\[ X{\sim}N(\mu,\sigma^2) \]
\[ X{\sim}N(0,1) \]
\[ P(X=x)=\frac{1}{\sqrt{2\pi\sigma^2}}\exp{\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\}} \]
\[ P(X{\leq}x)=\int_{-\infty}^{x}\frac{1}{\sqrt{2\pi\sigma^2}}\exp{\left\{-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^2\right\}}dt \]
# Carga de la librerÃa
library(ggfortify)
## Loading required package: ggplot2
normal <- function(mean=0,sd=1,fill="gray",colour="black",p=NULL){
ggdistribution(func=dnorm,
x=seq(from=mean-3*sd,
to=mean+3*sd,
by=0.1),
mean=mean,
sd=sd,
fill=fill,
colour=colour,
p=p)
}
normal(p=normal(mean=0,sd=0.5,fill="lightblue",colour="blue",
p=normal(mean=2,sd=1,fill="lightgreen",colour="green",
p=normal(mean=0,sd=2,fill="orange",colour="red"))))
\[ \text{Si }X{\sim}N(\mu,\sigma^2)\text{ entonces }Z=\frac{X-\mu}{\sigma}{\sim}N(0,1) \]
library(e1071)
azul <- rnorm(n=5000000,mean=0,sd=0.5)
la media de los datos simulados es 0, la varianza es 0.25, la desviación tÃpica o estándar es 0.5, el sesgo es -0.0022 y la curtosis es -0.0023
azul.estandarizado <- (azul-mean(azul))/sd(azul)
la media de los datos estandarizados es 0, la varianza es 1, la desviación tÃpica o estándar es 1, el sesgo es -0.0022 y la curtosis es -0.0023
rm(list=ls())
\[ P(X=x)=\frac{1}{\sqrt{2\pi\sigma^2}}\exp{\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma^2}\right)^2\right\}} \]
Nota: Para la distribución normal estándar, la media es cero (0) y la desviación estándar es uno (1)
\[ P(X=x)=\frac{1}{\sqrt{2\pi}}\exp{\left\{-\frac{1}{2}\left(\frac{x-0}{1}\right)^2\right\}} \]
Para una distribución normal estándar, calcular:
\[ \begin{aligned} P(X=0)&=\frac{1}{\sqrt{2\pi}}\exp{\left\{-\frac{1}{2}\left(\frac{0-0}{1}\right)^2\right\}}\\ &=\frac{1}{\sqrt{2\pi}}\exp{\left\{0\right\}}\\ &=\frac{1}{\sqrt{2\pi}} \end{aligned} \]
1/sqrt(x=2*pi)
## [1] 0.3989423
library(ggfortify)
densidad.normal <- function(x,mean=0,sd=1,fill="blue",colour="darkblue"){
ggdistribution(
func=dnorm,
x=seq(
from=mean-3*sd,
to=mean+3*sd,
by=0.1
),
mean=mean,
sd=sd,
colour=colour,
p=ggdistribution(
func=dnorm,
x=seq(
from=x-0.05,
to=x+0.05,
by=0.1
),
mean=mean,
sd=sd,
fill=fill
)
)
}
densidad.normal(x=0)
dnorm(x=0,mean=0,sd=1)
## [1] 0.3989423
dnorm(x=0,sd=1,mean=0)
## [1] 0.3989423
dnorm(x=0)
## [1] 0.3989423
dnorm(0)
## [1] 0.3989423
densidad.normal(x=-1.96)
dnorm(-1.96)
## [1] 0.05844094
density.normal <- function(x,mean=0,sd=1){
(1/sqrt(2*pi*sd**2))*exp(-0.5*((x-mean)/sd)**2)
}
density.normal(x=-1.96)
## [1] 0.05844094
density.normal(x=-1.645)
## [1] 0.1031108
dnorm(x=-1.645)
## [1] 0.1031108
density.normal(x=1.645)
## [1] 0.1031108
dnorm(x=1.645)
## [1] 0.1031108
dnorm(x=-1.96)
## [1] 0.05844094
density.normal(x=+1.96)
## [1] 0.05844094
Para una distribución normal con media igual a 2 y desviación estándar igual a 3
densidad.normal(x=2,mean=2,sd=3)
dnorm(x=2,mean=2,sd=3)
## [1] 0.1329808
density.normal(x=2,mean=2,sd=3)
## [1] 0.1329808
distribucion.normal <- function(q,mean=0,sd=1,fill="blue",colour="darkblue"){
ggdistribution(
func=dnorm,
x=seq(
from=mean-3*sd,
to=mean+3*sd,
by=0.1
),
mean=mean,
sd=sd,
colour=colour,
p=ggdistribution(
func=dnorm,
x=seq(
from=mean-3*sd,
to=q,
by=0.1
),
mean=mean,
sd=sd,
fill=fill
)
)
}
Para una distribución normal estándar, calcular:
distribucion.normal(q=0)
pnorm(q=0)
## [1] 0.5
library(pracma)
##
## Attaching package: 'pracma'
## The following object is masked from 'package:e1071':
##
## sigmoid
probability <- function(xmin=-Inf,q,mean=0,sd=1)
integral(
fun=function(q) density.normal(q,mean,sd),
xmin=-Inf,
xmax=q
)
probability(q=0,mean=0,sd=1)
## For infinite domains Gauss integration is applied!
## [1] 0.5
distribucion.normal(-1.96)
pnorm(-1.96)
## [1] 0.0249979
distribucion.normal(q=1.96)
probability(q=1.96)
## For infinite domains Gauss integration is applied!
## [1] 0.9750021
pnorm(q=1.96)
## [1] 0.9750021
distribucion.normal(q=-1.645)
probability(q=-1.645)
## For infinite domains Gauss integration is applied!
## [1] 0.04998491
pnorm(q=-1.645)
## [1] 0.04998491
distribucion.normal(q=1.645)
probability(q=1.645)
## For infinite domains Gauss integration is applied!
## [1] 0.9500151
pnorm(q=1.645)
## [1] 0.9500151
\[ P(a{\leq}X{\leq}b)=P(X{\leq}b)-P(X{\leq}a) \]
probabilidad.normal <- function(a,b,mean=0,sd=1,fill="blue",colour="darkblue"){
ggdistribution(
func=dnorm,
x=seq(
from=mean-3*sd,
to=mean+3*sd,
by=0.1
),
mean=mean,
sd=sd,
colour=colour,
p=ggdistribution(
func=dnorm,
x=seq(
from=a,
to=b,
by=0.1
),
mean=mean,
sd=sd,
fill=fill
)
)
}
probabilidad.normal(a=-1.645,b=1.645)
probability(q=1.645)-probability(q=-1.645)
## For infinite domains Gauss integration is applied!
## For infinite domains Gauss integration is applied!
## [1] 0.9000302
pnorm(q=1.645)-pnorm(-1.645)
## [1] 0.9000302
probabilidad.normal(a=-1.96,b=1.96)
probability(q=1.96)-probability(q=-1.96)
## For infinite domains Gauss integration is applied!
## For infinite domains Gauss integration is applied!
## [1] 0.9500042
pnorm(q=1.96)-pnorm(-1.96)
## [1] 0.9500042
probabilidad.normal(a=-2.576,b=2.576)
probability(q=2.576)-probability(q=-2.576)
## For infinite domains Gauss integration is applied!
## For infinite domains Gauss integration is applied!
## [1] 0.9900049
pnorm(q=2.576)-pnorm(-2.576)
## [1] 0.9900049