 2 2 2 NA NA 2 3 5 3 2 1 5 2 1 1 1 4 1 1 4 1 NA 1 7 1 3 NA 0.3550290
107023 4 2 2 2 2 2 1 2 2 2 2 3 1 3 2 1 2 3 3 1 2 2 3 1 1 2 2 2 2 2 2 1 3 5 3 2 2 4 2 2 2 1 2 1 1 1 4 2 2 4 1 4 1 0.4072998
107329 4 2 2 2 2 2 1 2 1 2 NA 2 1 4 3 2 2 3 3 1 3 2 1 1 NA 2 1 2 1 NA NA 1 1 2 3 2 1 5 2 2 2 1 6 2 2 5 2 NA 2 5 1 5 1 0.7760014
107612 4 3 4 3 2 3 1 1 1 2 NA 4 2 4 NA NA 4 4 4 1 1 2 1 1 1 1 1 2 2 NA NA 1 3 5 4 2 2 3 2 2 2 1 3 1 2 6 2 NA 2 6 1 4 1 0.5494154
107668 3 1 2 2 2 1 1 2 1 2 NA 2 1 3 3 4 2 2 2 2 3 2 2 2 2 1 1 2 2 NA NA 2 3 7 3 2 1 5 2 1 1 1 6 1 2 6 1 NA 1 6 1 3 1 0.5397227
108169 4 1 3 3 3 2 1 1 1 1 NA 2 1 4 4 4 3 2 3 1 1 2 1 2 2 1 5 2 2 2 2 1 2 3 2 2 1 6 2 1 1 1 1 12 NA 6 2 NA 2 6 1 4 1 0.3397435
108348 2 2 2 2 4 2 2 3 1 3 2 3 2 2 2 2 4 3 3 1 2 2 2 2 2 1 1 2 2 NA NA 1 4 8 3 2 2 3 2 1 1 1 6 1 1 2 3 1 1 5 1 2 2 0.8002264
108435 2 2 2 3 4 3 1 2 1 2 NA 3 2 2 2 3 4 2 2 2 2 2 3 2 1 3 1 2 2 NA NA 1 2 3 3 2 1 6 2 1 1 1 1 2 2 4 1 NA 1 9 1 2 1 0.7349014
108592 4 2 2 2 2 2 1 1 1 2 2 2 1 2 2 2 2 1 1 2 1 2 1 1 NA 3 3 1 2 1 2 1 2 3 4 2 2 4 2 2 2 1 3 1 2 2 2 NA 2 4 1 3 1 0.4113958
108909 3 3 3 3 2 3 1 1 1 1 3 4 3 2 3 3 3 2 2 2 2 2 2 2 2 3 4 2 2 2 2 1 2 3 3 2 3 1 2 1 1 1 5 2 2 4 2 NA 2 2 3 4 3 1.6395016
109143 1 1 2 1 3 1 2 3 1 2 NA 2 1 1 2 2 2 2 2 2 2 2 2 2 2 1 3 1 2 2 2 1 3 5 2 2 3 2 2 1 1 1 1 1 2 5 1 NA 1 6 1 3 2 0.7484475

Examine the data

 [1] "ID"              "covid_trump"     "covid_state"     "covid_local"    
 [5] "covid_pubhealth" "covid_media"     "covid_doctors"   "cov_threat_us"  
 [9] "cov_threat_me"   "cov_threat_econ" "cov_threat_fin"  "cov_evidence"   
[13] "cov_understand"  "soc_distance"    "covid_usa"       "covid_uk"       
[17] "covid_italy"     "covid_china"     "covid_vaccine"   "covid_drug"     
[21] "covid_outbreak"  "vaccinate"       "diagnose"        "vulnerable"     
[25] "know_covid"      "know_dead"       "employ"          "household"      
[29] "fired"           "paycut"          "fired_house"     "paycut_house"   
[33] "metro"           "region"          "division"        "age_cat"        
[37] "sex"             "edu_cat"         "edu"             "hispanic"       
[41] "race"            "race_ethn"       "citizen"         "marital"        
[45] "religion"        "evang"           "attendance"      "party"          
[49] "party_lean"      "party_comb"      "income"          "registered"     
[53] "ideology"        "covid_news"      "weight"         
[1] 10642    55

What type does each of the survey variables have in R? read.csv() chooses it based on the data it finds in each column. Using ‘sapply()’ as bellow will take our data and apply the same function to each variable/column in it, then combine the results (when possible):

             ID     covid_trump     covid_state     covid_local covid_pubhealth 
      "numeric"       "integer"       "integer"       "integer"       "integer" 
    covid_media   covid_doctors   cov_threat_us   cov_threat_me cov_threat_econ 
      "integer"       "integer"       "integer"       "integer"       "integer" 
 cov_threat_fin    cov_evidence  cov_understand    soc_distance       covid_usa 
      "integer"       "integer"       "integer"       "integer"       "integer" 
       covid_uk     covid_italy     covid_china   covid_vaccine      covid_drug 
      "integer"       "integer"       "integer"       "integer"       "integer" 
 covid_outbreak       vaccinate        diagnose      vulnerable      know_covid 
      "integer"       "integer"       "integer"       "integer"       "integer" 
      know_dead          employ       household           fired          paycut 
      "integer"       "integer"       "integer"       "integer"       "integer" 
    fired_house    paycut_house           metro          region        division 
      "integer"       "integer"       "integer"       "integer"       "integer" 
        age_cat             sex         edu_cat             edu        hispanic 
      "integer"       "integer"       "integer"       "integer"       "integer" 
           race       race_ethn         citizen         marital        religion 
      "integer"       "integer"       "integer"       "integer"       "integer" 
          evang      attendance           party      party_lean      party_comb 
      "integer"       "integer"       "integer"       "integer"       "integer" 
         income      registered        ideology      covid_news          weight 
      "integer"       "integer"       "integer"       "integer"       "numeric" 
             ID     covid_trump     covid_state     covid_local covid_pubhealth 
           TRUE            TRUE            TRUE            TRUE            TRUE 
    covid_media   covid_doctors   cov_threat_us   cov_threat_me cov_threat_econ 
           TRUE            TRUE            TRUE            TRUE            TRUE 
 cov_threat_fin    cov_evidence  cov_understand    soc_distance       covid_usa 
           TRUE            TRUE            TRUE            TRUE            TRUE 
       covid_uk     covid_italy     covid_china   covid_vaccine      covid_drug 
           TRUE            TRUE            TRUE            TRUE            TRUE 
 covid_outbreak       vaccinate        diagnose      vulnerable      know_covid 
           TRUE            TRUE            TRUE            TRUE            TRUE 
      know_dead          employ       household           fired          paycut 
           TRUE            TRUE            TRUE            TRUE            TRUE 
    fired_house    paycut_house           metro          region        division 
           TRUE            TRUE            TRUE            TRUE            TRUE 
        age_cat             sex         edu_cat             edu        hispanic 
           TRUE            TRUE            TRUE            TRUE            TRUE 
           race       race_ethn         citizen         marital        religion 
           TRUE            TRUE            TRUE            TRUE            TRUE 
          evang      attendance           party      party_lean      party_comb 
           TRUE            TRUE            TRUE            TRUE            TRUE 
         income      registered        ideology      covid_news          weight 
           TRUE            TRUE            TRUE            TRUE            TRUE 

Remember that: ‘integer’ is used for whole numbers, ‘numeric’ is used for numbers with a decimal point ‘character’ is used for text

             ID     covid_trump     covid_state     covid_local covid_pubhealth 
          FALSE            TRUE            TRUE            TRUE            TRUE 
    covid_media   covid_doctors   cov_threat_us   cov_threat_me cov_threat_econ 
           TRUE            TRUE            TRUE            TRUE            TRUE 
 cov_threat_fin    cov_evidence  cov_understand    soc_distance       covid_usa 
           TRUE            TRUE            TRUE            TRUE            TRUE 
       covid_uk     covid_italy     covid_china   covid_vaccine      covid_drug 
           TRUE            TRUE            TRUE            TRUE            TRUE 
 covid_outbreak       vaccinate        diagnose      vulnerable      know_covid 
           TRUE            TRUE            TRUE            TRUE            TRUE 
      know_dead          employ       household           fired          paycut 
           TRUE            TRUE            TRUE            TRUE            TRUE 
    fired_house    paycut_house           metro          region        division 
           TRUE            TRUE            TRUE            TRUE            TRUE 
        age_cat             sex         edu_cat             edu        hispanic 
           TRUE            TRUE            TRUE            TRUE            TRUE 
           race       race_ethn         citizen         marital        religion 
           TRUE            TRUE            TRUE            TRUE            TRUE 
          evang      attendance           party      party_lean      party_comb 
           TRUE            TRUE            TRUE            TRUE            TRUE 
         income      registered        ideology      covid_news          weight 
           TRUE            TRUE            TRUE            TRUE           FALSE 
             ID     covid_trump     covid_state     covid_local covid_pubhealth 
          FALSE            TRUE            TRUE            TRUE            TRUE 
    covid_media   covid_doctors   cov_threat_us   cov_threat_me cov_threat_econ 
           TRUE            TRUE            TRUE            TRUE            TRUE 
 cov_threat_fin    cov_evidence  cov_understand    soc_distance       covid_usa 
           TRUE            TRUE            TRUE            TRUE            TRUE 
       covid_uk     covid_italy     covid_china   covid_vaccine      covid_drug 
           TRUE            TRUE            TRUE            TRUE            TRUE 
 covid_outbreak       vaccinate        diagnose      vulnerable      know_covid 
           TRUE            TRUE            TRUE            TRUE            TRUE 
      know_dead          employ       household           fired          paycut 
           TRUE            TRUE            TRUE            TRUE            TRUE 
    fired_house    paycut_house           metro          region        division 
           TRUE            TRUE            TRUE            TRUE            TRUE 
        age_cat             sex         edu_cat             edu        hispanic 
           TRUE            TRUE            TRUE            TRUE            TRUE 
           race       race_ethn         citizen         marital        religion 
           TRUE            TRUE            TRUE            TRUE            TRUE 
          evang      attendance           party      party_lean      party_comb 
           TRUE            TRUE            TRUE            TRUE            TRUE 
         income      registered        ideology      covid_news          weight 
           TRUE            TRUE            TRUE            TRUE           FALSE 

Change all the integer columns to numeric (some of the functions we use below don’t like integer data) dat[, integer_columns] <- sapply(dat[, integer_columns], as.numeric)

ADDITIONAL INFORMATION

Note that we could also easily read the data from SPSS format. One way to do that is by using the package ‘haven’, like so: install.packages(“haven”)
library(haven) dat <- read_sav(“DATA/pew_data.sav”)

Data descriptives

Some variables from our data include * sex: 1 Male, 2 Female * age_cat: 1 Age 18-29, 2 Age 30-49, 3 Age 50-64, 4 Age 65+ * race_ethn: 1 White 2 Black 3 Hispanic 4 Other 5 Asian * party: 1 Republican, 2 Democrat, 3 Independent, 4 Other
* edu: 1 Less than high school, 2 High school graduate, 3 Some college, no degree 4 Associate degree, 5 College graduate/some post-grad, 6 Postgraduate degree * income: family income, 9 categories from under 1 10K to 9 over $150K * ideology: ideology, 5 categories from 1 Very conservative to 5 Very liberal * attend: religious service attendance, 1 more than once a week to 6 never
* covid_news: following COVID news, 1 very closely to 4 not at all closely * covid_trump: approval of Trump’s COVID-19 response, 1 excellent to 4 poor

Let’s examine our variables.

In base R, we can get frequencies like so:


   1    2 
4772 5870 

       1        2 
0.448412 0.551588 

There are, however, more convenient ways to do this! There is a package for everything in R:

Load the follwoing library

Get Frequency Tables for the Categorical Variables

Frequencies  
dat$sex  
Type: Integer  

               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
----------- ------- --------- -------------- --------- --------------
          1    4772     44.84          44.84     44.84          44.84
          2    5870     55.16         100.00     55.16         100.00
       <NA>       0                               0.00         100.00
      Total   10642    100.00         100.00    100.00         100.00
Frequencies  
dat$age_cat  
Type: Integer  

               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
----------- ------- --------- -------------- --------- --------------
          1    1225     11.51          11.51     11.51          11.51
          2    3489     32.79          44.30     32.79          44.30
          3    3193     30.00          74.30     30.00          74.30
          4    2735     25.70         100.00     25.70         100.00
       <NA>       0                               0.00         100.00
      Total   10642    100.00         100.00    100.00         100.00
Frequencies  
dat$race_ethn  
Type: Integer  

               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
----------- ------- --------- -------------- --------- --------------
          1    7116     66.87          66.87     66.87          66.87
          2     884      8.31          75.17      8.31          75.17
          3    2034     19.11          94.29     19.11          94.29
          4     300      2.82          97.11      2.82          97.11
          5     308      2.89         100.00      2.89         100.00
       <NA>       0                               0.00         100.00
      Total   10642    100.00         100.00    100.00         100.00
Frequencies  
dat$region  
Type: Integer  

               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
----------- ------- --------- -------------- --------- --------------
          1    1703     16.00          16.00     16.00          16.00
          2    2224     20.90          36.90     20.90          36.90
          3    4378     41.14          78.04     41.14          78.04
          4    2337     21.96         100.00     21.96         100.00
       <NA>       0                               0.00         100.00
      Total   10642    100.00         100.00    100.00         100.00
Frequencies  
dat$party  
Type: Integer  

               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
----------- ------- --------- -------------- --------- --------------
          1    2625     24.91          24.91     24.67          24.67
          2    3805     36.10          61.01     35.75          60.42
          3    3115     29.56          90.57     29.27          89.69
          4     994      9.43         100.00      9.34          99.03
       <NA>     103                               0.97         100.00
      Total   10642    100.00         100.00    100.00         100.00
Frequencies  
dat$edu  
Type: Integer  

               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
----------- ------- --------- -------------- --------- --------------
          1     322      3.03           3.03      3.03           3.03
          2    1300     12.24          15.27     12.22          15.24
          3    2154     20.27          35.54     20.24          35.48
          4    1037      9.76          45.30      9.74          45.23
          5    3103     29.21          74.51     29.16          74.38
          6    2708     25.49         100.00     25.45          99.83
       <NA>      18                               0.17         100.00
      Total   10642    100.00         100.00    100.00         100.00

Additional Frequency Tables

Frequencies  
dat$income  
Type: Integer  

               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
----------- ------- --------- -------------- --------- --------------
          1     493      4.81           4.81      4.63           4.63
          2     689      6.72          11.53      6.47          11.11
          3     840      8.19          19.72      7.89          19.00
          4     843      8.22          27.94      7.92          26.92
          5     893      8.71          36.65      8.39          35.31
          6    1790     17.46          54.11     16.82          52.13
          7    1517     14.79          68.90     14.25          66.39
          8    1701     16.59          85.49     15.98          82.37
          9    1488     14.51         100.00     13.98          96.35
       <NA>     388                               3.65         100.00
      Total   10642    100.00         100.00    100.00         100.00
Descriptive Statistics  
dat$income  
N: 10642  

                      income
----------------- ----------
             Mean       5.91
          Std.Dev       2.35
              Min       1.00
               Q1       4.00
           Median       6.00
               Q3       8.00
              Max       9.00
              MAD       2.97
              IQR       4.00
               CV       0.40
         Skewness      -0.49
      SE.Skewness       0.02
         Kurtosis      -0.81
          N.Valid   10254.00
        Pct.Valid      96.35

Frequency Table for Ideology

Frequencies  
dat$ideology  
Type: Integer  

               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
----------- ------- --------- -------------- --------- --------------
          1     799      7.63           7.63      7.51           7.51
          2    2415     23.07          30.70     22.69          30.20
          3    3995     38.16          68.86     37.54          67.74
          4    2216     21.17          90.03     20.82          88.56
          5    1044      9.97         100.00      9.81          98.37
       <NA>     173                               1.63         100.00
      Total   10642    100.00         100.00    100.00         100.00
Descriptive Statistics  
dat$ideology  
N: 10642  

                    ideology
----------------- ----------
             Mean       3.03
          Std.Dev       1.07
              Min       1.00
               Q1       2.00
           Median       3.00
               Q3       4.00
              Max       5.00
              MAD       1.48
              IQR       2.00
               CV       0.35
         Skewness       0.06
      SE.Skewness       0.02
         Kurtosis      -0.53
          N.Valid   10469.00
        Pct.Valid      98.37

Frequency Table for Religious Service Attendance

Frequencies  

               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
----------- ------- --------- -------------- --------- --------------
          1     798      7.52           7.52      7.50           7.50
          2    2076     19.55          27.07     19.51          27.01
          3     882      8.31          35.37      8.29          35.29
          4    1724     16.24          51.61     16.20          51.49
          5    2478     23.34          74.95     23.29          74.78
          6    2660     25.05         100.00     25.00          99.77
       <NA>      24                               0.23         100.00
      Total   10642    100.00         100.00    100.00         100.00
Descriptive Statistics  
dat$value  
N: 10642  

                       value
----------------- ----------
             Mean       4.03
          Std.Dev       1.67
              Min       1.00
               Q1       2.00
           Median       4.00
               Q3       6.00
              Max       6.00
              MAD       2.97
              IQR       4.00
               CV       0.41
         Skewness      -0.37
      SE.Skewness       0.02
         Kurtosis      -1.21
          N.Valid   10618.00
        Pct.Valid      99.77

Frequency Table for Following Covid-19 News (1= closely, 4 = Not at all)

Frequencies  
dat$covid_news  
Type: Integer  

               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
----------- ------- --------- -------------- --------- --------------
          1    4836     53.58          53.58     45.44          45.44
          2    3456     38.29          91.88     32.48          77.92
          3     627      6.95          98.83      5.89          83.81
          4     106      1.17         100.00      1.00          84.81
       <NA>    1617                              15.19         100.00
      Total   10642    100.00         100.00    100.00         100.00
Descriptive Statistics  
dat$covid_news  
N: 10642  

                    covid_news
----------------- ------------
             Mean         1.56
          Std.Dev         0.68
              Min         1.00
               Q1         1.00
           Median         1.00
               Q3         2.00
              Max         4.00
              MAD         0.00
              IQR         1.00
               CV         0.43
         Skewness         1.04
      SE.Skewness         0.03
         Kurtosis         0.78
          N.Valid      9025.00
        Pct.Valid        84.81

Frequency Tables for the approval of Trump’s COVID-19 response, 1 excellent to 4 poor

Frequencies  
dat$covid_trump  
Type: Integer  

               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
----------- ------- --------- -------------- --------- --------------
          1    1852     17.48          17.48     17.40          17.40
          2    2011     18.98          36.46     18.90          36.30
          3    1510     14.25          50.71     14.19          50.49
          4    5222     49.29         100.00     49.07          99.56
       <NA>      47                               0.44         100.00
      Total   10642    100.00         100.00    100.00         100.00
Descriptive Statistics  
dat$covid_trump  
N: 10642  

                    covid_trump
----------------- -------------
             Mean          2.95
          Std.Dev          1.17
              Min          1.00
               Q1          2.00
           Median          3.00
               Q3          4.00
              Max          4.00
              MAD          1.48
              IQR          2.00
               CV          0.40
         Skewness         -0.56
      SE.Skewness          0.02
         Kurtosis         -1.27
          N.Valid      10595.00
        Pct.Valid         99.56

We can also examine crosstabs!

   
       1    2    3    4
  1  166  742  890  827
  2  497 1231 1102  975
  3  357 1051  934  773
  4  193  433  237  131
Cross-Tabulation, Row Proportions  
factor(dat$party) * factor(dat$age_cat)  

------------------- --------------------- -------------- -------------- -------------- -------------- ----------------
                      factor(dat$age_cat)              1              2              3              4            Total
  factor(dat$party)                                                                                                   
                  1                          166 ( 6.3%)    742 (28.3%)    890 (33.9%)    827 (31.5%)    2625 (100.0%)
                  2                          497 (13.1%)   1231 (32.4%)   1102 (29.0%)    975 (25.6%)    3805 (100.0%)
                  3                          357 (11.5%)   1051 (33.7%)    934 (30.0%)    773 (24.8%)    3115 (100.0%)
                  4                          193 (19.4%)    433 (43.6%)    237 (23.8%)    131 (13.2%)     994 (100.0%)
               <NA>                           12 (11.7%)     32 (31.1%)     30 (29.1%)     29 (28.2%)     103 (100.0%)
              Total                         1225 (11.5%)   3489 (32.8%)   3193 (30.0%)   2735 (25.7%)   10642 (100.0%)
------------------- --------------------- -------------- -------------- -------------- -------------- ----------------

Or, the prettier format of “summarytools” package:

Cross-Tabulation, Row Proportions  
factor(dat$party) * factor(dat$age_cat)  

------------------- --------------------- -------------- -------------- -------------- -------------- ----------------
                      factor(dat$age_cat)              1              2              3              4            Total
  factor(dat$party)                                                                                                   
                  1                          166 ( 6.3%)    742 (28.3%)    890 (33.9%)    827 (31.5%)    2625 (100.0%)
                  2                          497 (13.1%)   1231 (32.4%)   1102 (29.0%)    975 (25.6%)    3805 (100.0%)
                  3                          357 (11.5%)   1051 (33.7%)    934 (30.0%)    773 (24.8%)    3115 (100.0%)
                  4                          193 (19.4%)    433 (43.6%)    237 (23.8%)    131 (13.2%)     994 (100.0%)
               <NA>                           12 (11.7%)     32 (31.1%)     30 (29.1%)     29 (28.2%)     103 (100.0%)
              Total                         1225 (11.5%)   3489 (32.8%)   3193 (30.0%)   2735 (25.7%)   10642 (100.0%)
------------------- --------------------- -------------- -------------- -------------- -------------- ----------------

Note that we enclose the variables in factor() to tell R that they should be treated as categorical and not numbers.

Data recoding

Let’s recode some variables to make them more convenient to use:

Frequencies  
dat$sex_r  
Type: Character  

                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
------------ ------- --------- -------------- --------- --------------
      Female    5870     55.16          55.16     55.16          55.16
        Male    4772     44.84         100.00     44.84         100.00
        <NA>       0                               0.00         100.00
       Total   10642    100.00         100.00    100.00         100.00

Notice what is happening here. First, we are creating a 2-element vector with c(“Male”,“Female”). Then, we use dat\(sex to index the 2-element vector we created. c("Male", "Female")[dat\)sex] means:

Create Lables for Ages

Frequencies  
dat$age_r  
Type: Character  

                   Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
--------------- ------- --------- -------------- --------- --------------
      Age 18-29    1225     11.51          11.51     11.51          11.51
      Age 30-49    3489     32.79          44.30     32.79          44.30
      Age 50-64    3193     30.00          74.30     30.00          74.30
        Age 65+    2735     25.70         100.00     25.70         100.00
           <NA>       0                               0.00         100.00
          Total   10642    100.00         100.00    100.00         100.00

Create Lables for Races

Frequencies  
dat$race_r  
Type: Character  

                  Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
-------------- ------- --------- -------------- --------- --------------
         Asian     308      2.89           2.89      2.89           2.89
         Black     884      8.31          11.20      8.31          11.20
      Hispanic    2034     19.11          30.31     19.11          30.31
         Other     300      2.82          33.13      2.82          33.13
         White    7116     66.87         100.00     66.87         100.00
          <NA>       0                               0.00         100.00
         Total   10642    100.00         100.00    100.00         100.00

Create Label for Part

Frequencies  
dat$party_r  
Type: Character  

               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
----------- ------- --------- -------------- --------- --------------
        Dem    3805     36.10          36.10     35.75          35.75
        Ind    3115     29.56          65.66     29.27          65.03
        Oth     994      9.43          75.09      9.34          74.37
        Rep    2625     24.91         100.00     24.67          99.03
       <NA>     103                               0.97         100.00
      Total   10642    100.00         100.00    100.00         100.00

What if we wanted to combine “Independents” and “Other” in the party variable? Well, we can just make element 3 and 4 below to be the same thing!

Create lables for covid_us

Frequencies  
dat$covid_usa_r_f  
Type: Character  

                   Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
--------------- ------- --------- -------------- --------- --------------
      Excellent     905      8.58           8.58      8.50           8.50
           Good    3659     34.67          43.25     34.38          42.89
      Only Fair    3531     33.46          76.71     33.18          76.07
           Poor    2458     23.29         100.00     23.10          99.16
           <NA>      89                               0.84         100.00
          Total   10642    100.00         100.00    100.00         100.00
Frequencies  
dat$party_r2  
Type: Character  

                 Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
------------- ------- --------- -------------- --------- --------------
          Dem    3805     36.10          36.10     35.75          35.75
      Ind/Oth    4109     38.99          75.09     38.61          74.37
          Rep    2625     24.91         100.00     24.67          99.03
         <NA>     103                               0.97         100.00
        Total   10642    100.00         100.00    100.00         100.00

Data crosstabs are now easier to understand: For each party, what % are in certain age groups?

Cross-Tabulation, Row Proportions  
party_r * age_r  
Data Frame: dat  

--------- ------- -------------- -------------- -------------- -------------- ----------------
            age_r      Age 18-29      Age 30-49      Age 50-64        Age 65+            Total
  party_r                                                                                     
      Dem            497 (13.1%)   1231 (32.4%)   1102 (29.0%)    975 (25.6%)    3805 (100.0%)
      Ind            357 (11.5%)   1051 (33.7%)    934 (30.0%)    773 (24.8%)    3115 (100.0%)
      Oth            193 (19.4%)    433 (43.6%)    237 (23.8%)    131 (13.2%)     994 (100.0%)
      Rep            166 ( 6.3%)    742 (28.3%)    890 (33.9%)    827 (31.5%)    2625 (100.0%)
     <NA>             12 (11.7%)     32 (31.1%)     30 (29.1%)     29 (28.2%)     103 (100.0%)
    Total           1225 (11.5%)   3489 (32.8%)   3193 (30.0%)   2735 (25.7%)   10642 (100.0%)
--------- ------- -------------- -------------- -------------- -------------- ----------------

For each age group, what % are in a particular party?

Cross-Tabulation, Row Proportions  
age_r * party_r  
Data Frame: dat  

----------- --------- -------------- -------------- ------------- -------------- ------------ ----------------
              party_r            Dem            Ind           Oth            Rep         <NA>            Total
      age_r                                                                                                   
  Age 18-29              497 (40.6%)    357 (29.1%)   193 (15.8%)    166 (13.6%)    12 (1.0%)    1225 (100.0%)
  Age 30-49             1231 (35.3%)   1051 (30.1%)   433 (12.4%)    742 (21.3%)    32 (0.9%)    3489 (100.0%)
  Age 50-64             1102 (34.5%)    934 (29.3%)   237 ( 7.4%)    890 (27.9%)    30 (0.9%)    3193 (100.0%)
    Age 65+              975 (35.6%)    773 (28.3%)   131 ( 4.8%)    827 (30.2%)    29 (1.1%)    2735 (100.0%)
      Total             3805 (35.8%)   3115 (29.3%)   994 ( 9.3%)   2625 (24.7%)   103 (1.0%)   10642 (100.0%)
----------- --------- -------------- -------------- ------------- -------------- ------------ ----------------

Some numerical variables in the data could also use recoding. For example, covid_news ranges 1 (follow closely) to 4 (not at all closely) We usually want our variables coded such that higher means more. So here, we’d like to reverse-code:

Frequencies  
dat$covid_news  
Type: Integer  

               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
----------- ------- --------- -------------- --------- --------------
          1    4836     53.58          53.58     45.44          45.44
          2    3456     38.29          91.88     32.48          77.92
          3     627      6.95          98.83      5.89          83.81
          4     106      1.17         100.00      1.00          84.81
       <NA>    1617                              15.19         100.00
      Total   10642    100.00         100.00    100.00         100.00
Frequencies  
dat$covid_news_r  
Type: Numeric  

               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
----------- ------- --------- -------------- --------- --------------
          1     106      1.17           1.17      1.00           1.00
          2     627      6.95           8.12      5.89           6.89
          3    3456     38.29          46.42     32.48          39.36
          4    4836     53.58         100.00     45.44          84.81
       <NA>    1617                              15.19         100.00
      Total   10642    100.00         100.00    100.00         100.00

Similarly, the following variables represent approval of the COVID response for various actors. They range from 1 (excellent) to 4 (poor). Let’s reverse them so that 1 is poor and 4 is excellent.

Frequencies  
dat$covid_trump  
Type: Integer  

               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
----------- ------- --------- -------------- --------- --------------
          1    1852     17.48          17.48     17.40          17.40
          2    2011     18.98          36.46     18.90          36.30
          3    1510     14.25          50.71     14.19          50.49
          4    5222     49.29         100.00     49.07          99.56
       <NA>      47                               0.44         100.00
      Total   10642    100.00         100.00    100.00         100.00
Frequencies  
dat$covid_trump  
Type: Integer  

               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
----------- ------- --------- -------------- --------- --------------
          1    1852     17.48          17.48     17.40          17.40
          2    2011     18.98          36.46     18.90          36.30
          3    1510     14.25          50.71     14.19          50.49
          4    5222     49.29         100.00     49.07          99.56
       <NA>      47                               0.44         100.00
      Total   10642    100.00         100.00    100.00         100.00
Frequencies  
dat$covid_usa  
Type: Integer  

               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
----------- ------- --------- -------------- --------- --------------
          1     905      8.58           8.58      8.50           8.50
          2    3659     34.67          43.25     34.38          42.89
          3    3531     33.46          76.71     33.18          76.07
          4    2458     23.29         100.00     23.10          99.16
       <NA>      89                               0.84         100.00
      Total   10642    100.00         100.00    100.00         100.00
Frequencies  
dat$covid_usa_r  
Type: Numeric  

               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
----------- ------- --------- -------------- --------- --------------
          1    2458     23.29          23.29     23.10          23.10
          2    3531     33.46          56.75     33.18          56.28
          3    3659     34.67          91.42     34.38          90.66
          4     905      8.58         100.00      8.50          99.16
       <NA>      89                               0.84         100.00
      Total   10642    100.00         100.00    100.00         100.00
Frequencies  
dat$covid_china  
Type: Integer  

               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
----------- ------- --------- -------------- --------- --------------
          1     645      6.21           6.21      6.06           6.06
          2    2887     27.80          34.01     27.13          33.19
          3    2998     28.87          62.89     28.17          61.36
          4    3854     37.11         100.00     36.21          97.58
       <NA>     258                               2.42         100.00
      Total   10642    100.00         100.00    100.00         100.00
Frequencies  
dat$covid_china_r  
Type: Numeric  

               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
----------- ------- --------- -------------- --------- --------------
          1    3854     37.11          37.11     36.21          36.21
          2    2998     28.87          65.99     28.17          64.39
          3    2887     27.80          93.79     27.13          91.51
          4     645      6.21         100.00      6.06          97.58
       <NA>     258                               2.42         100.00
      Total   10642    100.00         100.00    100.00         100.00

Data analysis

Some basic tests we often perform with survey data…

Correlations:

Is people’s ideology associated with approval for Trump’s covid response?


    Pearson's product-moment correlation

data:  dat$ideology and dat$covid_trump
t = 81.826, df = 10434, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.6133723 0.6367493
sample estimates:
     cor 
0.625201 

R normally uses scientific notation, e.g. 2.546e-15. If you are so inclined, you can ask it to stop doing that:

One-sample t-test to check if mean ideology is significantly different from 3.00:

    One Sample t-test

data:  dat$ideology
t = 2.6569, df = 10468, p-value = 0.007898
alternative hypothesis: true mean is not equal to 3
95 percent confidence interval:
 3.007289 3.048304
sample estimates:
mean of x 
 3.027796 

Paired samples t-test comparing mean approval for US and China’s COVID-19 response:


    Paired t-test

data:  dat$covid_usa_r and dat$covid_china_r
t = 18.317, df = 10367, p-value < 0.00000000000000022
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
 0.2253128 0.2793169
sample estimates:
mean difference 
      0.2523148 
Descriptive Statistics  
dat$covid_usa_r  
N: 10642  

                    covid_usa_r
----------------- -------------
             Mean          2.29
          Std.Dev          0.92
              Min          1.00
               Q1          2.00
           Median          2.00
               Q3          3.00
              Max          4.00
              MAD          1.48
              IQR          1.00
               CV          0.40
         Skewness          0.07
      SE.Skewness          0.02
         Kurtosis         -0.92
          N.Valid      10553.00
        Pct.Valid         99.16
Descriptive Statistics  
dat$covid_china_r  
N: 10642  

                    covid_china_r
----------------- ---------------
             Mean            2.03
          Std.Dev            0.95
              Min            1.00
               Q1            1.00
           Median            2.00
               Q3            3.00
              Max            4.00
              MAD            1.48
              IQR            2.00
               CV            0.47
         Skewness            0.38
      SE.Skewness            0.02
         Kurtosis           -1.01
          N.Valid        10384.00
        Pct.Valid           97.58

Independent samples t-test

Are men and women different in terms of political ideology?

[1] 2.938227
[1] 3.101533

    Welch Two Sample t-test

data:  dat$ideology by dat$sex_r
t = 7.771, df = 9984.3, p-value = 0.000000000000008552
alternative hypothesis: true difference in means between group Female and group Male is not equal to 0
95 percent confidence interval:
 0.1221124 0.2044983
sample estimates:
mean in group Female   mean in group Male 
            3.101533             2.938227 

independent samples t-test – note the use of formula as its first parameter. Many statistical test functions in R can use a formula as a parameter. An object of class formula looks something like this: y ~ x1 + x2 where y is a dependent variable, while x1 and x2 are independent variables. Notice also that in a formula, we use just the names of the columns (without dat$) t.test(ideology ~ sex_r, data=dat)

Regressions in R similarly use formulas to specify the desired model: Here the predicted variable is approval of USA’s COVID-19 response, and the predictors include respondent sex, age, race, party, and ideology.

Dependent variable

Frequencies  
dat$covid_usa_r  
Type: Numeric  

               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
----------- ------- --------- -------------- --------- --------------
          1    2458     23.29          23.29     23.10          23.10
          2    3531     33.46          56.75     33.18          56.28
          3    3659     34.67          91.42     34.38          90.66
          4     905      8.58         100.00      8.50          99.16
       <NA>      89                               0.84         100.00
      Total   10642    100.00         100.00    100.00         100.00

Estimate the Model

# weights:  52 (36 variable)
initial  value 13843.535490 
iter  10 value 11449.006685
iter  20 value 11203.807885
iter  30 value 11028.658201
iter  40 value 10986.648850
final  value 10984.029231 
converged
Call:
multinom(formula = covid_usa_r ~ sex_r + age_cat + race_r + edu + 
    income + party_r2 + ideology, data = dat)

Coefficients:
  (Intercept)  sex_rMale    age_cat race_rBlack race_rHispanic race_rOther
2    1.367193 -0.2689228 0.04005407  0.20251302      0.2064210   0.1319034
3    2.335754 -0.4541872 0.23009627  0.37462060      0.6499526   0.8361207
4    1.829208 -0.3230650 0.43169949  0.03390917      0.7299886   0.2685993
  race_rWhite         edu       income party_r2Ind/Oth party_r2Rep   ideology
2   0.4578814 -0.01398983 -0.007744406       0.1874743   0.8442158 -0.3927417
3   0.9041967 -0.10711432 -0.061217377       0.5242988   2.0492202 -0.9164768
4   0.4563683 -0.22176597 -0.105596632       0.5973720   2.6710984 -1.2810966

Residual Deviance: 21968.06 
AIC: 22040.06 

View the Results using tab_model() function

Multinomial Logistic Regression Results: How US responded to COVID-19
  covid_usa_r
Predictors Odds Ratios SE 95% CI Statistic p-value Response
(Intercept) 3.92 0.89 0.00 – Inf 6.00 <0.001 2
sex r [Male] 0.76 0.04 0.00 – Inf -4.75 <0.001 2
age cat 1.04 0.03 0.00 – Inf 1.36 0.174 2
race r [Black] 1.22 0.20 0.00 – Inf 1.24 0.217 2
race r [Hispanic] 1.23 0.19 0.00 – Inf 1.36 0.173 2
race r [Other] 1.14 0.24 0.00 – Inf 0.62 0.536 2
race r [White] 1.58 0.22 0.00 – Inf 3.22 0.001 2
edu 0.99 0.02 0.00 – Inf -0.63 0.526 2
income 0.99 0.01 0.00 – Inf -0.57 0.568 2
party r2 [Ind/Oth] 1.21 0.07 0.00 – Inf 3.03 0.002 2
party r2 [Rep] 2.33 0.30 0.00 – Inf 6.55 <0.001 2
ideology 0.68 0.02 0.00 – Inf -11.70 <0.001 2
(Intercept) 10.34 2.80 0.00 – Inf 8.63 <0.001 3
sex r [Male] 0.63 0.04 0.00 – Inf -7.19 <0.001 3
age cat 1.26 0.04 0.00 – Inf 7.00 <0.001 3
race r [Black] 1.45 0.31 0.00 – Inf 1.77 0.077 3
race r [Hispanic] 1.92 0.38 0.00 – Inf 3.31 0.001 3
race r [Other] 2.31 0.58 0.00 – Inf 3.34 0.001 3
race r [White] 2.47 0.46 0.00 – Inf 4.81 <0.001 3
edu 0.90 0.02 0.00 – Inf -4.52 <0.001 3
income 0.94 0.01 0.00 – Inf -4.10 <0.001 3
party r2 [Ind/Oth] 1.69 0.12 0.00 – Inf 7.30 <0.001 3
party r2 [Rep] 7.76 0.99 0.00 – Inf 16.06 <0.001 3
ideology 0.40 0.02 0.00 – Inf -23.92 <0.001 3
(Intercept) 6.23 2.68 0.00 – Inf 4.25 <0.001 4
sex r [Male] 0.72 0.07 0.00 – Inf -3.48 0.001 4
age cat 1.54 0.08 0.00 – Inf 8.61 <0.001 4
race r [Black] 1.03 0.38 0.00 – Inf 0.09 0.927 4
race r [Hispanic] 2.08 0.68 0.00 – Inf 2.24 0.025 4
race r [Other] 1.31 0.55 0.00 – Inf 0.63 0.526 4
race r [White] 1.58 0.50 0.00 – Inf 1.44 0.149 4
edu 0.80 0.03 0.00 – Inf -6.58 <0.001 4
income 0.90 0.02 0.00 – Inf -4.82 <0.001 4
party r2 [Ind/Oth] 1.82 0.25 0.00 – Inf 4.31 <0.001 4
party r2 [Rep] 14.46 2.50 0.00 – Inf 15.47 <0.001 4
ideology 0.28 0.02 0.00 – Inf -21.96 <0.001 4
Observations 9986
R2 / R2 adjusted 0.189 / 0.189

Interpretation

In this multinomial logistic regression model, the reference category is 1, and the responses 2, 3, and 4 indicate higher ratings for how well the U.S. handled the COVID-19 outbreak. Significant predictors include sex, age category, race, education, income, political party affiliation, and political ideology.

For Response 2, the odds ratios indicate that males (OR = 0.76, p < 0.001) are less likely to rate the U.S. response favorably compared to females. Whites (OR = 1.58, p = 0.001) and Republicans (OR = 2.33, p < 0.001) are more likely to rate the response favorably. The effect of age is not significant (OR = 1.04, p = 0.174). Education and income show no significant effects. The model suggests that political affiliation and race are strong determinants of perceptions of the U.S. response.

For Response 3, the odds ratios show a stronger effect of age (OR = 1.26, p < 0.001) and a significant effect of being male (OR = 0.63, p < 0.001). Hispanics (OR = 1.92, p = 0.001), and those identifying as “Other” race (OR = 2.31, p = 0.001) are more likely to rate the U.S. response favorably. Education and income negatively influence favorable ratings, and Republicans (OR = 7.76, p < 0.001) are significantly more likely to rate favorably. Ideology shows a substantial negative impact (OR = 0.40, p < 0.001).

For Response 4, age again shows a strong positive effect (OR = 1.54, p < 0.001), and males are less likely to rate favorably (OR = 0.72, p = 0.001). Hispanics (OR = 2.08, p = 0.025) are more likely to rate the response favorably, but the effect for Blacks is not significant. Education (OR = 0.80, p < 0.001) and income (OR = 0.90, p < 0.001) have significant negative impacts. Political affiliation again shows strong effects, with Republicans (OR = 14.46, p < 0.001

We can store the regression output in an object. The built-in summary() function will show us a better summary of the results:


Call:
glm(formula = covid_usa_r ~ sex_r + age_cat + race_r + edu + 
    income + party_r2 + ideology, data = dat)

Coefficients:
                 Estimate Std. Error t value             Pr(>|t|)    
(Intercept)      2.846824   0.067056  42.454 < 0.0000000000000002 ***
sex_rMale       -0.094508   0.015804  -5.980  0.00000000230657349 ***
age_cat          0.079999   0.008294   9.645 < 0.0000000000000002 ***
race_rBlack      0.052098   0.053096   0.981             0.326512    
race_rHispanic   0.186418   0.048596   3.836             0.000126 ***
race_rOther      0.172544   0.064271   2.685             0.007273 ** 
race_rWhite      0.187990   0.046198   4.069  0.00004753570079814 ***
edu             -0.041517   0.005910  -7.025  0.00000000000228070 ***
income          -0.021008   0.003762  -5.584  0.00000002407483930 ***
party_r2Ind/Oth  0.152483   0.019227   7.931  0.00000000000000241 ***
party_r2Rep      0.594893   0.025440  23.384 < 0.0000000000000002 ***
ideology        -0.267742   0.009096 -29.436 < 0.0000000000000002 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.5891177)

    Null deviance: 8403.0  on 9985  degrees of freedom
Residual deviance: 5875.9  on 9974  degrees of freedom
  (656 observations deleted due to missingness)
AIC: 23069

Number of Fisher Scoring iterations: 2
Multinomial Logistic Regression Results
  covid_usa_r
Predictors Estimates SE 95% CI Statistic p-value
(Intercept) 2.85 0.07 -Inf – Inf 42.45 <0.001
sex r [Male] -0.09 0.02 -Inf – Inf -5.98 <0.001
age cat 0.08 0.01 -Inf – Inf 9.64 <0.001
race r [Black] 0.05 0.05 -Inf – Inf 0.98 0.326
race r [Hispanic] 0.19 0.05 -Inf – Inf 3.84 <0.001
race r [Other] 0.17 0.06 -Inf – Inf 2.68 0.007
race r [White] 0.19 0.05 -Inf – Inf 4.07 <0.001
edu -0.04 0.01 -Inf – Inf -7.02 <0.001
income -0.02 0.00 -Inf – Inf -5.58 <0.001
party r2 [Ind/Oth] 0.15 0.02 -Inf – Inf 7.93 <0.001
party r2 [Rep] 0.59 0.03 -Inf – Inf 23.38 <0.001
ideology -0.27 0.01 -Inf – Inf -29.44 <0.001
Observations 9986
R2 0.301

You will notice that by default, the generalized linear model (glm) function will treat character variables as categorical. It will include in our model dummy variables for all variable categories except one, which will serve as the reference category that all the rest are compared to.

By default the last category is used as a reference. But what if we wanted to choose a different reference category? For example, we may want to drop “White” from the model and use it as our reference category for race. We can create a categorical variable (a so-called ‘factor’) and specify that.

Frequencies  
dat$covid_usa_r  
Type: Numeric  

               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
----------- ------- --------- -------------- --------- --------------
          1    2458     23.29          23.29     23.10          23.10
          2    3531     33.46          56.75     33.18          56.28
          3    3659     34.67          91.42     34.38          90.66
          4     905      8.58         100.00      8.50          99.16
       <NA>      89                               0.84         100.00
      Total   10642    100.00         100.00    100.00         100.00
Frequencies  
dat$covid_usa  
Type: Integer  

               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
----------- ------- --------- -------------- --------- --------------
          1     905      8.58           8.58      8.50           8.50
          2    3659     34.67          43.25     34.38          42.89
          3    3531     33.46          76.71     33.18          76.07
          4    2458     23.29         100.00     23.10          99.16
       <NA>      89                               0.84         100.00
      Total   10642    100.00         100.00    100.00         100.00
Frequencies  
dat$race_r_f  
Type: Factor  

                  Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
-------------- ------- --------- -------------- --------- --------------
         White    7116     66.87          66.87     66.87          66.87
         Asian     308      2.89          69.76      2.89          69.76
         Black     884      8.31          78.07      8.31          78.07
      Hispanic    2034     19.11          97.18     19.11          97.18
         Other     300      2.82         100.00      2.82         100.00
          <NA>       0                               0.00         100.00
         Total   10642    100.00         100.00    100.00         100.00

See how the regression output changes:


Call:
glm(formula = covid_usa_r ~ sex_r + age_cat + race_r_f + edu + 
    income + party_r2 + ideology, data = dat)

Coefficients:
                  Estimate Std. Error t value             Pr(>|t|)    
(Intercept)       3.034815   0.052076  58.277 < 0.0000000000000002 ***
sex_rMale        -0.094508   0.015804  -5.980  0.00000000230657349 ***
age_cat           0.079999   0.008294   9.645 < 0.0000000000000002 ***
race_r_fAsian    -0.187990   0.046198  -4.069  0.00004753570079813 ***
race_r_fBlack    -0.135892   0.029898  -4.545  0.00000555442687018 ***
race_r_fHispanic -0.001573   0.021023  -0.075                0.940    
race_r_fOther    -0.015446   0.046899  -0.329                0.742    
edu              -0.041517   0.005910  -7.025  0.00000000000228070 ***
income           -0.021008   0.003762  -5.584  0.00000002407483930 ***
party_r2Ind/Oth   0.152483   0.019227   7.931  0.00000000000000241 ***
party_r2Rep       0.594893   0.025440  23.384 < 0.0000000000000002 ***
ideology         -0.267742   0.009096 -29.436 < 0.0000000000000002 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.5891177)

    Null deviance: 8403.0  on 9985  degrees of freedom
Residual deviance: 5875.9  on 9974  degrees of freedom
  (656 observations deleted due to missingness)
AIC: 23069

Number of Fisher Scoring iterations: 2
Multinomial Logistic Regression Results
  covid_usa_r
Predictors Estimates SE 95% CI Statistic p-value
(Intercept) 3.03 0.05 -Inf – Inf 58.28 <0.001
sex r [Male] -0.09 0.02 -Inf – Inf -5.98 <0.001
age cat 0.08 0.01 -Inf – Inf 9.64 <0.001
race r f [Asian] -0.19 0.05 -Inf – Inf -4.07 <0.001
race r f [Black] -0.14 0.03 -Inf – Inf -4.55 <0.001
race r f [Hispanic] -0.00 0.02 -Inf – Inf -0.07 0.940
race r f [Other] -0.02 0.05 -Inf – Inf -0.33 0.742
edu -0.04 0.01 -Inf – Inf -7.02 <0.001
income -0.02 0.00 -Inf – Inf -5.58 <0.001
party r2 [Ind/Oth] 0.15 0.02 -Inf – Inf 7.93 <0.001
party r2 [Rep] 0.59 0.03 -Inf – Inf 23.38 <0.001
ideology -0.27 0.01 -Inf – Inf -29.44 <0.001
Observations 9986
R2 0.301

Remember we can also add more relevant variables from the data into our regression:


Call:
glm(formula = covid_usa_r ~ sex_r + age_cat + race_r_f + edu + 
    income + party_r2 + ideology + covid_trump_r + covid_news_r, 
    data = dat)

Coefficients:
                   Estimate Std. Error t value             Pr(>|t|)    
(Intercept)       1.7505321  0.0650425  26.914 < 0.0000000000000002 ***
sex_rMale        -0.1000170  0.0149620  -6.685   0.0000000000246043 ***
age_cat           0.0617632  0.0081114   7.614   0.0000000000000294 ***
race_r_fAsian    -0.1844469  0.0429839  -4.291   0.0000179797840673 ***
race_r_fBlack     0.0007666  0.0287185   0.027              0.97870    
race_r_fHispanic -0.0071730  0.0216881  -0.331              0.74085    
race_r_fOther    -0.0543268  0.0432993  -1.255              0.20963    
edu              -0.0077178  0.0057010  -1.354              0.17585    
income           -0.0088808  0.0035996  -2.467              0.01364 *  
party_r2Ind/Oth  -0.0279994  0.0187251  -1.495              0.13488    
party_r2Rep      -0.0128419  0.0272820  -0.471              0.63786    
ideology         -0.0993492  0.0093609 -10.613 < 0.0000000000000002 ***
covid_trump_r     0.4532929  0.0092669  48.915 < 0.0000000000000002 ***
covid_news_r     -0.0306819  0.0114040  -2.690              0.00715 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.4454372)

    Null deviance: 7060.8  on 8454  degrees of freedom
Residual deviance: 3759.9  on 8441  degrees of freedom
  (2187 observations deleted due to missingness)
AIC: 17173

Number of Fisher Scoring iterations: 2

As usual, there is an R package the will offer us better and more informative formatting:

Result table:

Observations 8455 (2187 missing obs. deleted)
Dependent variable covid_usa_r
Type Linear regression
χ²(13) 3300.84
Pseudo-R² (Cragg-Uhler) 0.50
Pseudo-R² (McFadden) 0.24
AIC 17172.69
BIC 17278.33
Est. S.E. t val. p
(Intercept) 1.75 0.07 26.91 0.00
sex_rMale -0.10 0.01 -6.68 0.00
age_cat 0.06 0.01 7.61 0.00
race_r_fAsian -0.18 0.04 -4.29 0.00
race_r_fBlack 0.00 0.03 0.03 0.98
race_r_fHispanic -0.01 0.02 -0.33 0.74
race_r_fOther -0.05 0.04 -1.25 0.21
edu -0.01 0.01 -1.35 0.18
income -0.01 0.00 -2.47 0.01
party_r2Ind/Oth -0.03 0.02 -1.50 0.13
party_r2Rep -0.01 0.03 -0.47 0.64
ideology -0.10 0.01 -10.61 0.00
covid_trump_r 0.45 0.01 48.92 0.00
covid_news_r -0.03 0.01 -2.69 0.01
Standard errors: MLE

Standardized coefficients:

Observations 8455 (2187 missing obs. deleted)
Dependent variable covid_usa_r
Type Linear regression
χ²(13) 3300.84
Pseudo-R² (Cragg-Uhler) 0.50
Pseudo-R² (McFadden) 0.24
AIC 17172.69
BIC 17278.33
Est. S.E. t val. p
(Intercept) 2.33 0.02 139.64 0.00
sex_rMale -0.10 0.01 -6.68 0.00
age_cat 0.06 0.01 7.61 0.00
race_r_fAsian -0.18 0.04 -4.29 0.00
race_r_fBlack 0.00 0.03 0.03 0.98
race_r_fHispanic -0.01 0.02 -0.33 0.74
race_r_fOther -0.05 0.04 -1.25 0.21
edu -0.01 0.01 -1.35 0.18
income -0.02 0.01 -2.47 0.01
party_r2Ind/Oth -0.03 0.02 -1.50 0.13
party_r2Rep -0.01 0.03 -0.47 0.64
ideology -0.11 0.01 -10.61 0.00
covid_trump_r 0.53 0.01 48.92 0.00
covid_news_r -0.02 0.01 -2.69 0.01
Standard errors: MLE; Continuous predictors are mean-centered and scaled by 1 s.d. The outcome variable remains in its original units.

Plot the regression results:

Plot the results from both models:

We can create more readable coefficient names to use here:

We can also use our own model names if we wish:

Make the plot with better names

The plot provided is a coefficient plot comparing two models (Model 1 and Model 2) for various predictors. The estimates (coefficients) are plotted on the x-axis, and each predictor is listed on the y-axis. Both models’ estimates are shown with confidence intervals.

Sex (sex_rMale)

Both models suggest that being male has a negative estimate, indicating males are less likely to rate the response favorably compared to females. The estimates and confidence intervals are close, showing consistent results across models.

Age Category (age_cat)

Both models show a positive estimate for age category, meaning older age groups are more likely to rate the response favorably. The confidence intervals are overlapping and fairly narrow, indicating a stable effect.

Race

For race variables (race_r_fAsian, race_r_fBlack, race_r_fHispanic, race_r_fOther), there are differences in the estimates and confidence intervals between the two models. For instance, the effect of being Black (race_r_fBlack) has a slight positive estimate in Model 2 but is less clear in Model 1. The effect of being Hispanic (race_r_fHispanic) is positive in both models but with slightly different magnitudes. The confidence intervals for these estimates are wider, indicating less certainty about the exact effect sizes.

Education (edu)

Education has a negative estimate in both models, indicating that higher education levels are associated with less favorable ratings of the response. The estimates and confidence intervals are very similar across both models.

Income (income)

The effect of income is negative in both models, meaning higher income levels are associated with less favorable ratings. The confidence intervals are narrow and overlapping, showing consistency.

Political Party (party_r2Ind/Oth, party_r2Rep)

Political party affiliation shows a significant effect. Being independent/other (party_r2Ind/Oth) has a positive estimate in both models, indicating they are more likely to rate the response favorably. The effect of being Republican (party_r2Rep) is very strong and positive in both models, with non-overlapping confidence intervals, indicating a significant and strong effect.

Ideology (ideology)

Political ideology has a strong negative effect in both models, meaning more conservative ideology is associated with less favorable ratings. The confidence intervals are non-overlapping and consistent across models, highlighting a significant effect.

Specific Variables in Model 2

Model 2 includes additional variables (covid_trump_r and covid_news_r). The estimate for covid_trump_r is positive, indicating that favorable views on Trump’s handling of COVID-19 are associated with favorable ratings of the response. The covid_news_r variable has a smaller effect and is close to zero, suggesting news sources’ influence might be minimal or neutral.

Both models are largely consistent in the direction and magnitude of the effects for most predictors, with some differences in the specific effects of race and the additional variables in Model 2. The strong effects of political affiliation and ideology are clear and significant across both models. The additional variables in Model 2 provide further insights, particularly regarding views on Trump’s handling of COVID-19.

Generate pretty tables for your papers:

Model w/o TrumpModel with Trump
Male-0.09 ***-0.10 ***
(0.02)   (0.01)   
Age0.08 ***0.06 ***
(0.01)   (0.01)   
Education-0.04 ***-0.01    
(0.01)   (0.01)   
Income-0.02 ***-0.01 *  
(0.00)   (0.00)   
Race/Ethnicity: Asian-0.19 ***-0.18 ***
(0.05)   (0.04)   
Race/Ethnicity: Black-0.14 ***0.00    
(0.03)   (0.03)   
Race/Ethnicity: Hispanic-0.00    -0.01    
(0.02)   (0.02)   
Race/Ethnicity: Other-0.02    -0.05    
(0.05)   (0.04)   
Party: Republican0.59 ***-0.01    
(0.03)   (0.03)   
Party: Indep/Other0.15 ***-0.03    
(0.02)   (0.02)   
Ideology-0.27 ***-0.10 ***
(0.01)   (0.01)   
Trump COVID-19 approval       0.45 ***
       (0.01)   
COVID-19 news use       -0.03 ** 
       (0.01)   
N9986       8455       
AIC23069.15    17172.69    
BIC23162.86    17278.33    
Pseudo R20.32    0.50    
*** p < 0.001; ** p < 0.01; * p < 0.05.

We can now save the table in a pretty format:

Model w/o TrumpModel with Trump
Male-0.09 ***-0.10 ***
(0.02)   (0.01)   
Age0.08 ***0.06 ***
(0.01)   (0.01)   
Education-0.04 ***-0.01    
(0.01)   (0.01)   
Income-0.02 ***-0.01 *  
(0.00)   (0.00)   
Race/Ethnicity: Asian-0.19 ***-0.18 ***
(0.05)   (0.04)   
Race/Ethnicity: Black-0.14 ***0.00    
(0.03)   (0.03)   
Race/Ethnicity: Hispanic-0.00    -0.01    
(0.02)   (0.02)   
Race/Ethnicity: Other-0.02    -0.05    
(0.05)   (0.04)   
Party: Republican0.59 ***-0.01    
(0.03)   (0.03)   
Party: Indep/Other0.15 ***-0.03    
(0.02)   (0.02)   
Ideology-0.27 ***-0.10 ***
(0.01)   (0.01)   
Trump COVID-19 approval       0.45 ***
       (0.01)   
COVID-19 news use       -0.03 ** 
       (0.01)   
N9986       8455       
AIC23069.15    17172.69    
BIC23162.86    17278.33    
Pseudo R20.32    0.50    
*** p < 0.001; ** p < 0.01; * p < 0.05.

ADDITIONAL INFORMATION

Note that we can also use glm() for other types of regression by including an additional ‘family’ parameter, like so: * glm( y ~ x1 + x2 + x3, data=dat, family = “binomial”) # logistic regression * glm( y ~ x1 + x2 + x3, data=dat, family = “poisson”) # Poisson regression

Using survey weights

As we will discuss later on, we often want to use survey weights to improve the representativeness of our data. The pew survey data already includes weights. To apply them in a regression, we can simply add a parameter to the glm() function:


Call:
glm(formula = covid_usa_r ~ sex_r + age_cat + race_r_f + edu + 
    income + party_r2 + ideology + covid_trump_r + covid_news_r, 
    data = dat, weights = dat$weight)

Coefficients:
                  Estimate Std. Error t value             Pr(>|t|)    
(Intercept)       1.688831   0.061531  27.447 < 0.0000000000000002 ***
sex_rMale        -0.086690   0.015412  -5.625         0.0000000192 ***
age_cat           0.068488   0.008195   8.357 < 0.0000000000000002 ***
race_r_fAsian    -0.158580   0.037878  -4.187         0.0000286005 ***
race_r_fBlack     0.073285   0.026645   2.750              0.00596 ** 
race_r_fHispanic  0.012305   0.025450   0.484              0.62875    
race_r_fOther     0.095890   0.036477   2.629              0.00858 ** 
edu              -0.020610   0.005576  -3.696              0.00022 ***
income           -0.009872   0.003566  -2.768              0.00565 ** 
party_r2Ind/Oth  -0.038464   0.019851  -1.938              0.05271 .  
party_r2Rep       0.004173   0.027338   0.153              0.87868    
ideology         -0.085329   0.009320  -9.155 < 0.0000000000000002 ***
covid_trump_r     0.430155   0.009033  47.619 < 0.0000000000000002 ***
covid_news_r     -0.004119   0.011002  -0.374              0.70814    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.459697)

    Null deviance: 6876.7  on 8454  degrees of freedom
Residual deviance: 3880.3  on 8441  degrees of freedom
  (2187 observations deleted due to missingness)
AIC: 21071

Number of Fisher Scoring iterations: 2
Observations 8455 (2187 missing obs. deleted)
Dependent variable covid_usa_r
Type Linear regression
χ²(13) 2996.39
Pseudo-R² (Cragg-Uhler) 0.46
Pseudo-R² (McFadden) 0.19
AIC 21071.38
BIC 21177.01
Est. S.E. t val. p
(Intercept) 1.69 0.06 27.45 0.00
sex_rMale -0.09 0.02 -5.62 0.00
age_cat 0.07 0.01 8.36 0.00
race_r_fAsian -0.16 0.04 -4.19 0.00
race_r_fBlack 0.07 0.03 2.75 0.01
race_r_fHispanic 0.01 0.03 0.48 0.63
race_r_fOther 0.10 0.04 2.63 0.01
edu -0.02 0.01 -3.70 0.00
income -0.01 0.00 -2.77 0.01
party_r2Ind/Oth -0.04 0.02 -1.94 0.05
party_r2Rep 0.00 0.03 0.15 0.88
ideology -0.09 0.01 -9.16 0.00
covid_trump_r 0.43 0.01 47.62 0.00
covid_news_r -0.00 0.01 -0.37 0.71
Standard errors: MLE

But what if we want to do other types of analysis with weights? And what if we want to create our own weights? Good news: there is a package for that too!

We can create a “survey” object by using the svydesign() function. The ‘ids’ parameter specifies cluster IDs in a clustered design. When there are no clusters, we just put ids~1 The ‘data’ parameter is the data frame we have been using. the ‘weights’ parameter is the survey weight we want to use

Create a survey object:

Examine the weighted values for a variable:

race_r
    Asian     Black  Hispanic     Other     White 
 433.2480 1246.0735 1555.6334  480.7359 6876.3042 

   Asian    Black Hispanic    Other    White 
     308      884     2034      300     7116 
Crosstabs:
          sex_r
race_r        Female      Male
  Asian     175.5732  257.6748
  Black     779.6850  466.3885
  Hispanic  764.8747  790.7587
  Other     254.7233  226.0125
  White    3579.3412 3296.9630
          
           Female Male
  Asian       133  175
  Black       602  282
  Hispanic   1153  881
  Other       175  125
  White      3807 3309

Examine weighted mean and standard deviation for a variable. the ‘na.rm’ parameter if true tells the functions used here to ignore missing data if there is any of it present.

           mean     SE
ideology 2.9243 0.0153
[1] 3.027796
         std. dev.
ideology     1.054
[1] 1.070451

We can use the function ‘svyby’ to get weighted means by category – e.g. weighted ideology mean for men/women:

sex_rideologyse
Female2.960.0203
Male2.880.0231

We can do weighted t-tests:


    Design-based t-test

data:  ideology ~ sex_r
t = -2.6921, df = 10467, p-value = 0.007111
alternative hypothesis: true difference in mean is not equal to 0
95 percent confidence interval:
 -0.14285548 -0.02247483
sample estimates:
difference in mean 
       -0.08266515 

And, as we did before, we can estimate regression models.

Model 1: with weights, using the ‘survey’ package


Call:
svyglm(formula = covid_usa_r ~ sex_r + age_cat + race_r_f + party_r2, 
    design = dat.w)

Survey design:
svydesign(ids = ~1, data = dat, weights = dat$weight)

Coefficients:
                 Estimate Std. Error t value             Pr(>|t|)    
(Intercept)       1.66911    0.04396  37.965 < 0.0000000000000002 ***
sex_rMale        -0.06974    0.02572  -2.712              0.00670 ** 
age_cat           0.13488    0.01321  10.209 < 0.0000000000000002 ***
race_r_fAsian    -0.29657    0.06481  -4.576           0.00000479 ***
race_r_fBlack     0.06271    0.05198   1.206              0.22767    
race_r_fHispanic  0.10718    0.03927   2.729              0.00636 ** 
race_r_fOther     0.13529    0.08001   1.691              0.09089 .  
party_r2Ind/Oth   0.28370    0.03104   9.141 < 0.0000000000000002 ***
party_r2Rep       0.92242    0.03245  28.426 < 0.0000000000000002 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.681278)

Number of Fisher Scoring iterations: 2

Model 2: also with weights, but using glm() instead


Call:
glm(formula = covid_usa_r ~ sex_r + age_cat + race_r_f + party_r2, 
    data = dat, weights = dat$weight)

Coefficients:
                  Estimate Std. Error t value             Pr(>|t|)    
(Intercept)       1.669106   0.029349  56.870 < 0.0000000000000002 ***
sex_rMale        -0.069744   0.016310  -4.276     0.00001919246439 ***
age_cat           0.134883   0.008257  16.335 < 0.0000000000000002 ***
race_r_fAsian    -0.296569   0.041600  -7.129     0.00000000000108 ***
race_r_fBlack     0.062708   0.027136   2.311             0.020859 *  
race_r_fHispanic  0.107180   0.024463   4.381     0.00001191173846 ***
race_r_fOther     0.135294   0.039352   3.438             0.000588 ***
party_r2Ind/Oth   0.283696   0.019862  14.283 < 0.0000000000000002 ***
party_r2Rep       0.922417   0.022500  40.997 < 0.0000000000000002 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.6785958)

    Null deviance: 8797.3  on 10459  degrees of freedom
Residual deviance: 7092.0  on 10451  degrees of freedom
  (182 observations deleted due to missingness)
AIC: 30098

Number of Fisher Scoring iterations: 2

Model 3: using glm but no weights


Call:
glm(formula = covid_usa_r ~ sex_r + age_cat + race_r_f + party_r2, 
    data = dat)

Coefficients:
                  Estimate Std. Error t value             Pr(>|t|)    
(Intercept)       1.604386   0.028695  55.911 < 0.0000000000000002 ***
sex_rMale        -0.100394   0.016104  -6.234       0.000000000472 ***
age_cat           0.112723   0.008451  13.338 < 0.0000000000000002 ***
race_r_fAsian    -0.223996   0.047889  -4.677       0.000002942205 ***
race_r_fBlack     0.006204   0.030074   0.206                0.837    
race_r_fHispanic  0.087655   0.021218   4.131       0.000036383182 ***
race_r_fOther     0.033863   0.048197   0.703                0.482    
party_r2Ind/Oth   0.372972   0.018536  20.121 < 0.0000000000000002 ***
party_r2Rep       1.059060   0.021190  49.979 < 0.0000000000000002 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.6548246)

    Null deviance: 8802.5  on 10459  degrees of freedom
Residual deviance: 6843.6  on 10451  degrees of freedom
  (182 observations deleted due to missingness)
AIC: 25267

Number of Fisher Scoring iterations: 2

We also can do other things, such as plot variable histograms:

Creating survey weights

Following-up class discussion on post-stratification weights, here is how we can generate our own weights. First, we need to select the variables we want to use for weighting. Question: how does our sample differ from the population in ways that affect our key research questions? (and what is the population?) Let’s say we want to create weights based on gender and race. What are the distributions of gender and race in our population? We need to know that so we can adjust accordingly in our data. Looking up population data (see census.gov), we find that the US is 48% male and 52% female. We also see that we seem to have a total of 63% White, 17% Hispanic, 12% Black, 6% Asian, and 2% other Americans. How does our data compare to the general population?

Frequencies  
dat$sex_r  
Type: Character  

                Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
------------ ------- --------- -------------- --------- --------------
      Female    5870     55.16          55.16     55.16          55.16
        Male    4772     44.84         100.00     44.84         100.00
        <NA>       0                               0.00         100.00
       Total   10642    100.00         100.00    100.00         100.00
Frequencies  
dat$race_r  
Type: Character  

                  Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
-------------- ------- --------- -------------- --------- --------------
         Asian     308      2.89           2.89      2.89           2.89
         Black     884      8.31          11.20      8.31          11.20
      Hispanic    2034     19.11          30.31     19.11          30.31
         Other     300      2.82          33.13      2.82          33.13
         White    7116     66.87         100.00     66.87         100.00
          <NA>       0                               0.00         100.00
         Total   10642    100.00         100.00    100.00         100.00

Ok, now let’s create some weights to adjust for that.

Create a survey object with no weights specified:

Calculate how many people of each sex or race we would expect to see in our data if it was distributed like the US population:

[1] 10642
[1] 5108.16 5533.84
[1] 6704.46 1809.14 1277.04  638.52  212.84

Each of the following data frames has two columns: one with the name of the variable we will use to create weights, and a second column named “Freq”. The first column contains all possible categories of that variable. The second gives us the number of people from that category we would have in the data if our sample followed the same proportions that we see in the entire population (those are ‘num_by_sex’ and ‘num_by_race’ above)

sex_rFreq
Male5.11e+03
Female5.53e+03
race_rFreq
White6.7e+03 
Hispanic1.81e+03
Black1.28e+03
Asian639       
Other213       

Finally, we use the rake() function to calculate weights based on the population values for each of the variables we have decided to use. Note that we if we have any missing values in the sex or race data,we will get an error at this point.Here, ‘sample.margins’ is a list with formulas for all the weighing variables we are using. The ‘population.margins’ parameter contains the data frame we created above (one for each variable).

Independent Sampling design (with replacement)
rake(design = dat.s, sample.margins = list(~sex_r, ~race_r), 
    population.margins = list(sex_dist, race_dist))

We can extract the weight vector from our data if we need it:

    [1] 0.8835964 1.0095522 1.0095522 0.8835964 1.9177880 0.8835964 0.8835964
    [8] 0.8835964 0.8835964 1.0095522 0.9571424 1.0095522 1.0095522 0.8835964
   [15] 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964
   [22] 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522
   [29] 1.0095522 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522
   [36] 0.8835964 0.8835964 0.8377255 0.8835964 0.8835964 1.3817806 1.3817806
   [43] 1.3817806 0.8835964 0.8835964 0.8835964 0.8835964 1.3817806 0.8835964
   [50] 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522
   [57] 0.8377255 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522
   [64] 0.8835964 1.0095522 2.1911668 0.8835964 1.0095522 1.0095522 0.8835964
   [71] 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 0.7651538 1.0095522
   [78] 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964
   [85] 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 1.3817806 1.0095522
   [92] 0.8835964 0.8835964 0.8835964 0.8835964 0.8377255 0.8835964 0.8835964
   [99] 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522
  [106] 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.6696901
  [113] 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522 0.9571424
  [120] 1.0095522 0.8835964 1.0095522 1.0095522 0.7651538 0.8835964 0.8835964
  [127] 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964
  [134] 0.8835964 0.8835964 1.0095522 0.8835964 0.7651538 0.8835964 0.8835964
  [141] 1.0095522 0.8835964 1.9177880 0.8835964 1.0095522 1.0095522 0.8377255
  [148] 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964
  [155] 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522
  [162] 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522
  [169] 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964
  [176] 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964
  [183] 1.0095522 1.0095522 1.0095522 1.5787520 0.8835964 1.0095522 0.8835964
  [190] 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964
  [197] 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522
  [204] 0.8835964 0.8835964 1.3817806 0.7651538 0.8377255 1.0095522 0.8835964
  [211] 1.0095522 0.8835964 1.9177880 1.0095522 0.8377255 0.8835964 0.8835964
  [218] 1.3817806 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522
  [225] 1.0095522 1.5787520 0.8835964 1.3817806 1.0095522 0.8377255 0.8835964
  [232] 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964
  [239] 1.0095522 0.6696901 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964
  [246] 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964
  [253] 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 0.8377255
  [260] 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964
  [267] 0.8377255 1.3817806 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964
  [274] 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964
  [281] 1.5787520 0.8835964 1.0095522 1.0095522 0.7651538 1.0095522 1.0095522
  [288] 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964
  [295] 1.3817806 0.8835964 0.8835964 1.3817806 1.3817806 1.0095522 1.0095522
  [302] 0.8835964 1.0095522 1.5787520 0.8835964 1.0095522 1.0095522 0.8835964
  [309] 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964
  [316] 1.9177880 1.0095522 2.1911668 1.0095522 1.0095522 0.7651538 0.6696901
  [323] 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 1.3817806
  [330] 1.0095522 1.5787520 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522
  [337] 1.0095522 1.3817806 0.6696901 0.8835964 0.8835964 0.8835964 1.0095522
  [344] 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964
  [351] 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964 0.8377255
  [358] 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964
  [365] 1.0095522 1.0095522 1.0095522 2.1911668 0.8835964 1.9177880 0.8835964
  [372] 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964
  [379] 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522
  [386] 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964
  [393] 1.0095522 0.7651538 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964
  [400] 1.0095522 0.9571424 1.3817806 1.0095522 1.0095522 0.8835964 0.8835964
  [407] 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 1.5787520 1.0095522
  [414] 0.8835964 0.8835964 0.9571424 0.8835964 1.0095522 0.8835964 0.8835964
  [421] 0.8835964 0.8835964 0.8835964 1.3817806 0.8835964 1.0095522 0.8835964
  [428] 0.8835964 1.3817806 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522
  [435] 1.0095522 0.8835964 0.8835964 1.0095522 0.8377255 0.8835964 1.0095522
  [442] 1.0095522 1.0095522 0.8835964 0.7651538 1.0095522 1.0095522 0.9571424
  [449] 0.6696901 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964
  [456] 0.8835964 1.0095522 0.8835964 0.9571424 1.0095522 1.0095522 0.8835964
  [463] 1.3817806 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964
  [470] 1.0095522 0.8835964 0.6696901 1.0095522 1.0095522 1.0095522 1.0095522
  [477] 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 2.1911668 1.0095522
  [484] 1.3817806 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522
  [491] 0.8835964 1.0095522 0.6696901 1.3817806 1.0095522 0.8835964 1.0095522
  [498] 1.9177880 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964
  [505] 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522
  [512] 0.8835964 1.3817806 0.8835964 1.0095522 1.0095522 1.5787520 0.8835964
  [519] 0.8377255 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522
  [526] 1.0095522 0.8835964 1.0095522 0.8835964 1.0095522 0.9571424 0.8835964
  [533] 0.9571424 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964
  [540] 0.7651538 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964
  [547] 1.0095522 0.8835964 0.8835964 0.8835964 0.6696901 0.8835964 0.8835964
  [554] 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522
  [561] 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 0.6696901 0.8835964
  [568] 0.8835964 0.6696901 0.8835964 1.0095522 0.7651538 1.0095522 1.0095522
  [575] 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522
  [582] 0.8377255 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964
  [589] 0.8835964 1.5787520 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964
  [596] 1.0095522 0.8835964 1.0095522 1.3817806 0.8835964 1.0095522 0.8377255
  [603] 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 0.9571424
  [610] 1.0095522 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964
  [617] 1.0095522 0.8835964 0.8835964 0.8377255 0.8835964 1.0095522 0.8835964
  [624] 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 1.9177880 1.0095522
  [631] 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522
  [638] 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522
  [645] 1.0095522 0.8835964 0.8377255 0.8835964 1.0095522 1.0095522 0.8835964
  [652] 1.0095522 0.8835964 1.5787520 1.0095522 1.0095522 0.8835964 1.5787520
  [659] 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964
  [666] 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522
  [673] 1.0095522 0.8835964 0.8835964 0.8835964 1.3817806 1.5787520 1.0095522
  [680] 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964
  [687] 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964
  [694] 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522
  [701] 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964
  [708] 0.8835964 1.3817806 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522
  [715] 1.0095522 0.8835964 0.8835964 1.0095522 2.1911668 0.8377255 0.6696901
  [722] 1.0095522 1.0095522 0.8377255 1.5787520 0.8835964 0.8835964 1.0095522
  [729] 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 1.3817806 0.8835964
  [736] 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964
  [743] 0.8835964 0.8835964 1.0095522 1.3817806 1.0095522 0.8835964 1.0095522
  [750] 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522
  [757] 1.0095522 1.0095522 0.8835964 1.3817806 1.3817806 1.0095522 0.8835964
  [764] 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964
  [771] 0.8835964 0.8835964 0.6696901 0.8835964 1.0095522 1.0095522 0.8835964
  [778] 1.0095522 0.9571424 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522
  [785] 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964
  [792] 1.0095522 1.0095522 0.7651538 0.8835964 1.0095522 0.8835964 1.3817806
  [799] 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964 0.8377255
  [806] 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522 0.9571424 0.8835964
  [813] 0.8835964 1.0095522 1.0095522 0.8835964 0.8377255 0.8835964 1.0095522
  [820] 1.5787520 1.0095522 0.8835964 0.8835964 0.6696901 0.8835964 1.0095522
  [827] 1.0095522 1.3817806 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964
  [834] 1.0095522 0.8377255 0.8835964 0.8835964 0.8835964 1.5787520 0.8835964
  [841] 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 0.8377255 0.8835964
  [848] 0.8835964 0.8835964 1.9177880 1.0095522 1.0095522 0.8835964 1.0095522
  [855] 1.0095522 1.0095522 0.8377255 0.8835964 1.0095522 1.5787520 0.9571424
  [862] 1.3817806 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522
  [869] 1.0095522 0.8377255 0.8835964 0.9571424 0.6696901 1.0095522 1.0095522
  [876] 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964
  [883] 1.0095522 1.0095522 0.8835964 0.7651538 1.3817806 1.0095522 1.5787520
  [890] 0.7651538 1.0095522 0.6696901 1.9177880 0.8377255 0.8835964 1.0095522
  [897] 0.8377255 1.3817806 0.9571424 1.0095522 0.8835964 1.0095522 0.8835964
  [904] 0.6696901 0.7651538 1.0095522 1.0095522 1.5787520 0.8835964 1.0095522
  [911] 1.5787520 1.0095522 0.8835964 1.0095522 0.6696901 0.8377255 0.8835964
  [918] 0.8835964 1.5787520 1.0095522 2.1911668 0.8377255 0.8835964 1.0095522
  [925] 1.0095522 0.8377255 0.8835964 1.0095522 1.3817806 0.8835964 1.0095522
  [932] 1.3817806 0.8835964 1.0095522 1.0095522 0.8835964 0.8377255 0.8835964
  [939] 0.8835964 0.8835964 0.9571424 1.0095522 0.8377255 0.8835964 1.0095522
  [946] 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 0.7651538 0.8377255
  [953] 1.3817806 0.8835964 1.0095522 1.0095522 0.8377255 1.0095522 1.0095522
  [960] 1.3817806 0.8835964 1.5787520 0.8835964 0.8835964 1.0095522 0.8835964
  [967] 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964
  [974] 1.5787520 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964
  [981] 1.0095522 0.8835964 0.8835964 0.8835964 1.9177880 1.0095522 1.0095522
  [988] 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 1.5787520
  [995] 1.0095522 0.8835964 0.9571424 1.0095522 1.5787520 0.8835964 1.0095522
 [1002] 1.5787520 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 0.9571424
 [1009] 1.0095522 1.0095522 0.8377255 0.8835964 0.8835964 0.8835964 0.8835964
 [1016] 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522
 [1023] 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964
 [1030] 1.0095522 0.9571424 0.8835964 1.0095522 1.3817806 0.8377255 0.8835964
 [1037] 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964
 [1044] 0.8835964 0.8835964 0.8377255 1.0095522 1.0095522 1.0095522 0.8835964
 [1051] 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522
 [1058] 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522
 [1065] 1.0095522 1.0095522 1.3817806 0.9571424 1.0095522 1.0095522 0.8835964
 [1072] 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522
 [1079] 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964
 [1086] 0.9571424 1.3817806 1.0095522 0.8835964 0.8377255 0.9571424 1.0095522
 [1093] 1.0095522 0.8835964 2.1911668 0.9571424 2.1911668 0.7651538 1.0095522
 [1100] 1.0095522 1.0095522 0.6696901 1.0095522 1.0095522 1.0095522 0.8835964
 [1107] 0.8835964 0.8377255 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964
 [1114] 0.8835964 0.8377255 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522
 [1121] 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522 0.7651538 1.0095522
 [1128] 0.8835964 0.8835964 0.8377255 1.5787520 0.8835964 0.8835964 0.8835964
 [1135] 0.8835964 1.0095522 0.7651538 0.8835964 0.8835964 0.8835964 0.8835964
 [1142] 0.8835964 0.8835964 1.0095522 1.0095522 1.3817806 0.8835964 1.5787520
 [1149] 1.5787520 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522
 [1156] 0.8835964 1.0095522 0.8835964 1.3817806 0.8835964 1.0095522 1.0095522
 [1163] 1.0095522 0.9571424 1.3817806 1.0095522 0.8835964 0.8377255 1.0095522
 [1170] 0.8835964 1.0095522 1.0095522 1.5787520 1.0095522 1.0095522 0.8835964
 [1177] 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964
 [1184] 1.0095522 1.0095522 1.0095522 0.8835964 0.7651538 1.5787520 1.5787520
 [1191] 1.0095522 1.0095522 0.8835964 1.5787520 2.1911668 1.0095522 1.0095522
 [1198] 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 0.9571424
 [1205] 0.8835964 1.0095522 0.9571424 1.5787520 1.0095522 0.8835964 0.8835964
 [1212] 1.0095522 1.0095522 1.0095522 0.8835964 0.8377255 0.8835964 1.0095522
 [1219] 1.5787520 1.3817806 1.3817806 1.0095522 1.0095522 1.0095522 0.7651538
 [1226] 1.0095522 1.3817806 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964
 [1233] 2.1911668 1.9177880 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522
 [1240] 0.8377255 0.8835964 0.9571424 1.9177880 0.8835964 0.8835964 0.8377255
 [1247] 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964 0.8377255 1.0095522
 [1254] 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522 0.9571424
 [1261] 0.8377255 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964
 [1268] 0.9571424 0.8835964 0.8377255 0.8835964 1.0095522 0.8835964 0.8835964
 [1275] 1.0095522 1.0095522 1.0095522 1.0095522 1.9177880 0.8835964 2.1911668
 [1282] 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522 1.3817806 1.0095522
 [1289] 1.0095522 0.8377255 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522
 [1296] 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964 0.9571424 0.8835964
 [1303] 1.0095522 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522
 [1310] 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964 0.9571424
 [1317] 1.0095522 1.0095522 0.8835964 0.8377255 0.8835964 1.0095522 0.8835964
 [1324] 1.0095522 1.0095522 1.0095522 0.8835964 1.5787520 1.0095522 1.0095522
 [1331] 0.8835964 0.8835964 0.8835964 0.9571424 1.0095522 1.0095522 0.8835964
 [1338] 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 1.5787520 0.8835964
 [1345] 0.8835964 1.0095522 0.6696901 0.8835964 1.0095522 1.0095522 1.0095522
 [1352] 0.8835964 0.9571424 1.0095522 0.8377255 0.8835964 1.0095522 0.8835964
 [1359] 1.0095522 1.0095522 1.0095522 0.8835964 1.3817806 0.8835964 0.8835964
 [1366] 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 0.6696901
 [1373] 0.8835964 1.0095522 1.0095522 0.8377255 1.0095522 1.0095522 0.9571424
 [1380] 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522
 [1387] 2.1911668 1.0095522 2.1911668 0.8835964 1.0095522 1.0095522 0.8835964
 [1394] 0.9571424 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 0.6696901
 [1401] 1.0095522 1.5787520 0.8835964 1.3817806 1.3817806 1.0095522 2.1911668
 [1408] 0.8835964 0.8835964 1.3817806 0.8377255 1.0095522 1.0095522 1.0095522
 [1415] 1.0095522 0.8835964 0.8835964 1.3817806 1.3817806 2.1911668 1.0095522
 [1422] 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964
 [1429] 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 0.8377255 0.8835964
 [1436] 1.0095522 1.0095522 2.1911668 1.3817806 1.0095522 1.0095522 1.9177880
 [1443] 1.0095522 0.8835964 0.8835964 1.5787520 0.8835964 1.5787520 1.0095522
 [1450] 1.0095522 0.6696901 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964
 [1457] 1.0095522 1.0095522 1.0095522 0.8377255 1.0095522 1.0095522 1.0095522
 [1464] 1.0095522 0.8835964 1.0095522 0.6696901 1.0095522 0.8835964 1.0095522
 [1471] 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964
 [1478] 0.8835964 0.8377255 0.8835964 0.8835964 1.3817806 1.0095522 2.1911668
 [1485] 0.9571424 1.3817806 1.0095522 1.5787520 0.8377255 2.1911668 1.0095522
 [1492] 1.0095522 1.3817806 0.8835964 0.8835964 2.1911668 1.0095522 1.3817806
 [1499] 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964
 [1506] 1.0095522 1.0095522 0.8835964 1.3817806 0.8835964 1.3817806 0.6696901
 [1513] 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964
 [1520] 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 1.3817806
 [1527] 1.0095522 0.8377255 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522
 [1534] 1.0095522 1.0095522 0.8835964 0.9571424 0.8835964 0.8835964 0.8835964
 [1541] 0.8835964 0.8377255 0.8835964 0.7651538 1.0095522 1.0095522 1.5787520
 [1548] 0.8377255 0.8835964 1.3817806 0.8835964 1.0095522 0.8835964 0.6696901
 [1555] 0.8835964 1.0095522 1.0095522 1.9177880 1.0095522 1.0095522 0.8835964
 [1562] 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 1.3817806
 [1569] 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522 1.3817806
 [1576] 1.0095522 0.8835964 0.8835964 0.9571424 0.8835964 1.0095522 1.0095522
 [1583] 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964
 [1590] 0.8835964 0.8377255 1.0095522 0.8377255 0.8835964 1.5787520 1.0095522
 [1597] 1.0095522 0.8835964 1.0095522 1.0095522 1.3817806 0.8835964 0.8835964
 [1604] 0.8835964 0.8835964 1.9177880 1.0095522 1.0095522 1.0095522 1.0095522
 [1611] 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964
 [1618] 1.0095522 1.0095522 0.8377255 0.8835964 1.0095522 1.0095522 0.6696901
 [1625] 0.8835964 0.7651538 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964
 [1632] 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964
 [1639] 1.5787520 2.1911668 0.9571424 0.8835964 1.0095522 0.8835964 0.9571424
 [1646] 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522
 [1653] 1.3817806 1.0095522 0.9571424 0.8835964 1.0095522 2.1911668 1.0095522
 [1660] 1.0095522 1.0095522 0.8835964 1.0095522 0.7651538 0.8835964 0.8835964
 [1667] 1.5787520 1.0095522 0.9571424 1.0095522 0.8377255 1.0095522 0.8835964
 [1674] 0.8835964 1.0095522 0.8835964 0.6696901 0.8835964 0.8835964 0.8835964
 [1681] 0.8835964 1.5787520 0.7651538 0.8835964 0.8835964 0.9571424 0.6696901
 [1688] 0.8835964 0.8835964 1.0095522 0.8835964 1.9177880 1.5787520 0.8835964
 [1695] 0.8377255 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522
 [1702] 2.1911668 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964 0.7651538
 [1709] 0.8835964 0.9571424 0.8835964 0.8835964 1.5787520 0.8835964 1.0095522
 [1716] 0.8835964 0.8377255 0.8835964 1.0095522 1.5787520 0.9571424 0.8835964
 [1723] 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964
 [1730] 0.8835964 0.8835964 0.8835964 0.8835964 1.5787520 0.8835964 1.0095522
 [1737] 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522
 [1744] 0.8835964 0.8377255 1.0095522 0.8835964 2.1911668 0.8835964 0.7651538
 [1751] 0.8377255 0.8835964 1.3817806 1.0095522 0.8835964 0.8835964 0.8835964
 [1758] 0.8835964 0.8835964 0.9571424 0.8835964 0.8835964 0.8835964 1.0095522
 [1765] 2.1911668 1.0095522 1.0095522 0.8377255 2.1911668 1.0095522 1.0095522
 [1772] 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 1.3817806 0.9571424
 [1779] 0.8377255 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964
 [1786] 0.6696901 0.8835964 0.8835964 1.0095522 0.8835964 1.5787520 2.1911668
 [1793] 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964 1.0095522
 [1800] 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 0.9571424 0.8835964
 [1807] 1.5787520 1.3817806 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522
 [1814] 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522
 [1821] 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522
 [1828] 1.0095522 1.0095522 1.0095522 1.0095522 0.8377255 0.8835964 0.8835964
 [1835] 0.8835964 0.9571424 1.0095522 1.0095522 1.3817806 1.0095522 1.0095522
 [1842] 0.8835964 1.0095522 0.7651538 0.8377255 0.8835964 1.5787520 1.0095522
 [1849] 1.0095522 0.8835964 1.0095522 1.0095522 1.9177880 1.5787520 0.8835964
 [1856] 0.8835964 0.6696901 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522
 [1863] 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522
 [1870] 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964
 [1877] 0.8835964 1.3817806 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522
 [1884] 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 1.3817806 0.6696901
 [1891] 0.8377255 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964
 [1898] 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 1.3817806 1.0095522
 [1905] 1.0095522 1.0095522 0.8377255 0.7651538 1.3817806 1.0095522 0.8835964
 [1912] 1.0095522 0.8835964 1.0095522 1.0095522 1.3817806 1.0095522 0.9571424
 [1919] 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522 1.3817806 1.0095522
 [1926] 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 1.3817806
 [1933] 1.0095522 0.8835964 1.0095522 0.8835964 0.6696901 0.8835964 0.8835964
 [1940] 0.8835964 0.8835964 0.9571424 0.8835964 0.8835964 0.8835964 1.0095522
 [1947] 0.8835964 2.1911668 0.8835964 0.8377255 0.8835964 0.8377255 1.0095522
 [1954] 1.0095522 1.5787520 0.8835964 0.8835964 0.8835964 1.5787520 0.7651538
 [1961] 0.6696901 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964 1.3817806
 [1968] 1.3817806 0.8835964 0.8835964 1.0095522 0.9571424 0.8835964 1.0095522
 [1975] 1.0095522 1.0095522 1.0095522 0.8835964 0.7651538 0.9571424 1.0095522
 [1982] 1.0095522 1.0095522 1.5787520 1.0095522 0.8835964 1.0095522 0.9571424
 [1989] 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 1.3817806
 [1996] 0.7651538 1.0095522 1.5787520 1.0095522 1.0095522 0.8835964 1.0095522
 [2003] 0.6696901 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 1.3817806
 [2010] 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522
 [2017] 0.8835964 0.9571424 1.5787520 1.0095522 1.0095522 0.8835964 1.0095522
 [2024] 1.0095522 1.0095522 0.8835964 1.5787520 0.8835964 1.0095522 1.0095522
 [2031] 1.0095522 0.8835964 1.5787520 1.0095522 1.0095522 1.0095522 1.0095522
 [2038] 0.8835964 1.0095522 1.3817806 0.8835964 1.0095522 2.1911668 0.8835964
 [2045] 0.8835964 1.5787520 1.0095522 0.9571424 0.8835964 1.0095522 0.8835964
 [2052] 1.5787520 0.7651538 1.3817806 1.0095522 1.0095522 0.8835964 0.8835964
 [2059] 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964
 [2066] 1.0095522 1.5787520 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964
 [2073] 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964
 [2080] 0.8835964 0.8835964 1.0095522 1.5787520 0.8835964 0.6696901 0.8835964
 [2087] 0.8835964 1.3817806 0.8835964 0.8835964 0.8835964 0.7651538 0.8835964
 [2094] 0.7651538 0.8835964 0.8835964 0.8835964 1.3817806 0.8835964 1.3817806
 [2101] 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522
 [2108] 0.8835964 1.3817806 0.8835964 0.8835964 0.8835964 1.3817806 1.0095522
 [2115] 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 1.5787520 1.0095522
 [2122] 0.8835964 0.8835964 0.9571424 0.6696901 0.8835964 1.0095522 0.8835964
 [2129] 1.0095522 0.8835964 0.8835964 0.8835964 1.5787520 1.0095522 1.5787520
 [2136] 1.0095522 0.8835964 1.3817806 1.0095522 1.0095522 1.0095522 0.9571424
 [2143] 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964
 [2150] 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964
 [2157] 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522 0.8377255
 [2164] 0.8835964 1.5787520 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964
 [2171] 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964 0.8377255 1.5787520
 [2178] 1.0095522 0.8835964 0.8835964 1.0095522 0.7651538 0.8835964 0.8835964
 [2185] 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522
 [2192] 0.8835964 1.3817806 1.3817806 0.8835964 1.0095522 2.1911668 1.0095522
 [2199] 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 0.8377255
 [2206] 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964
 [2213] 0.8835964 1.0095522 1.5787520 0.8835964 1.3817806 1.0095522 0.8835964
 [2220] 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522
 [2227] 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964 1.5787520
 [2234] 1.0095522 0.7651538 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964
 [2241] 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 1.0095522 0.8377255
 [2248] 0.8835964 1.5787520 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964
 [2255] 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522
 [2262] 0.8835964 0.8835964 2.1911668 1.0095522 1.0095522 0.8835964 1.9177880
 [2269] 0.8377255 0.9571424 0.8835964 1.0095522 1.3817806 1.3817806 0.8835964
 [2276] 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 1.3817806
 [2283] 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 0.8377255 1.3817806
 [2290] 1.3817806 0.8835964 0.8835964 1.5787520 1.0095522 1.0095522 1.0095522
 [2297] 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964
 [2304] 1.0095522 1.5787520 1.5787520 1.0095522 0.8835964 0.8835964 0.8835964
 [2311] 1.0095522 1.0095522 0.8835964 0.8377255 0.9571424 2.1911668 0.8835964
 [2318] 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964
 [2325] 0.9571424 1.0095522 1.0095522 1.5787520 1.5787520 0.8835964 0.8835964
 [2332] 1.0095522 1.0095522 1.0095522 0.9571424 1.0095522 0.8835964 1.0095522
 [2339] 1.0095522 1.0095522 0.6696901 1.5787520 0.8835964 1.0095522 0.8377255
 [2346] 1.5787520 1.0095522 1.0095522 1.5787520 0.8835964 0.8835964 0.9571424
 [2353] 1.0095522 0.8835964 1.3817806 1.5787520 1.0095522 0.9571424 1.5787520
 [2360] 0.7651538 1.0095522 1.3817806 1.0095522 1.0095522 1.0095522 0.8835964
 [2367] 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964
 [2374] 1.0095522 0.8835964 0.8835964 0.8835964 0.9571424 0.8835964 2.1911668
 [2381] 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 0.8377255 0.8835964
 [2388] 1.0095522 1.0095522 0.9571424 1.0095522 1.9177880 1.0095522 0.8835964
 [2395] 1.0095522 1.0095522 0.8835964 1.3817806 1.0095522 1.0095522 1.0095522
 [2402] 1.5787520 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964
 [2409] 1.5787520 0.8835964 0.8835964 0.9571424 0.8835964 0.8835964 0.8835964
 [2416] 1.0095522 1.0095522 0.9571424 0.8835964 1.0095522 0.8835964 1.0095522
 [2423] 1.0095522 0.8377255 1.0095522 0.8377255 0.8835964 0.9571424 1.0095522
 [2430] 1.0095522 0.8835964 1.0095522 0.7651538 1.0095522 0.8377255 0.8835964
 [2437] 1.0095522 0.8835964 1.3817806 1.0095522 0.8377255 1.0095522 1.5787520
 [2444] 0.8835964 0.9571424 0.9571424 0.7651538 1.0095522 2.1911668 0.8835964
 [2451] 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964
 [2458] 0.8377255 1.3817806 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522
 [2465] 1.3817806 0.9571424 1.0095522 0.8835964 1.0095522 1.9177880 0.8835964
 [2472] 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 0.9571424 1.0095522
 [2479] 0.9571424 1.0095522 1.0095522 2.1911668 1.0095522 1.0095522 0.8835964
 [2486] 0.8835964 1.0095522 0.8835964 0.9571424 1.0095522 0.8835964 0.8835964
 [2493] 1.0095522 0.8835964 0.8835964 0.8377255 1.0095522 0.8835964 0.8835964
 [2500] 0.8835964 0.8835964 2.1911668 1.0095522 1.0095522 0.8835964 0.8835964
 [2507] 0.8835964 0.9571424 0.8835964 1.0095522 0.9571424 1.0095522 0.8835964
 [2514] 1.0095522 1.5787520 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522
 [2521] 0.8377255 1.0095522 0.8835964 0.8835964 0.9571424 0.9571424 1.0095522
 [2528] 0.8835964 0.8835964 1.0095522 1.3817806 0.8835964 0.9571424 0.8835964
 [2535] 1.0095522 0.9571424 1.0095522 1.0095522 0.8835964 1.0095522 1.3817806
 [2542] 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964
 [2549] 1.0095522 1.0095522 0.8835964 0.8835964 1.5787520 1.3817806 1.0095522
 [2556] 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522
 [2563] 1.0095522 0.8835964 1.0095522 0.6696901 1.0095522 1.0095522 1.0095522
 [2570] 0.8377255 0.8835964 1.3817806 0.8835964 1.0095522 1.0095522 1.3817806
 [2577] 2.1911668 1.0095522 1.0095522 1.0095522 2.1911668 0.8835964 1.0095522
 [2584] 0.8835964 0.8835964 0.8835964 1.3817806 1.0095522 1.0095522 1.0095522
 [2591] 0.8835964 1.9177880 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964
 [2598] 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964
 [2605] 0.8835964 0.8835964 0.8377255 0.8835964 1.0095522 1.0095522 0.8835964
 [2612] 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964
 [2619] 0.8835964 0.8377255 1.5787520 1.5787520 1.0095522 0.8835964 0.8835964
 [2626] 1.0095522 1.3817806 1.0095522 1.5787520 1.0095522 1.0095522 0.8835964
 [2633] 0.8835964 1.0095522 1.0095522 0.9571424 1.0095522 0.8835964 0.8835964
 [2640] 0.9571424 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964
 [2647] 1.3817806 0.9571424 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522
 [2654] 0.8835964 0.8377255 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522
 [2661] 1.0095522 0.8377255 0.8835964 1.0095522 1.3817806 0.8835964 1.0095522
 [2668] 0.9571424 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 1.5787520
 [2675] 0.8835964 1.0095522 0.8377255 0.8835964 1.0095522 0.8377255 0.8835964
 [2682] 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522
 [2689] 0.8835964 0.9571424 0.8377255 1.5787520 1.0095522 1.0095522 0.8835964
 [2696] 1.0095522 1.0095522 1.3817806 1.3817806 0.8835964 1.0095522 0.8835964
 [2703] 1.0095522 1.0095522 1.5787520 0.8835964 1.0095522 0.8835964 0.8835964
 [2710] 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 1.5787520 0.8377255
 [2717] 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522
 [2724] 1.0095522 0.8835964 1.0095522 0.8377255 0.8835964 1.0095522 0.8835964
 [2731] 0.8835964 1.0095522 1.0095522 1.0095522 0.9571424 0.8835964 1.5787520
 [2738] 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964
 [2745] 0.8835964 0.6696901 0.8835964 2.1911668 1.0095522 1.0095522 0.9571424
 [2752] 0.8835964 0.9571424 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964
 [2759] 1.0095522 1.3817806 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964
 [2766] 1.0095522 1.5787520 0.7651538 0.8835964 0.9571424 0.6696901 1.5787520
 [2773] 0.9571424 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522
 [2780] 0.9571424 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522
 [2787] 0.8835964 1.0095522 1.0095522 0.8835964 1.3817806 1.5787520 0.8835964
 [2794] 1.0095522 1.0095522 1.5787520 0.8835964 0.9571424 1.0095522 0.9571424
 [2801] 1.0095522 0.8835964 2.1911668 0.8835964 0.8835964 1.3817806 0.8835964
 [2808] 1.0095522 0.8835964 1.0095522 0.9571424 0.8835964 1.0095522 0.8835964
 [2815] 0.8835964 1.0095522 1.9177880 1.0095522 1.0095522 1.0095522 1.0095522
 [2822] 0.8835964 0.8835964 1.3817806 1.0095522 0.8835964 2.1911668 1.3817806
 [2829] 0.7651538 1.0095522 1.0095522 1.0095522 0.8835964 0.9571424 1.0095522
 [2836] 0.8835964 0.8835964 2.1911668 1.0095522 0.6696901 0.8835964 0.9571424
 [2843] 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964 2.1911668 1.0095522
 [2850] 0.7651538 1.0095522 1.0095522 0.8835964 1.0095522 1.9177880 1.9177880
 [2857] 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964
 [2864] 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 1.5787520
 [2871] 1.0095522 1.0095522 1.5787520 1.3817806 1.0095522 1.0095522 1.0095522
 [2878] 1.0095522 1.0095522 1.3817806 1.0095522 1.0095522 1.0095522 1.0095522
 [2885] 1.5787520 1.5787520 0.8835964 1.0095522 1.0095522 0.9571424 0.8835964
 [2892] 0.8835964 0.8835964 0.8835964 2.1911668 1.0095522 1.5787520 0.7651538
 [2899] 1.0095522 0.8835964 1.0095522 1.0095522 1.3817806 0.8835964 1.0095522
 [2906] 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 1.3817806 0.8835964
 [2913] 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964
 [2920] 1.0095522 0.6696901 1.0095522 1.0095522 1.0095522 0.8835964 0.6696901
 [2927] 1.0095522 1.0095522 0.8377255 0.8835964 0.8835964 1.0095522 1.3817806
 [2934] 0.8835964 0.8835964 0.8835964 0.8835964 0.9571424 1.0095522 1.0095522
 [2941] 0.6696901 0.8835964 0.9571424 1.0095522 1.0095522 0.8835964 1.0095522
 [2948] 0.8835964 1.0095522 0.6696901 1.0095522 1.0095522 1.0095522 1.3817806
 [2955] 1.0095522 1.3817806 1.0095522 1.0095522 1.0095522 0.8377255 0.8835964
 [2962] 1.3817806 0.8835964 0.8835964 0.8377255 1.0095522 0.8835964 0.8377255
 [2969] 0.8835964 1.0095522 1.0095522 0.8835964 1.3817806 0.8835964 0.8835964
 [2976] 0.8377255 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964
 [2983] 0.8835964 0.7651538 0.8377255 1.0095522 1.3817806 0.8835964 1.0095522
 [2990] 1.0095522 1.0095522 1.3817806 0.8835964 1.0095522 1.0095522 1.5787520
 [2997] 2.1911668 1.0095522 0.9571424 1.0095522 0.8835964 0.8377255 0.7651538
 [3004] 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522
 [3011] 0.8835964 1.0095522 0.7651538 1.0095522 0.8835964 1.3817806 0.8835964
 [3018] 0.9571424 1.0095522 1.0095522 1.3817806 0.8835964 0.8835964 0.8835964
 [3025] 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964 1.5787520
 [3032] 0.8835964 1.9177880 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522
 [3039] 1.5787520 1.5787520 1.5787520 0.8835964 1.3817806 0.8835964 1.5787520
 [3046] 0.9571424 0.9571424 0.9571424 0.8835964 0.8835964 0.9571424 0.6696901
 [3053] 1.9177880 0.8835964 0.8835964 0.8835964 1.5787520 0.8835964 1.3817806
 [3060] 0.8835964 1.0095522 1.0095522 1.0095522 0.8377255 0.8377255 1.0095522
 [3067] 1.0095522 1.0095522 1.0095522 1.0095522 0.8377255 0.9571424 1.0095522
 [3074] 0.6696901 1.9177880 1.0095522 2.1911668 1.0095522 1.0095522 1.0095522
 [3081] 0.6696901 1.5787520 1.0095522 0.8835964 0.8377255 0.8377255 0.8835964
 [3088] 1.0095522 1.3817806 0.9571424 1.0095522 1.0095522 1.5787520 0.8835964
 [3095] 0.8377255 1.0095522 1.0095522 1.0095522 1.0095522 0.9571424 0.8835964
 [3102] 0.9571424 1.5787520 1.0095522 1.5787520 0.8835964 1.3817806 1.0095522
 [3109] 1.0095522 0.7651538 1.5787520 1.5787520 0.8835964 0.8835964 0.8377255
 [3116] 0.8835964 0.8835964 0.8377255 1.0095522 0.8835964 1.5787520 1.3817806
 [3123] 0.8835964 1.0095522 0.8835964 1.0095522 0.8377255 1.0095522 0.7651538
 [3130] 1.0095522 1.0095522 0.8835964 0.9571424 1.0095522 1.0095522 1.0095522
 [3137] 0.8377255 0.8835964 1.3817806 1.0095522 1.0095522 0.6696901 1.0095522
 [3144] 1.5787520 2.1911668 0.8377255 0.8835964 0.8835964 0.9571424 1.5787520
 [3151] 1.0095522 0.8835964 0.8835964 1.0095522 1.5787520 1.0095522 1.0095522
 [3158] 1.0095522 0.8835964 0.8835964 0.9571424 0.9571424 2.1911668 0.6696901
 [3165] 0.9571424 1.0095522 0.9571424 1.0095522 0.8377255 0.8835964 0.7651538
 [3172] 0.8835964 1.0095522 1.5787520 0.8377255 1.5787520 1.3817806 1.0095522
 [3179] 1.0095522 0.7651538 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522
 [3186] 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 0.6696901 0.8377255
 [3193] 1.0095522 0.8835964 1.3817806 1.0095522 1.0095522 0.8835964 2.1911668
 [3200] 0.9571424 0.8835964 1.3817806 1.3817806 0.7651538 1.3817806 1.0095522
 [3207] 0.8835964 0.8835964 0.8835964 1.9177880 1.5787520 0.7651538 1.0095522
 [3214] 1.9177880 1.0095522 1.0095522 0.8835964 1.3817806 1.0095522 0.8835964
 [3221] 0.6696901 1.3817806 1.0095522 2.1911668 0.8835964 1.5787520 0.8835964
 [3228] 0.8835964 0.8377255 0.8835964 1.3817806 1.5787520 2.1911668 0.9571424
 [3235] 0.8835964 1.3817806 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522
 [3242] 0.6696901 0.8377255 0.8835964 0.8377255 0.8835964 0.8835964 1.3817806
 [3249] 0.8835964 1.0095522 0.7651538 1.0095522 1.5787520 0.8835964 1.0095522
 [3256] 1.0095522 1.0095522 0.8377255 0.9571424 1.0095522 0.8835964 1.0095522
 [3263] 0.8835964 0.8835964 1.0095522 0.8835964 0.9571424 1.3817806 1.0095522
 [3270] 1.0095522 1.3817806 0.8835964 1.9177880 1.5787520 1.0095522 0.8835964
 [3277] 1.0095522 1.3817806 0.8835964 0.8835964 1.5787520 0.9571424 0.8835964
 [3284] 0.9571424 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.8377255
 [3291] 0.8377255 1.5787520 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522
 [3298] 0.8835964 1.0095522 0.8835964 0.8835964 2.1911668 1.0095522 1.0095522
 [3305] 1.0095522 0.8835964 2.1911668 1.9177880 1.0095522 1.3817806 0.8835964
 [3312] 1.0095522 0.8835964 1.0095522 0.8835964 1.0095522 1.5787520 1.0095522
 [3319] 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964 0.8377255 1.0095522
 [3326] 1.0095522 1.0095522 1.3817806 0.9571424 2.1911668 0.8835964 1.0095522
 [3333] 0.8835964 1.3817806 1.0095522 1.0095522 1.0095522 1.3817806 0.9571424
 [3340] 1.0095522 0.8377255 0.8377255 0.8835964 0.6696901 0.7651538 1.0095522
 [3347] 1.0095522 0.8835964 0.8835964 2.1911668 1.0095522 1.0095522 0.8835964
 [3354] 0.9571424 1.0095522 1.0095522 0.8835964 0.7651538 0.9571424 0.9571424
 [3361] 0.8377255 0.9571424 1.0095522 0.8835964 0.9571424 1.5787520 1.0095522
 [3368] 1.5787520 1.3817806 1.0095522 0.8835964 1.0095522 1.0095522 1.5787520
 [3375] 0.8377255 1.5787520 1.0095522 1.0095522 1.3817806 1.0095522 0.8835964
 [3382] 0.8377255 0.7651538 1.3817806 1.0095522 1.0095522 1.0095522 1.0095522
 [3389] 0.8377255 1.0095522 0.8835964 0.8835964 1.0095522 2.1911668 1.0095522
 [3396] 0.8835964 0.9571424 1.5787520 1.3817806 1.3817806 0.7651538 0.9571424
 [3403] 1.9177880 0.7651538 1.0095522 1.0095522 0.9571424 1.0095522 0.8835964
 [3410] 0.9571424 0.8835964 0.8835964 1.0095522 0.8835964 0.9571424 0.9571424
 [3417] 0.8835964 1.0095522 0.8835964 0.8835964 0.8377255 1.0095522 0.7651538
 [3424] 1.5787520 1.0095522 1.3817806 0.8377255 0.8377255 0.8377255 0.8377255
 [3431] 0.8377255 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255
 [3438] 0.8377255 0.8377255 0.8377255 0.8835964 0.8377255 1.9177880 0.9571424
 [3445] 0.8377255 0.8377255 0.8835964 1.0095522 0.8835964 0.8377255 0.8377255
 [3452] 0.8377255 0.8377255 0.8835964 0.9571424 0.8835964 0.9571424 0.8377255
 [3459] 1.0095522 1.3817806 0.9571424 0.9571424 0.8377255 0.9571424 0.9571424
 [3466] 0.8377255 0.8377255 0.9571424 0.8835964 0.9571424 0.8377255 0.8377255
 [3473] 0.9571424 0.6696901 0.8377255 0.9571424 0.8377255 0.8377255 0.8835964
 [3480] 0.8835964 0.9571424 0.8835964 0.8377255 0.8835964 0.8377255 0.9571424
 [3487] 1.0095522 0.8377255 0.8835964 0.8377255 0.8377255 0.9571424 0.8835964
 [3494] 0.8377255 0.8835964 0.9571424 0.8377255 0.8835964 0.8377255 0.8377255
 [3501] 1.0095522 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255
 [3508] 0.6696901 0.8835964 0.8377255 0.9571424 0.9571424 0.8835964 2.1911668
 [3515] 1.9177880 0.9571424 0.8377255 1.3817806 0.8377255 0.8835964 0.8377255
 [3522] 0.8377255 0.8377255 0.8377255 0.8835964 1.0095522 0.8835964 0.8835964
 [3529] 1.0095522 0.8835964 0.9571424 0.8835964 1.0095522 0.8835964 0.9571424
 [3536] 0.8377255 0.8377255 0.8835964 0.9571424 0.8377255 0.8835964 0.8835964
 [3543] 0.9571424 0.9571424 1.5787520 0.8377255 1.0095522 0.8835964 1.0095522
 [3550] 0.8377255 0.8377255 0.8377255 0.8835964 1.0095522 1.0095522 1.0095522
 [3557] 0.9571424 0.8835964 0.8377255 1.3817806 0.9571424 0.8835964 1.0095522
 [3564] 0.8835964 1.3817806 0.9571424 0.8377255 0.8835964 1.0095522 0.9571424
 [3571] 0.8377255 0.9571424 1.0095522 0.9571424 0.9571424 0.8377255 0.9571424
 [3578] 0.8835964 0.9571424 0.8377255 0.8377255 0.8377255 0.8835964 0.8377255
 [3585] 1.5787520 0.9571424 1.0095522 0.8835964 1.0095522 0.8377255 0.8835964
 [3592] 1.3817806 0.7651538 0.8377255 0.8377255 0.8835964 0.9571424 1.0095522
 [3599] 1.0095522 0.8377255 1.5787520 1.0095522 0.8377255 0.8835964 0.9571424
 [3606] 1.9177880 1.0095522 0.9571424 0.8377255 0.8377255 0.9571424 1.5787520
 [3613] 0.9571424 1.5787520 1.9177880 0.8377255 0.8835964 0.8835964 0.8377255
 [3620] 0.8377255 0.8377255 0.9571424 0.8377255 0.8377255 0.8377255 0.8835964
 [3627] 1.3817806 0.8377255 0.9571424 0.9571424 0.8377255 0.9571424 0.6696901
 [3634] 0.8835964 0.8835964 0.8835964 0.9571424 1.3817806 0.9571424 0.9571424
 [3641] 0.8835964 0.8835964 0.9571424 0.8377255 0.8377255 0.8377255 1.0095522
 [3648] 0.8835964 0.6696901 1.0095522 0.8835964 0.9571424 1.0095522 0.8377255
 [3655] 1.9177880 0.8835964 0.8835964 0.8377255 1.5787520 1.0095522 0.8835964
 [3662] 2.1911668 2.1911668 1.0095522 1.0095522 1.0095522 0.8835964 0.9571424
 [3669] 0.8835964 0.8377255 0.9571424 1.9177880 0.8377255 1.5787520 0.9571424
 [3676] 1.3817806 0.8835964 0.8377255 0.9571424 0.8835964 0.9571424 0.9571424
 [3683] 0.8835964 0.8835964 1.0095522 0.8835964 0.8377255 0.8835964 1.0095522
 [3690] 0.8835964 0.8835964 2.1911668 0.9571424 0.8377255 0.9571424 0.9571424
 [3697] 0.8377255 0.8835964 1.3817806 0.9571424 0.8835964 0.8835964 0.8377255
 [3704] 1.0095522 0.8835964 0.8377255 0.8835964 0.9571424 0.9571424 0.8377255
 [3711] 0.8377255 1.0095522 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255
 [3718] 0.8835964 0.8377255 0.8377255 1.0095522 0.9571424 1.0095522 0.8377255
 [3725] 0.8835964 0.8377255 0.9571424 1.3817806 1.0095522 0.8377255 0.8377255
 [3732] 0.9571424 0.9571424 0.9571424 0.9571424 0.6696901 0.8377255 0.9571424
 [3739] 0.8377255 0.8377255 0.8377255 0.8377255 1.0095522 0.8377255 0.9571424
 [3746] 0.9571424 0.8835964 2.1911668 0.9571424 0.9571424 0.8377255 0.8377255
 [3753] 0.8377255 0.8377255 2.1911668 0.8377255 0.9571424 0.9571424 0.8377255
 [3760] 0.9571424 0.8377255 0.9571424 0.8377255 0.8377255 0.8377255 0.8835964
 [3767] 0.8835964 0.9571424 0.8835964 0.8377255 0.8377255 0.8377255 0.9571424
 [3774] 0.8377255 0.8377255 0.9571424 0.8377255 0.8377255 0.8835964 0.8835964
 [3781] 1.0095522 0.9571424 0.8377255 1.0095522 0.9571424 0.8835964 0.8377255
 [3788] 0.8835964 0.8835964 0.6696901 0.9571424 0.9571424 0.8835964 0.8377255
 [3795] 0.8377255 0.8835964 1.0095522 0.9571424 0.8835964 0.8377255 0.8377255
 [3802] 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255 0.8835964 0.8835964
 [3809] 0.8377255 0.8377255 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964
 [3816] 1.0095522 0.8377255 0.8377255 0.8377255 0.8835964 0.8377255 1.0095522
 [3823] 0.8377255 0.8377255 0.8377255 0.8835964 0.8377255 0.6696901 0.8377255
 [3830] 0.8377255 1.9177880 0.8377255 0.9571424 0.8835964 0.8835964 1.0095522
 [3837] 0.9571424 0.8377255 0.9571424 0.9571424 0.8377255 0.8377255 0.8377255
 [3844] 0.9571424 0.8377255 0.8377255 1.0095522 0.8377255 0.9571424 0.9571424
 [3851] 0.9571424 0.8377255 1.0095522 0.9571424 0.8835964 0.8377255 2.1911668
 [3858] 1.3817806 1.0095522 0.9571424 0.8835964 0.8377255 0.8377255 2.1911668
 [3865] 0.8377255 0.9571424 0.9571424 0.8835964 0.8377255 0.8377255 0.9571424
 [3872] 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255 1.0095522
 [3879] 1.0095522 0.8835964 1.0095522 1.9177880 0.8377255 0.6696901 0.8377255
 [3886] 0.8377255 0.8377255 0.9571424 0.8377255 0.8835964 0.8835964 0.8377255
 [3893] 0.8377255 0.8377255 0.8835964 1.0095522 0.9571424 0.8835964 0.9571424
 [3900] 0.7651538 0.8377255 0.9571424 2.1911668 0.8377255 0.8377255 0.8377255
 [3907] 1.0095522 0.8377255 0.9571424 0.8377255 0.8377255 0.8835964 0.9571424
 [3914] 0.8377255 0.9571424 0.9571424 0.8377255 1.9177880 0.9571424 0.8377255
 [3921] 2.1911668 0.9571424 0.9571424 0.9571424 0.9571424 1.9177880 0.8377255
 [3928] 0.8377255 0.8377255 0.9571424 0.8377255 0.8377255 0.8377255 0.8835964
 [3935] 0.8835964 0.8377255 0.9571424 1.9177880 0.9571424 0.8377255 0.8835964
 [3942] 2.1911668 0.8835964 0.6696901 0.8835964 0.8835964 0.8835964 1.0095522
 [3949] 1.0095522 1.3817806 0.8835964 1.0095522 0.8835964 1.5787520 1.0095522
 [3956] 0.8377255 0.8377255 1.3817806 1.3817806 1.3817806 1.3817806 1.3817806
 [3963] 1.3817806 2.1911668 1.3817806 1.0095522 1.3817806 1.3817806 0.8835964
 [3970] 1.3817806 1.3817806 1.3817806 0.8835964 0.9571424 1.3817806 1.3817806
 [3977] 1.3817806 0.8835964 1.3817806 1.0095522 1.3817806 1.5787520 1.3817806
 [3984] 0.8835964 1.3817806 1.3817806 1.5787520 1.3817806 1.3817806 0.8835964
 [3991] 1.5787520 1.3817806 0.9571424 0.8835964 1.3817806 1.3817806 1.3817806
 [3998] 1.3817806 1.0095522 0.8835964 1.3817806 1.3817806 1.3817806 1.3817806
 [4005] 1.3817806 1.5787520 1.3817806 1.3817806 1.0095522 1.0095522 1.5787520
 [4012] 1.0095522 1.3817806 0.8835964 1.0095522 1.5787520 1.3817806 1.0095522
 [4019] 1.3817806 1.3817806 1.5787520 1.0095522 0.8835964 1.3817806 1.3817806
 [4026] 1.0095522 1.3817806 0.8835964 1.3817806 0.8377255 1.0095522 1.5787520
 [4033] 1.3817806 1.3817806 1.3817806 1.3817806 1.5787520 0.8835964 1.3817806
 [4040] 1.3817806 0.8835964 0.8377255 1.5787520 1.3817806 1.5787520 1.3817806
 [4047] 1.3817806 1.3817806 1.3817806 0.8377255 1.3817806 1.3817806 1.0095522
 [4054] 1.0095522 2.1911668 1.3817806 1.0095522 1.5787520 1.5787520 0.8835964
 [4061] 1.3817806 1.3817806 0.8377255 0.8835964 0.9571424 0.9571424 0.8377255
 [4068] 1.3817806 1.5787520 0.8835964 0.8835964 1.3817806 1.0095522 1.3817806
 [4075] 1.3817806 1.5787520 1.3817806 0.8835964 1.5787520 1.3817806 0.8835964
 [4082] 1.3817806 1.3817806 1.0095522 1.3817806 1.0095522 1.0095522 0.6696901
 [4089] 1.0095522 1.3817806 1.0095522 1.3817806 1.3817806 1.5787520 1.3817806
 [4096] 1.0095522 1.0095522 1.5787520 1.5787520 1.3817806 1.3817806 1.0095522
 [4103] 1.0095522 1.3817806 0.8835964 1.3817806 0.8835964 1.3817806 1.5787520
 [4110] 1.3817806 1.3817806 0.8835964 0.7651538 1.0095522 1.5787520 0.9571424
 [4117] 1.5787520 1.5787520 0.8835964 0.8835964 0.8835964 1.3817806 0.8835964
 [4124] 1.3817806 1.0095522 0.8835964 1.5787520 1.0095522 1.0095522 0.8835964
 [4131] 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522 1.3817806 0.6696901
 [4138] 0.8835964 1.5787520 1.0095522 1.3817806 1.3817806 1.5787520 1.3817806
 [4145] 1.3817806 0.7651538 0.8377255 1.3817806 0.8835964 1.0095522 1.5787520
 [4152] 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964
 [4159] 0.8835964 1.5787520 1.3817806 1.3817806 1.3817806 1.0095522 1.3817806
 [4166] 0.8835964 0.8835964 1.3817806 0.8835964 0.8377255 0.8835964 0.9571424
 [4173] 1.5787520 0.6696901 1.3817806 0.8835964 1.0095522 0.8835964 0.7651538
 [4180] 0.8835964 0.6696901 0.8835964 1.0095522 1.5787520 0.8835964 1.0095522
 [4187] 0.8835964 0.8835964 1.5787520 1.5787520 1.0095522 1.5787520 1.5787520
 [4194] 0.8835964 1.3817806 1.3817806 0.9571424 0.8835964 1.0095522 1.3817806
 [4201] 0.8835964 0.8835964 1.0095522 0.8835964 1.5787520 1.3817806 0.8835964
 [4208] 1.3817806 1.5787520 1.3817806 1.0095522 1.0095522 0.8835964 1.3817806
 [4215] 0.8835964 0.8377255 1.3817806 1.3817806 1.3817806 1.0095522 0.8835964
 [4222] 0.8835964 1.0095522 1.0095522 0.8835964 1.3817806 0.8835964 0.8835964
 [4229] 1.3817806 1.5787520 1.3817806 1.3817806 0.8835964 0.8835964 0.6696901
 [4236] 1.3817806 0.8835964 1.0095522 1.0095522 1.5787520 0.9571424 1.0095522
 [4243] 1.5787520 1.3817806 1.0095522 0.8835964 0.8835964 1.3817806 1.3817806
 [4250] 1.5787520 1.3817806 0.8835964 1.0095522 1.5787520 1.3817806 1.3817806
 [4257] 1.3817806 1.3817806 1.0095522 0.8377255 1.3817806 1.0095522 1.3817806
 [4264] 1.3817806 1.5787520 1.0095522 0.8835964 0.8377255 0.8377255 1.3817806
 [4271] 1.3817806 0.8835964 0.8835964 0.9571424 1.0095522 1.3817806 0.6696901
 [4278] 1.5787520 1.3817806 0.9571424 0.8835964 1.3817806 1.3817806 1.3817806
 [4285] 0.8835964 1.3817806 1.3817806 1.5787520 1.3817806 0.8835964 1.0095522
 [4292] 0.8835964 0.8835964 1.9177880 1.0095522 1.0095522 0.6696901 0.8835964
 [4299] 0.6696901 1.9177880 0.8835964 0.8835964 1.3817806 1.3817806 1.3817806
 [4306] 0.8835964 1.3817806 1.3817806 0.8377255 1.3817806 0.8835964 0.6696901
 [4313] 0.6696901 0.7651538 1.3817806 1.3817806 0.8835964 1.3817806 1.3817806
 [4320] 1.3817806 1.3817806 0.8835964 0.8835964 1.3817806 0.8835964 1.0095522
 [4327] 1.3817806 0.8835964 0.8835964 1.0095522 1.3817806 1.3817806 1.5787520
 [4334] 0.8835964 1.0095522 1.3817806 1.0095522 1.3817806 0.8835964 1.3817806
 [4341] 0.6696901 1.0095522 1.0095522 1.3817806 1.3817806 0.8835964 1.0095522
 [4348] 0.8835964 1.0095522 0.8835964 1.0095522 1.3817806 1.0095522 1.3817806
 [4355] 1.3817806 1.3817806 0.8835964 1.5787520 1.3817806 0.8835964 0.8377255
 [4362] 1.0095522 0.8377255 0.8835964 1.0095522 0.6696901 1.0095522 1.0095522
 [4369] 1.3817806 1.5787520 0.6696901 0.8835964 1.0095522 1.9177880 1.0095522
 [4376] 1.0095522 1.5787520 1.3817806 1.0095522 0.8835964 0.8835964 0.8377255
 [4383] 2.1911668 1.3817806 0.8835964 1.3817806 1.5787520 1.3817806 1.3817806
 [4390] 1.0095522 1.3817806 1.0095522 0.8835964 0.8835964 1.5787520 0.8835964
 [4397] 1.0095522 0.8835964 1.0095522 1.0095522 1.5787520 0.8835964 1.5787520
 [4404] 1.3817806 0.8835964 1.0095522 1.0095522 1.0095522 1.5787520 0.8835964
 [4411] 0.8835964 0.8835964 0.8377255 1.0095522 1.3817806 1.3817806 1.3817806
 [4418] 0.8835964 0.8835964 0.8835964 1.3817806 1.3817806 1.0095522 1.3817806
 [4425] 1.3817806 1.3817806 1.0095522 1.3817806 1.0095522 1.0095522 1.3817806
 [4432] 1.3817806 0.8835964 2.1911668 1.3817806 1.3817806 1.0095522 0.8835964
 [4439] 1.3817806 1.0095522 1.3817806 1.3817806 1.3817806 1.3817806 0.8835964
 [4446] 1.5787520 2.1911668 1.3817806 1.0095522 0.8377255 0.8835964 1.0095522
 [4453] 1.3817806 1.3817806 1.3817806 0.8835964 0.8377255 0.8835964 0.8835964
 [4460] 0.8835964 0.8377255 1.0095522 1.0095522 0.8835964 1.0095522 1.3817806
 [4467] 0.8377255 0.8835964 0.6696901 1.3817806 1.3817806 0.8377255 1.3817806
 [4474] 1.3817806 1.9177880 1.3817806 0.8835964 0.8377255 1.0095522 0.8835964
 [4481] 0.8835964 1.0095522 0.7651538 0.8835964 1.0095522 1.0095522 1.0095522
 [4488] 0.8835964 1.0095522 0.8835964 0.8835964 0.7651538 1.0095522 0.8835964
 [4495] 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964
 [4502] 0.8835964 1.0095522 1.3817806 0.8835964 1.0095522 1.0095522 1.0095522
 [4509] 2.1911668 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964
 [4516] 0.8835964 1.0095522 1.9177880 0.8835964 0.8835964 0.8835964 1.3817806
 [4523] 1.0095522 1.9177880 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522
 [4530] 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964
 [4537] 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964
 [4544] 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964
 [4551] 0.8835964 0.8835964 0.8377255 0.8835964 0.8835964 0.8835964 1.0095522
 [4558] 0.8835964 0.8835964 0.8835964 0.8835964 1.3817806 1.0095522 1.0095522
 [4565] 1.9177880 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964
 [4572] 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964
 [4579] 1.0095522 1.0095522 1.0095522 1.3817806 1.0095522 1.0095522 0.8835964
 [4586] 1.0095522 0.8835964 1.5787520 0.8835964 0.8835964 0.8835964 0.8835964
 [4593] 1.3817806 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 1.3817806
 [4600] 2.1911668 0.8835964 0.8835964 0.6696901 1.0095522 0.8835964 0.8835964
 [4607] 1.5787520 0.8835964 0.6696901 0.8835964 0.8835964 0.6696901 1.0095522
 [4614] 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964
 [4621] 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 1.3817806
 [4628] 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 0.8377255 0.8835964
 [4635] 1.0095522 1.0095522 1.0095522 0.8835964 0.7651538 1.0095522 0.8835964
 [4642] 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522
 [4649] 0.8835964 1.0095522 1.9177880 1.0095522 0.8835964 2.1911668 0.8835964
 [4656] 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522
 [4663] 0.6696901 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964
 [4670] 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522
 [4677] 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964 2.1911668 0.8835964
 [4684] 0.8835964 1.0095522 1.0095522 1.0095522 0.6696901 0.8835964 1.0095522
 [4691] 0.8835964 0.8835964 1.9177880 0.8835964 1.0095522 1.3817806 0.8835964
 [4698] 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522
 [4705] 1.0095522 1.0095522 1.0095522 1.0095522 0.6696901 1.0095522 0.8835964
 [4712] 0.8835964 0.8835964 1.0095522 0.8835964 1.9177880 0.8835964 1.0095522
 [4719] 0.8835964 0.8835964 1.0095522 0.8835964 0.6696901 0.6696901 1.0095522
 [4726] 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964
 [4733] 0.8835964 1.3817806 1.0095522 1.0095522 0.8377255 1.0095522 0.8377255
 [4740] 0.8377255 0.8835964 1.0095522 1.0095522 0.8835964 1.3817806 0.8835964
 [4747] 1.3817806 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522
 [4754] 0.8835964 0.8835964 0.8835964 0.6696901 0.8835964 0.9571424 0.8835964
 [4761] 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 0.8377255
 [4768] 1.5787520 0.8835964 2.1911668 0.6696901 2.1911668 1.9177880 1.9177880
 [4775] 0.6696901 2.1911668 1.0095522 0.8835964 1.0095522 1.0095522 2.1911668
 [4782] 1.9177880 1.0095522 1.9177880 0.6696901 1.0095522 0.8835964 1.9177880
 [4789] 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964
 [4796] 0.8835964 0.8835964 0.6696901 0.8835964 0.8835964 0.8835964 1.0095522
 [4803] 2.1911668 0.8835964 0.8835964 1.0095522 1.3817806 0.8835964 0.8835964
 [4810] 0.8835964 1.0095522 0.8835964 0.8377255 1.0095522 0.8835964 0.8835964
 [4817] 1.0095522 0.8835964 0.9571424 1.0095522 1.0095522 1.5787520 1.0095522
 [4824] 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 0.8377255 1.0095522
 [4831] 1.0095522 1.9177880 2.1911668 1.0095522 1.0095522 2.1911668 0.8835964
 [4838] 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522
 [4845] 1.0095522 1.0095522 1.0095522 1.3817806 0.8835964 0.8835964 0.6696901
 [4852] 0.8377255 2.1911668 0.8835964 1.9177880 1.0095522 1.9177880 1.0095522
 [4859] 1.0095522 0.8835964 0.8835964 0.8835964 0.8377255 0.8835964 0.8835964
 [4866] 1.3817806 0.8835964 0.8835964 1.3817806 0.8835964 1.0095522 1.0095522
 [4873] 0.8835964 0.8835964 1.0095522 2.1911668 1.0095522 1.0095522 0.9571424
 [4880] 1.0095522 2.1911668 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522
 [4887] 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964
 [4894] 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522
 [4901] 0.8835964 0.8835964 0.7651538 0.8835964 1.0095522 0.8835964 0.8835964
 [4908] 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964
 [4915] 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522
 [4922] 0.8835964 0.8835964 1.0095522 0.8835964 0.6696901 0.8835964 1.0095522
 [4929] 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964
 [4936] 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964
 [4943] 1.0095522 0.8835964 1.3817806 0.8835964 1.0095522 0.8835964 1.0095522
 [4950] 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522
 [4957] 1.0095522 1.0095522 1.9177880 1.0095522 1.0095522 1.0095522 1.3817806
 [4964] 1.0095522 0.8835964 0.8835964 0.8835964 0.8377255 0.8835964 0.8835964
 [4971] 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964
 [4978] 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964
 [4985] 0.8835964 0.8835964 0.8377255 0.8835964 1.3817806 1.3817806 1.0095522
 [4992] 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964
 [4999] 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964
 [5006] 1.0095522 0.8377255 0.8835964 0.7651538 1.0095522 0.8835964 0.8835964
 [5013] 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522
 [5020] 0.8377255 1.0095522 1.0095522 1.0095522 2.1911668 0.8835964 1.0095522
 [5027] 0.8835964 0.8835964 1.0095522 1.0095522 1.5787520 0.8835964 0.8835964
 [5034] 1.0095522 0.8835964 0.8835964 0.8835964 1.3817806 1.3817806 1.0095522
 [5041] 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522 1.5787520 1.0095522
 [5048] 0.8377255 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522
 [5055] 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964
 [5062] 0.9571424 1.0095522 1.0095522 1.9177880 1.3817806 0.8835964 1.9177880
 [5069] 0.8377255 1.0095522 0.8835964 0.8835964 0.6696901 0.8835964 1.0095522
 [5076] 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964
 [5083] 1.0095522 1.9177880 1.3817806 1.9177880 0.8835964 0.8835964 0.8377255
 [5090] 1.9177880 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522
 [5097] 1.0095522 1.5787520 1.0095522 0.8835964 1.0095522 0.9571424 0.7651538
 [5104] 0.8835964 0.8835964 1.9177880 0.8835964 1.0095522 0.8835964 0.8835964
 [5111] 0.8835964 1.0095522 0.8835964 1.9177880 0.8835964 1.9177880 2.1911668
 [5118] 1.0095522 1.0095522 0.9571424 1.0095522 0.8835964 1.0095522 0.8835964
 [5125] 0.8835964 1.3817806 1.0095522 0.8835964 0.8835964 0.8835964 0.9571424
 [5132] 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964
 [5139] 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 0.6696901
 [5146] 1.0095522 0.8835964 0.8835964 1.3817806 0.8377255 0.8835964 0.8835964
 [5153] 0.8835964 1.0095522 0.8835964 0.7651538 0.8835964 0.7651538 1.0095522
 [5160] 1.0095522 0.8835964 0.8835964 0.8835964 0.6696901 0.8835964 1.0095522
 [5167] 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964
 [5174] 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964
 [5181] 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964
 [5188] 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964
 [5195] 1.0095522 1.0095522 0.8835964 1.3817806 1.0095522 0.8835964 0.8835964
 [5202] 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.9571424
 [5209] 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964
 [5216] 0.6696901 1.0095522 0.8835964 0.8835964 1.3817806 1.0095522 0.8835964
 [5223] 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522
 [5230] 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964
 [5237] 0.8835964 2.1911668 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964
 [5244] 1.0095522 1.0095522 0.8835964 1.3817806 0.8835964 0.8835964 0.8835964
 [5251] 1.9177880 1.0095522 1.3817806 0.8835964 1.0095522 0.8835964 1.0095522
 [5258] 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964
 [5265] 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 1.5787520 0.8835964
 [5272] 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964
 [5279] 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522
 [5286] 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964
 [5293] 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964
 [5300] 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522
 [5307] 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964
 [5314] 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964
 [5321] 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 0.6696901
 [5328] 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522
 [5335] 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522
 [5342] 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522
 [5349] 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964
 [5356] 1.9177880 1.0095522 0.8835964 0.8835964 1.0095522 0.8377255 1.0095522
 [5363] 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964
 [5370] 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964
 [5377] 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522
 [5384] 1.0095522 1.0095522 1.0095522 1.3817806 0.8835964 0.8835964 1.0095522
 [5391] 0.8835964 0.8835964 0.8835964 0.8835964 0.8377255 1.5787520 0.8835964
 [5398] 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964
 [5405] 1.0095522 0.8835964 1.3817806 0.8835964 1.0095522 1.0095522 1.0095522
 [5412] 0.8835964 0.8835964 0.8835964 1.3817806 1.0095522 1.0095522 1.0095522
 [5419] 0.8835964 1.0095522 1.9177880 0.8835964 0.8835964 0.8835964 1.0095522
 [5426] 1.5787520 0.8835964 0.9571424 1.0095522 2.1911668 1.0095522 0.9571424
 [5433] 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964
 [5440] 1.0095522 1.0095522 0.8835964 2.1911668 0.8835964 1.9177880 1.0095522
 [5447] 0.8835964 0.8377255 1.3817806 2.1911668 0.8835964 0.8835964 1.5787520
 [5454] 1.3817806 0.8835964 1.5787520 0.8835964 0.8835964 1.0095522 0.8835964
 [5461] 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 1.5787520 0.8835964
 [5468] 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964
 [5475] 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964
 [5482] 1.0095522 0.8835964 1.3817806 0.8835964 1.0095522 0.8835964 1.0095522
 [5489] 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964
 [5496] 1.0095522 0.8835964 1.0095522 0.8835964 1.3817806 1.5787520 0.8835964
 [5503] 1.0095522 0.8835964 1.0095522 1.3817806 1.0095522 0.8835964 0.8835964
 [5510] 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 0.6696901 0.8835964
 [5517] 0.8835964 0.8835964 1.5787520 0.8835964 1.0095522 1.0095522 0.8835964
 [5524] 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522
 [5531] 0.8835964 1.0095522 1.5787520 0.8835964 1.0095522 1.3817806 1.9177880
 [5538] 0.8835964 1.9177880 1.0095522 1.0095522 2.1911668 0.8835964 0.7651538
 [5545] 1.3817806 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522 1.3817806
 [5552] 1.0095522 0.8835964 1.0095522 0.7651538 0.8835964 1.0095522 0.8835964
 [5559] 0.8377255 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964
 [5566] 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 1.3817806 1.5787520
 [5573] 1.0095522 1.0095522 1.3817806 1.3817806 1.0095522 0.8835964 0.8835964
 [5580] 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964
 [5587] 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 0.6696901 0.8835964
 [5594] 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964
 [5601] 0.6696901 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964
 [5608] 0.8835964 1.0095522 1.0095522 0.8377255 1.0095522 0.8835964 1.3817806
 [5615] 1.3817806 1.5787520 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522
 [5622] 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522 1.3817806
 [5629] 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964
 [5636] 1.3817806 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522
 [5643] 1.0095522 1.5787520 0.8835964 0.8835964 1.3817806 1.0095522 0.8835964
 [5650] 1.0095522 1.3817806 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522
 [5657] 1.0095522 0.8835964 0.8835964 0.8835964 1.3817806 0.8835964 0.8835964
 [5664] 1.0095522 0.8835964 2.1911668 0.8835964 1.3817806 0.6696901 0.8835964
 [5671] 0.8835964 1.3817806 2.1911668 0.8835964 0.6696901 0.8835964 1.3817806
 [5678] 0.8377255 1.0095522 1.5787520 1.0095522 1.0095522 1.3817806 1.5787520
 [5685] 1.0095522 0.8835964 0.8835964 1.0095522 1.3817806 0.8835964 1.0095522
 [5692] 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 2.1911668 0.6696901
 [5699] 1.0095522 1.0095522 1.3817806 0.7651538 0.8835964 0.8835964 1.3817806
 [5706] 0.8835964 1.5787520 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964
 [5713] 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964
 [5720] 1.0095522 2.1911668 1.5787520 1.0095522 0.8835964 0.6696901 1.3817806
 [5727] 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522
 [5734] 1.0095522 1.3817806 0.8835964 0.8835964 0.8835964 0.6696901 0.8835964
 [5741] 1.0095522 0.8835964 1.0095522 1.3817806 1.0095522 1.0095522 0.8835964
 [5748] 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522
 [5755] 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 1.5787520 1.0095522
 [5762] 0.8835964 1.3817806 1.0095522 1.5787520 0.8835964 0.8835964 1.0095522
 [5769] 1.3817806 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 1.3817806
 [5776] 1.5787520 0.8835964 0.8835964 1.0095522 0.6696901 1.3817806 1.9177880
 [5783] 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522 1.5787520
 [5790] 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522
 [5797] 1.0095522 0.8835964 0.8835964 1.0095522 1.3817806 0.8835964 1.0095522
 [5804] 0.8835964 1.0095522 1.0095522 0.8835964 1.3817806 1.0095522 1.3817806
 [5811] 1.0095522 0.8835964 1.0095522 1.3817806 0.8835964 0.8835964 1.0095522
 [5818] 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 1.5787520 0.8835964
 [5825] 0.8835964 1.5787520 0.8835964 0.8835964 1.0095522 1.0095522 1.5787520
 [5832] 1.0095522 1.3817806 0.8835964 1.0095522 1.0095522 0.8835964 0.9571424
 [5839] 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522 1.3817806
 [5846] 0.8835964 1.0095522 1.0095522 0.8835964 1.3817806 1.0095522 0.8377255
 [5853] 0.7651538 1.3817806 0.8835964 0.8835964 1.3817806 0.8835964 0.8835964
 [5860] 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 1.3817806 1.0095522
 [5867] 1.5787520 0.8835964 0.9571424 1.0095522 1.0095522 0.8835964 1.0095522
 [5874] 0.8835964 1.0095522 0.8835964 0.8835964 0.7651538 1.0095522 1.0095522
 [5881] 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964
 [5888] 1.3817806 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522
 [5895] 0.9571424 1.3817806 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964
 [5902] 1.0095522 0.8377255 0.8377255 1.3817806 1.0095522 0.8835964 0.8835964
 [5909] 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964
 [5916] 1.3817806 0.8835964 0.9571424 1.0095522 0.8835964 0.8835964 0.8835964
 [5923] 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 0.9571424 1.0095522
 [5930] 1.0095522 1.0095522 1.0095522 1.0095522 0.6696901 1.0095522 1.0095522
 [5937] 0.6696901 0.8835964 0.8377255 1.3817806 1.0095522 0.8377255 0.8835964
 [5944] 1.0095522 0.8835964 1.9177880 1.0095522 0.8835964 0.8835964 0.8835964
 [5951] 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 1.3817806 0.8835964
 [5958] 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 0.8377255 1.0095522
 [5965] 1.3817806 2.1911668 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964
 [5972] 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522
 [5979] 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522
 [5986] 1.3817806 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964
 [5993] 0.8835964 0.8835964 0.8835964 1.3817806 0.8835964 1.0095522 1.0095522
 [6000] 0.8835964 0.8835964 0.8835964 1.5787520 0.8835964 1.0095522 2.1911668
 [6007] 1.3817806 1.3817806 0.9571424 0.8835964 1.0095522 1.0095522 0.8835964
 [6014] 0.8835964 1.3817806 0.8835964 1.0095522 1.0095522 1.3817806 0.8835964
 [6021] 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 2.1911668
 [6028] 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964
 [6035] 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 0.6696901 1.0095522
 [6042] 0.8835964 1.0095522 1.5787520 1.0095522 0.8377255 0.8835964 0.8835964
 [6049] 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522
 [6056] 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 0.9571424
 [6063] 1.9177880 0.8835964 1.5787520 1.5787520 1.0095522 1.0095522 1.0095522
 [6070] 1.0095522 0.8835964 1.0095522 1.3817806 0.8835964 1.0095522 0.8835964
 [6077] 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 1.5787520 1.3817806
 [6084] 0.8835964 0.8835964 1.3817806 1.0095522 0.6696901 0.8835964 0.6696901
 [6091] 1.0095522 1.3817806 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964
 [6098] 0.8835964 0.8835964 0.8835964 0.8835964 1.3817806 0.8835964 1.3817806
 [6105] 2.1911668 1.0095522 0.8835964 1.3817806 0.8835964 0.8835964 1.0095522
 [6112] 0.8835964 1.3817806 0.8835964 1.0095522 0.8835964 0.8835964 0.6696901
 [6119] 1.3817806 0.9571424 1.0095522 1.3817806 0.8835964 0.8377255 1.0095522
 [6126] 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964
 [6133] 1.5787520 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964
 [6140] 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964
 [6147] 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964
 [6154] 1.5787520 1.0095522 0.8835964 1.5787520 1.0095522 1.0095522 1.0095522
 [6161] 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522
 [6168] 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964
 [6175] 0.8835964 2.1911668 1.3817806 0.8835964 0.8835964 0.8835964 1.0095522
 [6182] 1.3817806 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964
 [6189] 1.0095522 0.6696901 0.6696901 0.8835964 0.8835964 0.8835964 0.8835964
 [6196] 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522
 [6203] 1.3817806 1.3817806 0.8835964 0.8835964 2.1911668 1.3817806 0.8835964
 [6210] 0.8835964 1.0095522 0.8835964 0.8835964 1.3817806 0.8835964 0.8835964
 [6217] 0.8835964 0.8835964 0.8835964 1.0095522 1.3817806 0.7651538 0.8835964
 [6224] 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522 1.5787520
 [6231] 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522
 [6238] 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 0.8377255 0.8835964
 [6245] 0.8835964 0.8835964 0.6696901 1.3817806 0.8835964 0.8835964 0.8835964
 [6252] 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522
 [6259] 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964
 [6266] 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 2.1911668 1.0095522
 [6273] 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964
 [6280] 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 1.5787520
 [6287] 0.8835964 0.8377255 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964
 [6294] 1.0095522 0.6696901 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964
 [6301] 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522
 [6308] 1.0095522 0.8835964 1.0095522 0.8835964 0.7651538 1.0095522 0.8835964
 [6315] 1.0095522 0.8377255 0.7651538 0.8377255 0.8835964 0.8835964 1.0095522
 [6322] 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964
 [6329] 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964 1.5787520
 [6336] 1.0095522 2.1911668 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964
 [6343] 0.8835964 1.0095522 1.0095522 0.8835964 0.6696901 0.8835964 0.8835964
 [6350] 1.0095522 1.0095522 1.0095522 1.5787520 0.8835964 1.0095522 0.8835964
 [6357] 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522
 [6364] 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964
 [6371] 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964
 [6378] 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964
 [6385] 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964
 [6392] 0.7651538 0.8835964 0.7651538 0.8835964 0.8835964 1.0095522 1.0095522
 [6399] 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 0.7651538 1.0095522
 [6406] 0.8835964 0.8835964 0.8377255 0.8835964 0.8835964 1.0095522 1.0095522
 [6413] 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964
 [6420] 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964
 [6427] 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964
 [6434] 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 2.1911668
 [6441] 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964
 [6448] 1.3817806 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964
 [6455] 0.8835964 0.8835964 1.3817806 1.3817806 0.8835964 1.0095522 0.8835964
 [6462] 0.8835964 1.0095522 0.8835964 0.8377255 0.8835964 0.8835964 0.8835964
 [6469] 1.0095522 1.3817806 0.8835964 0.8835964 1.0095522 1.0095522 1.3817806
 [6476] 0.9571424 0.8835964 0.8835964 1.0095522 1.9177880 0.8835964 1.0095522
 [6483] 1.3817806 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964
 [6490] 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522
 [6497] 1.0095522 2.1911668 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522
 [6504] 0.8835964 1.3817806 0.8377255 0.8835964 0.8835964 0.8835964 0.8835964
 [6511] 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522
 [6518] 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964
 [6525] 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522
 [6532] 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964
 [6539] 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964
 [6546] 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 1.3817806
 [6553] 0.8835964 1.0095522 1.0095522 1.0095522 0.8377255 0.8835964 1.3817806
 [6560] 0.8835964 1.3817806 1.0095522 0.8835964 1.0095522 0.8835964 1.0095522
 [6567] 1.0095522 0.8835964 1.0095522 0.8835964 1.0095522 0.7651538 0.7651538
 [6574] 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 1.5787520 1.0095522
 [6581] 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964
 [6588] 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 1.9177880
 [6595] 1.0095522 0.8835964 0.8377255 0.8835964 0.8835964 1.0095522 1.0095522
 [6602] 0.8835964 0.8835964 0.7651538 0.8835964 0.8835964 0.8835964 1.0095522
 [6609] 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964
 [6616] 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964
 [6623] 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964
 [6630] 0.8377255 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522
 [6637] 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964
 [6644] 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 0.9571424
 [6651] 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964
 [6658] 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964
 [6665] 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964
 [6672] 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.6696901 1.0095522
 [6679] 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522
 [6686] 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964
 [6693] 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964
 [6700] 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522
 [6707] 0.8835964 1.0095522 0.8835964 0.8377255 0.8835964 1.3817806 0.8835964
 [6714] 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522
 [6721] 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522
 [6728] 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964
 [6735] 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 1.9177880 1.0095522
 [6742] 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964
 [6749] 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964
 [6756] 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964
 [6763] 0.8835964 1.0095522 2.1911668 0.6696901 0.8835964 0.8835964 0.8835964
 [6770] 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964
 [6777] 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522
 [6784] 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964
 [6791] 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 2.1911668 0.8835964
 [6798] 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522
 [6805] 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522
 [6812] 1.0095522 1.0095522 1.0095522 1.0095522 1.5787520 0.8835964 0.8835964
 [6819] 0.8835964 0.8835964 0.8835964 1.0095522 2.1911668 0.8835964 0.8835964
 [6826] 0.8835964 1.0095522 2.1911668 1.0095522 1.0095522 0.8835964 1.0095522
 [6833] 1.0095522 0.8835964 0.8835964 0.8835964 1.5787520 0.8835964 0.8835964
 [6840] 1.3817806 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522
 [6847] 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964 1.0095522
 [6854] 1.9177880 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964
 [6861] 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522
 [6868] 0.8835964 2.1911668 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964
 [6875] 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964
 [6882] 1.0095522 0.8835964 1.0095522 1.0095522 0.9571424 0.8835964 1.0095522
 [6889] 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964
 [6896] 0.8835964 0.8835964 2.1911668 0.8835964 1.0095522 0.8835964 0.8835964
 [6903] 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964 1.0095522
 [6910] 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964
 [6917] 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522 0.8377255 0.8835964
 [6924] 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522
 [6931] 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 0.8377255
 [6938] 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964
 [6945] 0.6696901 1.9177880 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522
 [6952] 1.9177880 1.0095522 1.9177880 0.8835964 1.0095522 0.8835964 0.8835964
 [6959] 1.9177880 1.3817806 0.8835964 0.8835964 0.8377255 1.0095522 1.0095522
 [6966] 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522
 [6973] 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522
 [6980] 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964
 [6987] 0.8835964 1.3817806 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522
 [6994] 1.3817806 0.8835964 1.0095522 1.0095522 0.8835964 1.3817806 0.8835964
 [7001] 0.8835964 1.0095522 1.0095522 0.6696901 0.8835964 1.0095522 1.0095522
 [7008] 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522
 [7015] 2.1911668 0.8835964 0.7651538 0.9571424 0.7651538 1.3817806 0.8835964
 [7022] 1.0095522 0.8835964 1.9177880 0.9571424 0.8835964 0.8835964 0.8835964
 [7029] 2.1911668 1.5787520 0.8377255 1.0095522 0.7651538 2.1911668 1.0095522
 [7036] 0.8835964 1.0095522 0.8835964 2.1911668 1.0095522 0.8835964 0.8835964
 [7043] 1.3817806 0.6696901 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522
 [7050] 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522
 [7057] 0.8835964 0.8835964 1.0095522 0.6696901 0.8835964 1.0095522 0.8835964
 [7064] 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964
 [7071] 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 1.9177880
 [7078] 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522 0.7651538
 [7085] 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 0.6696901 0.8835964
 [7092] 0.8835964 0.8835964 1.0095522 1.3817806 0.8835964 1.5787520 1.0095522
 [7099] 0.8835964 1.9177880 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522
 [7106] 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522
 [7113] 0.7651538 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964
 [7120] 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964
 [7127] 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 1.3817806 0.8835964
 [7134] 0.8377255 0.8835964 0.8377255 0.8835964 0.6696901 1.0095522 1.0095522
 [7141] 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522
 [7148] 0.8835964 1.0095522 0.8835964 0.8377255 1.0095522 1.0095522 0.8835964
 [7155] 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522
 [7162] 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522
 [7169] 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522
 [7176] 0.8835964 0.8835964 0.8835964 0.8835964 1.9177880 0.8835964 0.8835964
 [7183] 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 0.6696901 0.8835964
 [7190] 1.0095522 1.0095522 1.0095522 0.7651538 1.0095522 0.8835964 1.0095522
 [7197] 0.8835964 1.0095522 1.3817806 1.0095522 1.0095522 2.1911668 0.8835964
 [7204] 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522
 [7211] 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964
 [7218] 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964
 [7225] 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 2.1911668 0.8835964
 [7232] 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964
 [7239] 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522
 [7246] 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 2.1911668 1.3817806
 [7253] 1.0095522 1.0095522 0.8377255 0.6696901 1.5787520 1.3817806 1.0095522
 [7260] 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964
 [7267] 1.3817806 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964
 [7274] 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964
 [7281] 1.0095522 0.8835964 1.3817806 1.0095522 0.8835964 0.8835964 0.8835964
 [7288] 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522
 [7295] 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964 0.6696901 0.8835964
 [7302] 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 1.3817806
 [7309] 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522
 [7316] 1.9177880 1.3817806 0.8835964 0.8835964 0.8835964 1.0095522 0.8377255
 [7323] 0.7651538 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522
 [7330] 0.9571424 0.8377255 0.6696901 1.0095522 0.6696901 0.6696901 1.0095522
 [7337] 0.8835964 0.8835964 1.0095522 0.8835964 0.6696901 0.8835964 0.8835964
 [7344] 0.8835964 0.7651538 1.0095522 0.9571424 1.3817806 0.6696901 0.8835964
 [7351] 0.8377255 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522
 [7358] 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964
 [7365] 0.8835964 0.8835964 1.0095522 1.0095522 0.6696901 0.8835964 0.8835964
 [7372] 0.6696901 1.0095522 0.9571424 0.8835964 1.3817806 1.0095522 1.3817806
 [7379] 0.8377255 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964
 [7386] 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522 0.9571424 1.0095522
 [7393] 1.0095522 0.8377255 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522
 [7400] 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964
 [7407] 1.3817806 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522
 [7414] 1.0095522 1.0095522 0.6696901 0.8377255 1.0095522 1.0095522 0.8835964
 [7421] 0.8835964 1.0095522 0.8835964 1.3817806 0.8835964 1.0095522 1.0095522
 [7428] 0.8835964 1.0095522 1.0095522 1.9177880 0.8835964 0.8835964 0.8835964
 [7435] 0.8835964 1.9177880 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964
 [7442] 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964
 [7449] 1.0095522 1.3817806 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522
 [7456] 1.0095522 1.3817806 0.8835964 0.8835964 1.5787520 1.0095522 2.1911668
 [7463] 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522
 [7470] 0.8835964 0.8835964 0.8377255 0.8835964 1.0095522 0.8835964 0.8835964
 [7477] 1.3817806 0.8835964 1.5787520 0.8835964 0.8377255 0.8835964 0.8835964
 [7484] 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964
 [7491] 1.0095522 1.0095522 0.8835964 0.8377255 1.0095522 1.0095522 0.8377255
 [7498] 1.0095522 1.0095522 0.8835964 1.0095522 1.5787520 0.8377255 1.3817806
 [7505] 0.7651538 0.8377255 0.6696901 1.0095522 0.8835964 1.3817806 1.5787520
 [7512] 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964
 [7519] 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522
 [7526] 1.0095522 1.9177880 0.8835964 0.8835964 0.9571424 0.8835964 1.0095522
 [7533] 1.3817806 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 1.0095522
 [7540] 1.0095522 0.8835964 1.0095522 0.8835964 0.9571424 1.0095522 1.0095522
 [7547] 1.0095522 0.8835964 1.0095522 0.8835964 0.9571424 0.8835964 1.0095522
 [7554] 1.0095522 0.8377255 1.0095522 1.0095522 0.8377255 0.8835964 1.0095522
 [7561] 1.0095522 0.8835964 0.8377255 0.8377255 1.0095522 0.8835964 1.9177880
 [7568] 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522
 [7575] 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522
 [7582] 1.3817806 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964
 [7589] 0.6696901 0.9571424 0.8835964 1.0095522 0.6696901 0.6696901 1.0095522
 [7596] 0.9571424 0.8835964 1.0095522 0.8835964 0.7651538 0.8835964 0.8835964
 [7603] 0.8835964 0.8835964 0.9571424 0.8835964 1.0095522 1.0095522 0.8835964
 [7610] 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522
 [7617] 1.5787520 0.8377255 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522
 [7624] 0.8835964 0.8835964 0.8377255 0.8835964 1.0095522 0.8835964 0.8835964
 [7631] 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964
 [7638] 0.6696901 0.6696901 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964
 [7645] 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522
 [7652] 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 0.8377255
 [7659] 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964
 [7666] 0.8835964 0.8835964 0.6696901 1.0095522 0.8835964 1.0095522 1.0095522
 [7673] 1.0095522 1.0095522 0.8835964 0.9571424 0.8835964 0.8835964 0.8835964
 [7680] 1.0095522 1.0095522 1.0095522 0.7651538 1.0095522 1.0095522 0.8835964
 [7687] 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964
 [7694] 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964
 [7701] 1.0095522 1.0095522 1.0095522 0.7651538 0.8835964 1.9177880 0.7651538
 [7708] 0.6696901 0.9571424 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964
 [7715] 0.8835964 1.0095522 1.0095522 0.6696901 0.8835964 1.0095522 1.0095522
 [7722] 0.8835964 1.0095522 0.6696901 0.8835964 1.0095522 0.8835964 1.0095522
 [7729] 0.8835964 1.0095522 1.0095522 1.0095522 2.1911668 1.0095522 1.0095522
 [7736] 0.8835964 2.1911668 1.0095522 0.8835964 0.8835964 1.0095522 0.8377255
 [7743] 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522
 [7750] 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964
 [7757] 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522
 [7764] 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522
 [7771] 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522
 [7778] 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522
 [7785] 1.9177880 1.0095522 0.8835964 0.9571424 0.8835964 1.0095522 0.8377255
 [7792] 0.8377255 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964
 [7799] 1.3817806 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964
 [7806] 0.9571424 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964 0.8377255
 [7813] 0.8835964 1.0095522 0.7651538 0.8835964 1.0095522 0.8835964 1.0095522
 [7820] 1.0095522 0.8835964 1.0095522 0.8835964 1.3817806 0.8835964 1.0095522
 [7827] 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964
 [7834] 2.1911668 1.0095522 0.8835964 0.8835964 1.0095522 0.8377255 1.0095522
 [7841] 1.0095522 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964
 [7848] 1.0095522 1.0095522 0.8377255 1.3817806 0.9571424 0.8835964 0.8835964
 [7855] 1.0095522 1.9177880 1.9177880 0.6696901 1.0095522 0.8377255 0.9571424
 [7862] 1.9177880 1.0095522 0.8835964 0.8835964 1.3817806 1.5787520 1.0095522
 [7869] 0.8835964 1.9177880 1.0095522 0.8835964 0.7651538 0.7651538 0.8835964
 [7876] 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964
 [7883] 0.6696901 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964
 [7890] 0.8835964 1.3817806 1.9177880 1.9177880 2.1911668 1.9177880 1.0095522
 [7897] 0.8835964 1.0095522 0.7651538 0.8377255 1.0095522 0.8835964 1.0095522
 [7904] 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964
 [7911] 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522
 [7918] 0.8835964 0.8835964 0.8835964 1.9177880 0.8377255 1.0095522 2.1911668
 [7925] 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522 0.9571424
 [7932] 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522 0.9571424
 [7939] 1.0095522 0.8377255 0.8835964 1.9177880 0.9571424 0.8835964 0.8377255
 [7946] 0.6696901 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 2.1911668
 [7953] 0.8835964 1.0095522 2.1911668 1.0095522 2.1911668 0.9571424 1.9177880
 [7960] 0.8835964 0.8835964 1.9177880 0.8377255 0.8835964 1.0095522 0.8835964
 [7967] 0.8835964 0.9571424 0.8835964 0.8377255 0.8835964 0.8835964 1.0095522
 [7974] 0.8835964 1.0095522 0.6696901 1.0095522 1.0095522 2.1911668 1.9177880
 [7981] 2.1911668 2.1911668 1.0095522 1.9177880 0.6696901 0.7651538 0.8835964
 [7988] 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964
 [7995] 1.5787520 0.9571424 0.8835964 0.8835964 1.5787520 1.0095522 0.8835964
 [8002] 1.9177880 1.9177880 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522
 [8009] 0.8835964 1.9177880 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964
 [8016] 0.6696901 2.1911668 0.8835964 1.0095522 0.8377255 1.0095522 1.0095522
 [8023] 1.0095522 1.9177880 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964
 [8030] 0.8835964 1.0095522 1.9177880 0.8835964 1.0095522 2.1911668 0.8835964
 [8037] 1.9177880 1.0095522 2.1911668 1.0095522 0.8835964 1.0095522 0.8835964
 [8044] 0.8835964 0.8835964 0.8835964 2.1911668 1.0095522 0.8835964 0.8835964
 [8051] 1.0095522 0.8835964 2.1911668 2.1911668 1.9177880 0.8835964 1.0095522
 [8058] 1.0095522 2.1911668 0.8835964 1.0095522 0.8835964 1.9177880 2.1911668
 [8065] 0.8835964 0.6696901 0.8835964 0.8835964 0.8835964 0.9571424 0.7651538
 [8072] 1.0095522 1.0095522 0.8377255 1.0095522 0.8835964 0.8835964 1.0095522
 [8079] 0.8835964 2.1911668 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964
 [8086] 0.8835964 0.8835964 1.0095522 0.7651538 2.1911668 0.8835964 1.0095522
 [8093] 1.9177880 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522
 [8100] 1.0095522 0.8835964 0.8835964 2.1911668 0.9571424 2.1911668 1.0095522
 [8107] 0.8835964 0.8377255 1.0095522 2.1911668 0.8377255 0.8835964 0.8377255
 [8114] 1.0095522 1.0095522 1.0095522 1.3817806 1.0095522 1.9177880 0.8835964
 [8121] 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964
 [8128] 0.8835964 2.1911668 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522
 [8135] 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964
 [8142] 0.8835964 0.8835964 1.0095522 1.3817806 1.0095522 0.8835964 1.0095522
 [8149] 0.8835964 0.9571424 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964
 [8156] 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522
 [8163] 0.8835964 1.9177880 1.9177880 0.8377255 2.1911668 1.0095522 1.9177880
 [8170] 2.1911668 2.1911668 2.1911668 0.9571424 0.6696901 0.8835964 2.1911668
 [8177] 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964
 [8184] 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964 1.0095522
 [8191] 0.7651538 1.0095522 1.0095522 1.0095522 1.0095522 0.9571424 0.8835964
 [8198] 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522
 [8205] 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964 1.0095522 0.8377255
 [8212] 1.0095522 0.8835964 0.8377255 0.8835964 1.0095522 1.0095522 0.8835964
 [8219] 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964
 [8226] 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 0.6696901 0.8835964
 [8233] 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964
 [8240] 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964
 [8247] 0.8835964 1.0095522 1.9177880 1.0095522 0.8835964 0.8835964 0.8835964
 [8254] 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 0.7651538 0.6696901
 [8261] 0.8835964 1.0095522 0.8835964 1.0095522 2.1911668 0.8835964 2.1911668
 [8268] 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964
 [8275] 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964
 [8282] 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 2.1911668 1.0095522
 [8289] 0.8835964 0.7651538 1.0095522 0.8835964 1.0095522 0.8835964 1.0095522
 [8296] 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522
 [8303] 0.8835964 0.8835964 2.1911668 0.8835964 0.8835964 1.0095522 0.8835964
 [8310] 0.8835964 0.8835964 0.7651538 1.0095522 1.0095522 0.8377255 0.8835964
 [8317] 0.8835964 0.8835964 0.8835964 1.0095522 0.9571424 0.8835964 1.3817806
 [8324] 1.0095522 1.0095522 1.0095522 0.8377255 0.8835964 0.8835964 0.8835964
 [8331] 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964
 [8338] 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 1.0095522
 [8345] 0.8835964 0.8835964 0.6696901 1.0095522 0.8835964 0.8835964 1.0095522
 [8352] 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964 0.6696901 0.8835964
 [8359] 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964
 [8366] 1.0095522 0.8835964 0.8835964 1.3817806 1.0095522 1.0095522 0.8835964
 [8373] 1.0095522 0.8835964 1.0095522 0.8835964 0.8377255 1.0095522 0.8835964
 [8380] 1.0095522 0.8835964 1.3817806 0.8835964 1.0095522 0.8835964 0.8835964
 [8387] 0.8835964 1.0095522 0.8835964 0.8835964 0.8377255 0.8835964 0.8835964
 [8394] 1.0095522 1.0095522 0.8835964 1.3817806 0.8835964 0.8835964 0.8835964
 [8401] 0.8835964 0.9571424 0.8835964 0.8835964 0.8835964 0.9571424 0.8835964
 [8408] 0.8835964 0.8835964 1.0095522 0.8835964 0.8377255 0.8835964 0.6696901
 [8415] 1.0095522 1.0095522 0.8835964 0.8835964 0.9571424 0.9571424 0.8835964
 [8422] 1.0095522 0.8835964 0.8835964 0.8835964 0.8377255 2.1911668 0.8835964
 [8429] 1.0095522 0.8835964 0.9571424 0.8835964 0.8835964 1.0095522 0.8835964
 [8436] 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964 0.7651538
 [8443] 0.8835964 0.8835964 1.0095522 0.8835964 1.3817806 1.3817806 0.8835964
 [8450] 0.8835964 0.8835964 1.3817806 1.0095522 0.8835964 0.8835964 0.8835964
 [8457] 0.9571424 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964
 [8464] 1.3817806 0.8835964 0.8835964 0.8835964 0.8377255 1.3817806 0.8835964
 [8471] 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964
 [8478] 1.0095522 1.0095522 1.0095522 0.8835964 1.9177880 0.9571424 1.0095522
 [8485] 0.9571424 1.0095522 0.8835964 1.0095522 0.8835964 0.8377255 1.9177880
 [8492] 0.6696901 1.0095522 0.8835964 0.7651538 1.3817806 0.8835964 1.0095522
 [8499] 0.8835964 1.0095522 1.0095522 0.7651538 1.3817806 2.1911668 1.0095522
 [8506] 1.3817806 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964
 [8513] 0.8835964 0.8377255 1.5787520 0.8835964 0.8835964 1.0095522 1.0095522
 [8520] 1.3817806 0.8835964 1.0095522 0.8835964 0.9571424 0.8835964 0.8835964
 [8527] 0.8835964 1.0095522 0.8835964 1.3817806 0.8835964 0.8835964 2.1911668
 [8534] 2.1911668 0.8835964 0.8835964 1.3817806 0.8835964 2.1911668 0.8835964
 [8541] 0.8835964 0.8835964 0.8377255 1.0095522 0.9571424 0.8377255 0.8835964
 [8548] 0.8835964 1.0095522 1.3817806 0.8377255 0.8835964 0.6696901 1.0095522
 [8555] 0.8377255 1.3817806 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522
 [8562] 0.8835964 1.0095522 0.8377255 1.0095522 1.0095522 1.0095522 1.0095522
 [8569] 1.0095522 0.9571424 1.3817806 0.8835964 0.8835964 0.8835964 0.8835964
 [8576] 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 1.3817806 0.8377255
 [8583] 0.8377255 0.6696901 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522
 [8590] 0.8835964 0.8835964 1.3817806 0.8835964 0.8835964 0.6696901 0.8835964
 [8597] 1.5787520 1.0095522 0.8835964 1.0095522 1.5787520 1.5787520 1.0095522
 [8604] 1.0095522 0.8377255 0.9571424 0.9571424 0.9571424 0.9571424 0.8377255
 [8611] 0.8377255 0.9571424 0.9571424 0.8377255 0.8377255 0.9571424 0.8377255
 [8618] 0.8377255 0.9571424 0.9571424 0.8377255 0.9571424 0.8377255 0.9571424
 [8625] 0.8377255 0.8377255 0.8377255 0.9571424 0.9571424 0.9571424 0.9571424
 [8632] 0.9571424 0.9571424 0.8377255 0.9571424 0.8377255 0.8377255 0.9571424
 [8639] 0.8377255 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255 0.9571424
 [8646] 0.8377255 0.9571424 0.9571424 0.8377255 0.8377255 0.8377255 0.9571424
 [8653] 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255 0.9571424 0.9571424
 [8660] 0.9571424 0.8377255 0.9571424 0.9571424 0.9571424 0.8377255 0.9571424
 [8667] 0.9571424 0.9571424 0.8377255 0.8377255 0.8377255 0.9571424 0.8377255
 [8674] 0.9571424 0.9571424 0.9571424 0.8377255 0.8835964 0.8377255 0.9571424
 [8681] 0.9571424 0.8377255 0.9571424 0.9571424 0.9571424 0.8377255 0.8377255
 [8688] 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255 0.9571424 0.8377255
 [8695] 0.9571424 0.9571424 0.9571424 0.8377255 0.8377255 0.9571424 0.8377255
 [8702] 0.9571424 0.8377255 0.9571424 0.9571424 0.9571424 0.8377255 0.8377255
 [8709] 0.8377255 0.9571424 0.9571424 0.9571424 0.8377255 0.8377255 0.9571424
 [8716] 0.8377255 0.9571424 0.8377255 0.8377255 0.9571424 0.9571424 0.9571424
 [8723] 0.8377255 0.9571424 0.8377255 0.8377255 0.9571424 0.9571424 0.8377255
 [8730] 0.9571424 0.9571424 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255
 [8737] 0.8377255 0.9571424 0.9571424 0.9571424 0.8377255 0.8377255 0.8377255
 [8744] 0.9571424 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255 0.9571424
 [8751] 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255 0.9571424 0.8377255
 [8758] 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255 0.9571424
 [8765] 0.9571424 0.9571424 0.8377255 0.9571424 0.8377255 0.8377255 0.8377255
 [8772] 0.8377255 0.9571424 0.8377255 0.9571424 0.8377255 0.8377255 0.9571424
 [8779] 0.8377255 0.8377255 0.8377255 0.9571424 0.9571424 0.8377255 0.8377255
 [8786] 0.9571424 0.8377255 0.9571424 0.9571424 0.9571424 0.8377255 0.8377255
 [8793] 0.9571424 0.9571424 0.9571424 0.8377255 0.9571424 0.8377255 0.9571424
 [8800] 0.8377255 0.9571424 0.9571424 0.8377255 0.9571424 0.8377255 0.8377255
 [8807] 0.8377255 0.8377255 0.8377255 0.9571424 0.8377255 0.8377255 0.9571424
 [8814] 0.8377255 0.9571424 0.9571424 1.0095522 1.0095522 0.8835964 0.8835964
 [8821] 1.0095522 0.9571424 0.8835964 0.8377255 0.8377255 1.0095522 0.8835964
 [8828] 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 1.0095522
 [8835] 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964
 [8842] 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522 0.7651538 1.0095522
 [8849] 0.8835964 1.0095522 0.9571424 2.1911668 1.5787520 0.8835964 0.8835964
 [8856] 0.8835964 0.8835964 1.3817806 0.8835964 0.8835964 1.5787520 1.3817806
 [8863] 1.0095522 1.0095522 1.0095522 0.8377255 0.8835964 0.9571424 0.8835964
 [8870] 1.0095522 0.8835964 1.0095522 0.8835964 1.0095522 1.5787520 0.8835964
 [8877] 1.5787520 1.3817806 0.8377255 0.8835964 1.0095522 1.3817806 0.8835964
 [8884] 0.8835964 1.5787520 1.0095522 0.8835964 1.0095522 1.0095522 0.8377255
 [8891] 1.0095522 1.3817806 0.8835964 1.0095522 0.8835964 0.8835964 1.3817806
 [8898] 1.0095522 1.0095522 1.3817806 1.0095522 0.8835964 1.3817806 1.0095522
 [8905] 0.8835964 0.8377255 0.8835964 0.8835964 1.0095522 0.8835964 0.8835964
 [8912] 1.0095522 1.9177880 1.0095522 1.0095522 0.8835964 1.0095522 0.9571424
 [8919] 0.8835964 1.3817806 0.8835964 1.3817806 1.0095522 0.6696901 1.3817806
 [8926] 0.8835964 0.8835964 0.8835964 0.8835964 0.9571424 1.0095522 0.8377255
 [8933] 1.0095522 1.0095522 0.8835964 1.5787520 1.5787520 1.3817806 0.8835964
 [8940] 0.8835964 0.8835964 0.8835964 0.8835964 0.8377255 1.0095522 0.9571424
 [8947] 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964 0.6696901 0.6696901
 [8954] 0.8835964 1.3817806 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964
 [8961] 0.8835964 0.8377255 0.8835964 1.3817806 1.0095522 1.0095522 0.9571424
 [8968] 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522
 [8975] 0.8835964 1.0095522 1.0095522 0.8377255 2.1911668 0.8835964 0.8835964
 [8982] 1.3817806 1.0095522 1.0095522 1.0095522 0.8835964 0.6696901 2.1911668
 [8989] 1.0095522 1.3817806 0.8835964 2.1911668 0.8835964 0.9571424 1.0095522
 [8996] 0.8835964 0.8835964 1.0095522 0.8835964 0.8377255 1.0095522 1.0095522
 [9003] 0.7651538 0.8835964 1.9177880 1.0095522 0.8835964 0.8377255 0.8835964
 [9010] 0.8835964 1.0095522 1.3817806 1.3817806 0.8835964 0.8835964 0.8835964
 [9017] 0.8835964 0.8377255 0.8835964 0.8835964 0.6696901 1.0095522 0.8835964
 [9024] 1.0095522 1.0095522 1.0095522 1.0095522 0.7651538 0.8835964 0.8835964
 [9031] 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.6696901
 [9038] 1.0095522 1.5787520 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964
 [9045] 1.0095522 0.8377255 1.0095522 1.9177880 0.8835964 1.0095522 0.8835964
 [9052] 0.9571424 0.8835964 0.8835964 1.5787520 0.8835964 0.8835964 0.8835964
 [9059] 1.0095522 1.0095522 0.8835964 0.8835964 1.5787520 0.8835964 0.8835964
 [9066] 2.1911668 0.6696901 1.0095522 1.0095522 0.8835964 1.3817806 1.3817806
 [9073] 0.8835964 0.8835964 0.8835964 2.1911668 1.3817806 0.8835964 0.8835964
 [9080] 0.8835964 1.0095522 1.0095522 0.8835964 0.9571424 0.8835964 0.8835964
 [9087] 1.3817806 1.3817806 1.0095522 0.8835964 1.3817806 0.9571424 0.8835964
 [9094] 1.0095522 0.8835964 1.0095522 0.7651538 1.0095522 0.8835964 1.0095522
 [9101] 1.0095522 0.8835964 0.8835964 0.8377255 1.0095522 0.8835964 0.8835964
 [9108] 1.0095522 0.8835964 0.8835964 1.0095522 1.3817806 0.8835964 0.8835964
 [9115] 1.3817806 1.5787520 1.0095522 0.8377255 0.8835964 0.8835964 0.8835964
 [9122] 0.8835964 0.8377255 0.8835964 1.0095522 0.8835964 0.8835964 1.5787520
 [9129] 0.8835964 1.0095522 0.9571424 1.0095522 0.8835964 1.0095522 1.0095522
 [9136] 0.8377255 0.8835964 0.6696901 1.0095522 2.1911668 1.0095522 0.8835964
 [9143] 1.0095522 1.3817806 1.0095522 0.9571424 1.0095522 0.8835964 0.8835964
 [9150] 1.0095522 0.8835964 0.8835964 1.0095522 0.7651538 0.8835964 1.0095522
 [9157] 1.3817806 1.0095522 1.0095522 1.3817806 2.1911668 1.0095522 0.6696901
 [9164] 0.8835964 1.0095522 0.8835964 0.8835964 1.5787520 0.8835964 1.0095522
 [9171] 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964
 [9178] 0.8377255 1.0095522 1.0095522 0.8835964 1.3817806 1.3817806 0.8835964
 [9185] 0.9571424 1.3817806 1.0095522 0.8835964 1.0095522 1.3817806 1.0095522
 [9192] 1.0095522 0.8835964 0.9571424 0.8835964 0.8835964 1.3817806 1.0095522
 [9199] 1.0095522 0.9571424 1.0095522 1.9177880 1.3817806 1.0095522 1.0095522
 [9206] 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964
 [9213] 0.8377255 1.0095522 1.0095522 1.0095522 0.8835964 1.3817806 0.8835964
 [9220] 0.8835964 0.8835964 1.0095522 1.0095522 1.3817806 1.9177880 1.0095522
 [9227] 0.9571424 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 0.9571424
 [9234] 0.8835964 0.9571424 1.0095522 1.0095522 1.0095522 1.0095522 0.8835964
 [9241] 1.0095522 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964
 [9248] 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964 1.3817806 1.0095522
 [9255] 0.8835964 0.8377255 0.8377255 1.0095522 1.0095522 0.8835964 0.8835964
 [9262] 1.3817806 0.8377255 0.8377255 1.0095522 0.8835964 1.0095522 1.0095522
 [9269] 0.8835964 0.9571424 1.0095522 1.0095522 0.8835964 1.0095522 1.0095522
 [9276] 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522 1.3817806 0.8835964
 [9283] 1.0095522 0.8377255 0.8835964 1.0095522 0.8835964 0.8835964 1.0095522
 [9290] 0.8377255 0.8835964 0.8377255 0.9571424 1.0095522 0.8835964 1.0095522
 [9297] 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522 1.3817806
 [9304] 0.6696901 1.0095522 1.0095522 0.8835964 1.0095522 0.9571424 1.0095522
 [9311] 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964 1.0095522 2.1911668
 [9318] 0.8835964 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522
 [9325] 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 0.8835964
 [9332] 0.9571424 0.8835964 0.8377255 1.0095522 0.9571424 0.8835964 1.0095522
 [9339] 1.0095522 0.8835964 0.8835964 0.8835964 2.1911668 0.8835964 0.7651538
 [9346] 1.5787520 1.0095522 1.0095522 0.8835964 1.3817806 0.8835964 0.8835964
 [9353] 0.8835964 1.0095522 0.8835964 1.0095522 1.3817806 2.1911668 1.0095522
 [9360] 1.0095522 0.8835964 0.8377255 1.0095522 1.0095522 0.8835964 1.0095522
 [9367] 2.1911668 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522 0.8377255
 [9374] 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964
 [9381] 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522 1.0095522
 [9388] 0.8835964 1.0095522 1.0095522 0.9571424 1.3817806 0.8835964 1.0095522
 [9395] 0.8835964 0.9571424 1.0095522 1.0095522 1.3817806 1.3817806 1.0095522
 [9402] 0.8377255 0.8377255 1.0095522 1.5787520 1.3817806 1.0095522 0.8835964
 [9409] 0.8835964 1.0095522 0.8377255 0.8835964 1.0095522 0.8377255 1.0095522
 [9416] 1.0095522 0.8377255 0.8835964 1.0095522 0.8835964 1.0095522 1.0095522
 [9423] 1.0095522 0.8835964 0.8835964 0.8377255 0.8835964 1.0095522 1.0095522
 [9430] 0.9571424 1.0095522 0.8835964 0.8835964 0.8835964 1.5787520 1.0095522
 [9437] 0.8835964 1.0095522 0.8835964 1.0095522 2.1911668 0.8835964 1.0095522
 [9444] 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522
 [9451] 1.0095522 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522 0.8835964
 [9458] 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964
 [9465] 1.3817806 1.0095522 1.0095522 0.8835964 1.3817806 0.8835964 1.0095522
 [9472] 1.0095522 0.8835964 1.0095522 0.8835964 0.8835964 0.9571424 1.0095522
 [9479] 0.8835964 0.6696901 0.8835964 0.8377255 0.7651538 0.8835964 0.8835964
 [9486] 0.8835964 1.0095522 0.8377255 0.7651538 0.8835964 0.9571424 1.0095522
 [9493] 1.0095522 2.1911668 0.8835964 0.7651538 1.0095522 0.8835964 1.0095522
 [9500] 1.0095522 0.8835964 1.0095522 1.0095522 0.8835964 1.0095522 0.8835964
 [9507] 1.0095522 0.8377255 0.8835964 0.8835964 0.9571424 1.0095522 0.8835964
 [9514] 1.0095522 0.9571424 0.8835964 1.0095522 0.9571424 0.8835964 0.8835964
 [9521] 1.5787520 1.0095522 1.0095522 1.3817806 0.9571424 0.8377255 0.9571424
 [9528] 1.0095522 0.8835964 0.8835964 0.8835964 0.8835964 0.8835964 0.6696901
 [9535] 0.8835964 0.8835964 1.0095522 1.3817806 0.8835964 1.0095522 0.8835964
 [9542] 1.3817806 1.3817806 0.8835964 0.8835964 1.0095522 1.0095522 0.8835964
 [9549] 1.0095522 0.8835964 1.0095522 1.0095522 1.3817806 0.8377255 1.0095522
 [9556] 1.0095522 1.3817806 0.8835964 1.0095522 0.8835964 1.0095522 0.8835964
 [9563] 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 1.0095522 1.0095522
 [9570] 0.8835964 1.0095522 1.0095522 0.8835964 2.1911668 1.0095522 0.8835964
 [9577] 0.8835964 0.8835964 2.1911668 0.8835964 0.8835964 0.8835964 0.8835964
 [9584] 0.8835964 1.3817806 0.8835964 0.8835964 0.8835964 0.8835964 1.0095522
 [9591] 0.9571424 1.0095522 0.8835964 0.8835964 1.0095522 0.9571424 0.8377255
 [9598] 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 0.8835964 1.0095522
 [9605] 1.0095522 1.0095522 1.0095522 0.8835964 0.8835964 0.8377255 1.0095522
 [9612] 1.0095522 0.8835964 0.8835964 0.8835964 1.0095522 1.0095522 0.8377255
 [9619] 0.8835964 0.8377255 1.0095522 1.0095522 0.8835964 0.8835964 0.8835964
 [9626] 1.0095522 1.0095522 1.3817806 0.8835964 1.0095522 1.0095522 1.0095522
 [9633] 1.5787520 1.0095522 1.0095522 0.8377255 1.0095522 1.0095522 0.8835964
 [9640] 0.8835964 1.0095522 0.7651538 1.0095522 0.8835964 1.3817806 1.0095522
 [9647] 1.0095522 1.0095522 1.3817806 0.8835964 1.0095522 1.0095522 0.8835964
 [9654] 1.0095522 0.8835964 0.8835964 1.0095522 0.8835964 0.8377255 0.8835964
 [9661] 0.8835964 1.5787520 0.9571424 0.9571424 0.8377255 0.8377255 0.8377255
 [9668] 0.9571424 0.9571424 0.8377255 0.9571424 0.9571424 0.8377255 0.8377255
 [9675] 0.9571424 0.9571424 0.8377255 0.9571424 0.8377255 0.8377255 0.9571424
 [9682] 0.8377255 0.9571424 0.8377255 0.9571424 0.8377255 0.8377255 0.9571424
 [9689] 0.9571424 0.9571424 0.8377255 0.8377255 0.9571424 0.8377255 0.8377255
 [9696] 0.8377255 0.8377255 0.8377255 0.9571424 1.5787520 0.8377255 0.8377255
 [9703] 0.9571424 0.8377255 0.8377255 0.9571424 0.9571424 0.8377255 0.8377255
 [9710] 0.8377255 0.8377255 0.8377255 0.9571424 0.8377255 0.9571424 0.8377255
 [9717] 0.8377255 0.9571424 0.8377255 0.9571424 0.9571424 0.8377255 0.8377255
 [9724] 0.8377255 0.9571424 0.9571424 0.8377255 0.9571424 0.8377255 1.0095522
 [9731] 0.8377255 0.8377255 0.8377255 0.9571424 0.9571424 0.8377255 0.9571424
 [9738] 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255 0.9571424 0.8377255
 [9745] 0.8377255 0.8377255 0.8377255 0.8377255 0.9571424 0.9571424 0.8377255
 [9752] 0.8377255 0.8377255 0.9571424 0.9571424 0.9571424 0.9571424 0.8377255
 [9759] 0.8377255 0.9571424 0.9571424 0.9571424 0.9571424 0.9571424 0.8377255
 [9766] 0.9571424 0.8377255 0.9571424 0.8377255 0.7651538 0.8377255 0.9571424
 [9773] 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255
 [9780] 0.8377255 0.8377255 0.9571424 0.8377255 0.9571424 0.8377255 0.8377255
 [9787] 0.9571424 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255
 [9794] 0.9571424 0.9571424 0.9571424 0.9571424 0.9571424 0.8377255 0.9571424
 [9801] 0.9571424 0.8377255 0.8377255 0.8377255 0.9571424 0.9571424 0.8377255
 [9808] 0.9571424 0.8377255 0.8377255 0.9571424 0.8377255 0.9571424 0.9571424
 [9815] 0.9571424 0.9571424 0.8377255 0.9571424 0.8377255 0.9571424 0.8377255
 [9822] 0.8377255 0.8377255 0.9571424 0.9571424 0.8377255 0.9571424 0.8377255
 [9829] 0.9571424 0.8377255 0.8377255 0.8377255 0.9571424 0.8377255 0.9571424
 [9836] 0.9571424 0.8377255 0.9571424 0.9571424 0.8377255 0.8377255 0.9571424
 [9843] 0.8377255 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255 0.9571424
 [9850] 0.8377255 0.8377255 0.8377255 0.9571424 0.8377255 0.9571424 0.8377255
 [9857] 0.8377255 0.8377255 0.9571424 0.8377255 0.8377255 0.9571424 0.9571424
 [9864] 0.9571424 0.9571424 0.8377255 0.9571424 0.8377255 0.8377255 0.8377255
 [9871] 0.9571424 0.8377255 0.8377255 0.9571424 0.9571424 0.9571424 0.9571424
 [9878] 0.8377255 0.8377255 0.9571424 0.8377255 0.9571424 0.8377255 0.8377255
 [9885] 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255 0.9571424
 [9892] 0.8377255 0.8377255 0.9571424 0.8377255 0.8377255 0.8377255 0.9571424
 [9899] 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255
 [9906] 0.8377255 0.8377255 0.8377255 0.9571424 0.8377255 0.9571424 0.9571424
 [9913] 0.8377255 0.8377255 0.9571424 0.9571424 0.9571424 0.8377255 0.8377255
 [9920] 0.9571424 0.9571424 0.8377255 0.9571424 0.9571424 0.9571424 0.8377255
 [9927] 0.9571424 0.8377255 0.9571424 0.8377255 0.9571424 0.9571424 0.8377255
 [9934] 0.9571424 0.8377255 0.8377255 0.8377255 0.9571424 0.8377255 1.3817806
 [9941] 0.8377255 0.8377255 0.9571424 0.8377255 0.9571424 0.9571424 0.8377255
 [9948] 0.9571424 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255
 [9955] 0.9571424 0.9571424 0.9571424 0.9571424 0.8377255 0.9571424 0.9571424
 [9962] 0.8377255 0.8377255 0.9571424 0.9571424 0.8377255 0.8377255 0.8377255
 [9969] 0.9571424 0.9571424 0.8377255 0.8377255 0.9571424 0.9571424 0.9571424
 [9976] 0.8377255 0.8377255 0.8377255 0.8377255 0.9571424 0.8377255 0.9571424
 [9983] 0.8377255 0.8377255 0.9571424 0.9571424 0.9571424 0.9571424 0.9571424
 [9990] 0.9571424 0.9571424 0.9571424 0.8377255 0.9571424 0.9571424 0.8377255
 [9997] 0.9571424 0.9571424 0.9571424 0.9571424 0.9571424 0.8377255 0.9571424
[10004] 0.9571424 0.9571424 0.9571424 0.8377255 0.9571424 0.9571424 0.8377255
[10011] 0.8377255 0.9571424 0.8377255 0.9571424 1.0095522 0.8377255 0.9571424
[10018] 0.9571424 0.8377255 0.8377255 0.9571424 0.8835964 0.9571424 0.9571424
[10025] 0.9571424 0.9571424 0.8377255 0.8377255 0.9571424 0.9571424 0.8377255
[10032] 0.8377255 0.8377255 0.8377255 0.8377255 0.9571424 0.8377255 0.8377255
[10039] 0.9571424 0.9571424 0.9571424 1.0095522 0.9571424 0.9571424 0.8377255
[10046] 0.8377255 0.9571424 0.9571424 0.9571424 0.9571424 0.9571424 0.9571424
[10053] 0.9571424 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255
[10060] 0.9571424 0.9571424 0.8377255 0.9571424 0.9571424 0.9571424 0.8377255
[10067] 1.5787520 0.8377255 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255
[10074] 0.9571424 0.8377255 0.8377255 0.9571424 0.9571424 0.8377255 0.8377255
[10081] 0.9571424 0.8377255 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255
[10088] 0.8377255 0.9571424 0.9571424 0.9571424 0.9571424 0.9571424 0.8377255
[10095] 0.9571424 0.9571424 0.8377255 0.8377255 0.8377255 0.9571424 0.8377255
[10102] 0.8377255 0.9571424 0.8377255 0.8377255 0.9571424 0.9571424 0.8377255
[10109] 0.9571424 0.9571424 0.9571424 0.8377255 0.9571424 0.8377255 0.8377255
[10116] 0.9571424 0.9571424 0.8377255 0.9571424 0.8377255 0.8377255 0.8377255
[10123] 0.9571424 0.9571424 0.8377255 0.8377255 0.8377255 0.9571424 0.8377255
[10130] 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255 0.9571424 0.8835964
[10137] 0.9571424 0.9571424 0.8377255 0.8377255 0.8377255 0.9571424 0.9571424
[10144] 0.9571424 0.8377255 0.9571424 0.8377255 0.8377255 0.9571424 0.9571424
[10151] 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255 0.9571424
[10158] 0.8377255 0.9571424 0.8377255 0.9571424 0.8377255 0.8377255 0.9571424
[10165] 0.8377255 0.8377255 0.9571424 0.9571424 0.9571424 0.8377255 0.9571424
[10172] 0.8377255 0.8377255 0.8377255 0.9571424 0.9571424 0.9571424 0.9571424
[10179] 0.9571424 0.8377255 0.8377255 0.9571424 0.8377255 0.8377255 0.8377255
[10186] 0.8377255 0.9571424 0.8377255 0.9571424 0.8377255 0.8377255 0.8377255
[10193] 0.8377255 0.9571424 0.8377255 0.8377255 0.8377255 0.9571424 0.8377255
[10200] 0.9571424 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255 0.9571424
[10207] 0.9571424 0.9571424 0.9571424 0.9571424 0.9571424 0.8377255 0.9571424
[10214] 0.9571424 0.9571424 0.8377255 0.9571424 0.9571424 0.8377255 0.9571424
[10221] 0.8377255 0.8377255 0.8377255 0.9571424 0.8377255 0.9571424 0.8377255
[10228] 0.8377255 0.8377255 0.8377255 0.9571424 0.8377255 0.9571424 0.8377255
[10235] 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255 0.9571424 0.8377255
[10242] 0.8377255 0.8377255 0.9571424 0.8377255 0.9571424 0.9571424 0.9571424
[10249] 0.9571424 0.8377255 0.8377255 0.8377255 0.9571424 0.8377255 0.9571424
[10256] 0.8377255 0.9571424 0.8377255 0.9571424 0.8377255 0.9571424 0.9571424
[10263] 0.9571424 0.8377255 0.9571424 0.9571424 0.8377255 0.8377255 0.8377255
[10270] 0.9571424 0.9571424 0.9571424 0.8377255 0.8377255 0.9571424 0.8377255
[10277] 0.8377255 0.9571424 0.8377255 0.8377255 0.9571424 0.8377255 0.8377255
[10284] 0.8377255 0.8377255 0.8377255 0.9571424 0.9571424 0.9571424 0.8377255
[10291] 0.8377255 0.8377255 0.8377255 0.9571424 0.9571424 0.9571424 0.8377255
[10298] 1.5787520 0.9571424 0.8377255 0.8377255 0.8377255 0.9571424 0.8377255
[10305] 0.8377255 0.8377255 0.9571424 0.9571424 0.8377255 0.8377255 0.9571424
[10312] 0.9571424 0.8377255 0.9571424 0.9571424 0.9571424 0.9571424 0.8377255
[10319] 0.8377255 0.9571424 0.8377255 0.9571424 0.9571424 0.8377255 0.9571424
[10326] 0.8377255 0.8377255 0.8377255 0.9571424 0.8377255 0.9571424 0.9571424
[10333] 0.9571424 0.9571424 0.8377255 0.8377255 0.9571424 0.8377255 0.9571424
[10340] 0.8377255 0.9571424 0.9571424 0.8377255 0.8377255 0.9571424 0.8377255
[10347] 0.9571424 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255
[10354] 0.9571424 0.9571424 0.8377255 0.9571424 0.8377255 0.8377255 0.8377255
[10361] 0.8377255 0.8377255 0.8377255 0.8377255 0.9571424 0.9571424 0.9571424
[10368] 0.8377255 0.8377255 0.8377255 0.9571424 0.8377255 0.9571424 0.9571424
[10375] 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255
[10382] 0.8377255 0.8377255 0.8377255 0.9571424 0.9571424 0.8377255 0.8377255
[10389] 0.9571424 0.8377255 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255
[10396] 0.8377255 0.9571424 0.8377255 0.9571424 0.8377255 0.9571424 0.8377255
[10403] 0.8377255 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255
[10410] 0.9571424 0.8377255 0.8377255 0.9571424 0.9571424 0.8377255 0.8377255
[10417] 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255 0.9571424
[10424] 0.9571424 0.8377255 0.9571424 0.8377255 0.9571424 0.8377255 0.8377255
[10431] 0.9571424 0.9571424 0.8377255 0.9571424 0.9571424 0.9571424 0.9571424
[10438] 0.9571424 0.8377255 0.8377255 0.8377255 0.9571424 0.9571424 0.9571424
[10445] 0.8377255 0.9571424 0.8377255 0.9571424 0.9571424 0.9571424 0.8377255
[10452] 0.9571424 0.8377255 0.8377255 0.9571424 0.9571424 0.8377255 0.9571424
[10459] 0.8377255 0.9571424 0.9571424 0.8377255 0.8377255 0.9571424 0.9571424
[10466] 0.8377255 0.8377255 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255
[10473] 0.8377255 0.9571424 0.9571424 0.9571424 0.8377255 0.8377255 0.9571424
[10480] 0.8377255 0.8377255 0.9571424 0.8377255 0.9571424 0.8377255 0.8377255
[10487] 0.8377255 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255
[10494] 0.8377255 0.9571424 0.9571424 0.9571424 0.9571424 0.8377255 0.9571424
[10501] 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255 0.9571424 0.8377255
[10508] 0.9571424 0.9571424 0.8377255 0.8377255 0.8377255 0.9571424 0.9571424
[10515] 0.9571424 0.8377255 0.9571424 0.9571424 0.8377255 0.8377255 0.8377255
[10522] 0.9571424 0.8377255 0.8377255 0.8377255 0.9571424 0.8377255 0.8377255
[10529] 0.9571424 0.9571424 0.8377255 0.9571424 0.8377255 0.8377255 0.8377255
[10536] 0.8377255 0.8377255 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255
[10543] 0.8377255 0.9571424 0.8377255 0.8377255 0.8377255 0.9571424 0.9571424
[10550] 0.8377255 0.8377255 0.8377255 0.9571424 0.9571424 0.8377255 0.8377255
[10557] 0.9571424 0.9571424 0.9571424 0.8377255 0.8377255 0.8377255 0.9571424
[10564] 0.9571424 0.8377255 0.8377255 0.8377255 1.3817806 0.8377255 0.9571424
[10571] 0.9571424 0.8377255 0.8377255 0.9571424 0.9571424 0.8377255 0.8377255
[10578] 0.8377255 0.8377255 0.9571424 0.9571424 0.8377255 0.9571424 0.9571424
[10585] 0.8377255 0.9571424 0.9571424 0.9571424 0.8377255 0.8377255 0.9571424
[10592] 0.8377255 0.9571424 0.8377255 0.9571424 0.9571424 0.9571424 0.8377255
[10599] 0.8377255 0.9571424 0.8377255 0.8377255 0.8377255 0.9571424 0.9571424
[10606] 0.9571424 0.8377255 0.8377255 0.9571424 0.8377255 0.9571424 0.8377255
[10613] 0.9571424 0.8377255 0.8377255 0.8377255 0.8377255 0.8377255 0.9571424
[10620] 0.9571424 0.9571424 0.9571424 0.8377255 0.8377255 0.9571424 0.8377255
[10627] 1.5787520 1.3817806 1.3817806 0.8835964 0.8835964 1.0095522 1.3817806
[10634] 0.8835964 1.3817806 1.3817806 0.9571424 1.3817806 1.3817806 1.0095522
[10641] 1.0095522 0.8835964
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.6697  0.8836  0.9571  1.0000  1.0096  2.1912 

Occasionally, some generated weights may be too small or too large. We can prevent that problem by restricting them to some minimum/maximum values. We use trimWeights() with ‘lower’ set to the minimum and ‘upper’ to the maximum weight that we want to allow in our data.

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.6697  0.8836  0.9571  1.0000  1.0096  2.1912 

For a survey that should be nationally representative, we usually base our survey weights on at least the following variables: gender, age category, race, ethnicity, education, and region of the country. Additional variables may be included depending on the topic and nature of the data.

Detach your data