Preliminary Analysis:

Descriptive Statistics

# Demographic Information
## Sexual Identity
table(TGD_BI_total$sex_orien)
## 
##  Asexual Bisexual      Gay    Other      Pan     PNTS Straight 
##       11       52       29        6       15        1       25
## Country
table(TGD_BI_total$country)
## 
##     Austria      Canada     Czehcia      France     Germany       Italy 
##           2          11           1           7           9           8 
## Netherlands    Portugal    Slovenia       Spain      Sweden          UK 
##           5           7           1           1           5          82
## Gender Affirming Hormones
table(TGD_BI_total$gen_horm)
## 
##  No Yes 
##  38 101
## Chest surgery
table(TGD_BI_total$chest)
## 
##  No Yes 
##  80  59
## Genital surgery
table(TGD_BI_total$genital)
## 
##  No Yes 
## 131   8
## Satisfaction with Stage of Transition
table(TGD_BI_total$satis)
## 
##  No Yes 
##  77  62
# Numeric Data
### Chest and genitals are the months since they received this surgery
demographic_stats <- TGD_BI_total %>% summarise_at(vars(Age, Chest_new, Genital_new,), 
                                                   list(mean = mean, sd = sd, 
                                                        min = min, max = max), 
                                                   na.rm = TRUE) 
pander(demographic_stats, caption = "Demographic Statistics for Age and Chest and Genital Surgery (in months)")
Demographic Statistics for Age and Chest and Genital Surgery (in months) (continued below)
Age_mean Chest_new_mean Genital_new_mean Age_sd Chest_new_sd
23.88 36.73 28.12 3.006 31.8
Table continues below
Genital_new_sd Age_min Chest_new_min Genital_new_min Age_max
25.35 18 2 2 30
Chest_new_max Genital_new_max
120 68
## Descriptive Statistics
descriptive_stats <- TGD_BI_total %>% summarise_at(vars(MBAS_total, MBAS_mus, MBAS_bf, 
                                                        WHO_phys, WHO_psych, 
                                                        WHO_social, WHO_enviro,
                                                        GCLS_gender), 
                                                   list(mean = mean, sd = sd, 
                                                        min = min, max = max, 
                                                        skew = moments::skewness, 
                                                        kurtosis = moments::kurtosis), 
                                                   na.rm = TRUE)

pander(descriptive_stats, caption = "Descriptive Statistics for each Measure")
Descriptive Statistics for each Measure (continued below)
MBAS_total_mean MBAS_mus_mean MBAS_bf_mean WHO_phys_mean
58.45 28.83 18.21 13.03
Table continues below
WHO_psych_mean WHO_social_mean WHO_enviro_mean GCLS_gender_mean
11.39 14.43 13.3 2.813
Table continues below
MBAS_total_sd MBAS_mus_sd MBAS_bf_sd WHO_phys_sd WHO_psych_sd
14.93 7.585 8.376 3.338 2.952
Table continues below
WHO_social_sd WHO_enviro_sd GCLS_gender_sd MBAS_total_min MBAS_mus_min
3.543 2.525 0.8364 20 10
Table continues below
MBAS_bf_min WHO_phys_min WHO_psych_min WHO_social_min WHO_enviro_min
5 4.571 4 4 7
Table continues below
GCLS_gender_min MBAS_total_max MBAS_mus_max MBAS_bf_max WHO_phys_max
1.176 90 42 30 19.43
Table continues below
WHO_psych_max WHO_social_max WHO_enviro_max GCLS_gender_max
18.67 20 19.5 4.647
Table continues below
MBAS_total_skew MBAS_mus_skew MBAS_bf_skew WHO_phys_skew
-0.329 -0.578 -0.1611 -0.3291
Table continues below
WHO_psych_skew WHO_social_skew WHO_enviro_skew GCLS_gender_skew
0.02701 -0.6497 -0.09571 -0.06449
Table continues below
MBAS_total_kurtosis MBAS_mus_kurtosis MBAS_bf_kurtosis WHO_phys_kurtosis
2.92 2.867 1.682 2.383
Table continues below
WHO_psych_kurtosis WHO_social_kurtosis WHO_enviro_kurtosis
2.458 3.05 2.665
GCLS_gender_kurtosis
2.16
## Correlations
corr <- corr.test(as.matrix(TGD_BI_num))
pander(corr, style = "grid")
## Warning in pander.default(corr, style = "grid"): No pander.method for "psych",
## reverting to default.No pander.method for "corr.test", reverting to default.
  • r:

    Table continues below
      Age MBAS_total MBAS_mus MBAS_bf MBAS_height
    Age 1 0.1212 0.03339 0.161 0.04613
    MBAS_total 0.1212 1 0.7706 0.7986 0.5317
    MBAS_mus 0.03339 0.7706 1 0.3457 0.227
    MBAS_bf 0.161 0.7986 0.3457 1 0.2048
    MBAS_height 0.04613 0.5317 0.227 0.2048 1
    WHO_phys -0.0777 -0.3892 -0.2153 -0.3931 -0.1965
    WHO_psych -0.005256 -0.4916 -0.315 -0.4621 -0.2395
    WHO_social -0.1706 -0.1768 -0.1277 -0.1591 -0.07489
    WHO_enviro -0.03901 -0.2641 -0.177 -0.2148 -0.178
    GCLS_gender -0.1329 0.3882 0.3686 0.1999 0.2941
      WHO_phys WHO_psych WHO_social WHO_enviro GCLS_gender
    Age -0.0777 -0.005256 -0.1706 -0.03901 -0.1329
    MBAS_total -0.3892 -0.4916 -0.1768 -0.2641 0.3882
    MBAS_mus -0.2153 -0.315 -0.1277 -0.177 0.3686
    MBAS_bf -0.3931 -0.4621 -0.1591 -0.2148 0.1999
    MBAS_height -0.1965 -0.2395 -0.07489 -0.178 0.2941
    WHO_phys 1 0.6799 0.2176 0.5947 -0.4494
    WHO_psych 0.6799 1 0.4015 0.5698 -0.5539
    WHO_social 0.2176 0.4015 1 0.3035 -0.1556
    WHO_enviro 0.5947 0.5698 0.3035 1 -0.4856
    GCLS_gender -0.4494 -0.5539 -0.1556 -0.4856 1
  • n: 139

  • t:

    Table continues below
      Age MBAS_total MBAS_mus MBAS_bf MBAS_height
    Age Inf 1.43 0.3911 1.91 0.5405
    MBAS_total 1.43 Inf 14.15 15.53 7.348
    MBAS_mus 0.3911 14.15 Inf 4.312 2.728
    MBAS_bf 1.91 15.53 4.312 Inf 2.449
    MBAS_height 0.5405 7.348 2.728 2.449 Inf
    WHO_phys -0.9122 -4.946 -2.581 -5.004 -2.346
    WHO_psych -0.06152 -6.607 -3.885 -6.099 -2.888
    WHO_social -2.027 -2.102 -1.507 -1.887 -0.879
    WHO_enviro -0.457 -3.205 -2.105 -2.574 -2.117
    GCLS_gender -1.57 4.93 4.642 2.388 3.602
      WHO_phys WHO_psych WHO_social WHO_enviro GCLS_gender
    Age -0.9122 -0.06152 -2.027 -0.457 -1.57
    MBAS_total -4.946 -6.607 -2.102 -3.205 4.93
    MBAS_mus -2.581 -3.885 -1.507 -2.105 4.642
    MBAS_bf -5.004 -6.099 -1.887 -2.574 2.388
    MBAS_height -2.346 -2.888 -0.879 -2.117 3.602
    WHO_phys Inf 10.85 2.609 8.659 -5.888
    WHO_psych 10.85 Inf 5.131 8.115 -7.787
    WHO_social 2.609 5.131 Inf 3.729 -1.844
    WHO_enviro 8.659 8.115 3.729 Inf -6.501
    GCLS_gender -5.888 -7.787 -1.844 -6.501 Inf
  • p:

    Table continues below
      Age MBAS_total MBAS_mus MBAS_bf MBAS_height
    Age 0 1 1 0.6987 1
    MBAS_total 0.1551 0 6.075e-27 2.389e-30 6.398e-10
    MBAS_mus 0.6964 1.381e-28 0 0.0008895 0.1658
    MBAS_bf 0.05823 5.309e-32 3.067e-05 0 0.2965
    MBAS_height 0.5897 1.64e-11 0.00721 0.01561 0
    WHO_phys 0.3632 2.183e-06 0.01091 1.694e-06 0.02044
    WHO_psych 0.951 7.987e-10 0.0001589 1.025e-08 0.004513
    WHO_social 0.04465 0.03735 0.134 0.06132 0.3809
    WHO_enviro 0.6484 0.001681 0.03715 0.01112 0.03608
    GCLS_gender 0.1188 2.34e-06 7.998e-06 0.01832 0.0004403
      WHO_phys WHO_psych WHO_social WHO_enviro GCLS_gender
    Age 1 1 0.5805 1 1
    MBAS_total 6.986e-05 3.035e-08 0.5772 0.04202 7.255e-05
    MBAS_mus 0.2292 0.004448 1 0.5772 0.00024
    MBAS_bf 5.59e-05 3.689e-07 0.6987 0.2292 0.3298
    MBAS_height 0.3474 0.1083 1 0.5772 0.01145
    WHO_phys 0 1.504e-18 0.2218 4.899e-13 1.003e-06
    WHO_psych 3.497e-20 0 3.286e-05 1.015e-11 6.068e-11
    WHO_social 0.01008 9.664e-07 0 0.007583 0.6987
    WHO_enviro 1.166e-14 2.475e-13 0.0002809 0 5.084e-08
    GCLS_gender 2.866e-08 1.517e-12 0.0674 1.374e-09 0
  • p.adj: 1, 1, 6.075e-27, 0.6987, 2.389e-30, 0.0008895, 1, 6.398e-10, 0.1658, 0.2965, 1, 6.986e-05, 0.2292, 5.59e-05, 0.3474, 1, 3.035e-08, 0.004448, 3.689e-07, 0.1083, 1.504e-18, 0.5805, 0.5772, 1, 0.6987, 1, 0.2218, 3.286e-05, 1, 0.04202, 0.5772, 0.2292, 0.5772, 4.899e-13, 1.015e-11, 0.007583, 1, 7.255e-05, 0.00024, 0.3298, 0.01145, 1.003e-06, 6.068e-11, 0.6987 and 5.084e-08

  • se:

    Table continues below
      Age MBAS_total MBAS_mus MBAS_bf MBAS_height
    Age 0 0.08481 0.08539 0.08432 0.08534
    MBAS_total 0.08481 0 0.05445 0.05143 0.07236
    MBAS_mus 0.08539 0.05445 0 0.08017 0.08321
    MBAS_bf 0.08432 0.05143 0.08017 0 0.08363
    MBAS_height 0.08534 0.07236 0.08321 0.08363 0
    WHO_phys 0.08518 0.0787 0.08343 0.07856 0.08377
    WHO_psych 0.08543 0.0744 0.08109 0.07577 0.08295
    WHO_social 0.08418 0.08409 0.08474 0.08435 0.0852
    WHO_enviro 0.08537 0.0824 0.08409 0.08344 0.08407
    GCLS_gender 0.08468 0.07874 0.07942 0.08371 0.08166
      WHO_phys WHO_psych WHO_social WHO_enviro GCLS_gender
    Age 0.08518 0.08543 0.08418 0.08537 0.08468
    MBAS_total 0.0787 0.0744 0.08409 0.0824 0.07874
    MBAS_mus 0.08343 0.08109 0.08474 0.08409 0.07942
    MBAS_bf 0.07856 0.07577 0.08435 0.08344 0.08371
    MBAS_height 0.08377 0.08295 0.0852 0.08407 0.08166
    WHO_phys 0 0.06265 0.08339 0.06868 0.07632
    WHO_psych 0.06265 0 0.07825 0.07021 0.07113
    WHO_social 0.08339 0.07825 0 0.08141 0.0844
    WHO_enviro 0.06868 0.07021 0.08141 0 0.07469
    GCLS_gender 0.07632 0.07113 0.0844 0.07469 0
  • sef: 0.08575

  • adjust: holm

  • sym: TRUE

  • ci:

      lower r upper p
    Age-MBAS_t -0.04619 0.1212 0.2821 0.1551
    Age-MBAS_m -0.1339 0.03339 0.1988 0.6964
    Age-MBAS_b -0.005602 0.161 0.319 0.05823
    Age-MBAS_h -0.1213 0.04613 0.211 0.5897
    Age-WHO_ph -0.2411 -0.0777 0.08996 0.3632
    Age-WHO_ps -0.1716 -0.005256 0.1614 0.951
    Age-WHO_s -0.3278 -0.1706 -0.004219 0.04465
    Age-WHO_n -0.2042 -0.03901 0.1283 0.6484
    Age-GCLS_ -0.2929 -0.1329 0.03436 0.1188
    MBAS_t-MBAS_m 0.693 0.7706 0.8305 1.381e-28
    MBAS_t-MBAS_b 0.729 0.7986 0.8518 5.309e-32
    MBAS_t-MBAS_h 0.4007 0.5317 0.6414 1.64e-11
    MBAS_t-WHO_ph -0.5219 -0.3892 -0.2382 2.183e-06
    MBAS_t-WHO_ps -0.6083 -0.4916 -0.3541 7.987e-10
    MBAS_t-WHO_s -0.3335 -0.1768 -0.0106 0.03735
    MBAS_t-WHO_n -0.4125 -0.2641 -0.1021 0.001681
    MBAS_t-GCLS_ 0.237 0.3882 0.521 2.34e-06
    MBAS_m-MBAS_b 0.1902 0.3457 0.4843 3.067e-05
    MBAS_m-MBAS_h 0.06285 0.227 0.3791 0.00721
    MBAS_m-WHO_ph -0.3686 -0.2153 -0.05063 0.01091
    MBAS_m-WHO_ps -0.4575 -0.315 -0.1567 0.0001589
    MBAS_m-WHO_s -0.2881 -0.1277 0.03961 0.134
    MBAS_m-WHO_n -0.3336 -0.177 -0.01079 0.03715
    MBAS_m-GCLS_ 0.2154 0.3686 0.5042 7.998e-06
    MBAS_b-MBAS_h 0.03961 0.2048 0.359 0.01561
    MBAS_b-WHO_ph -0.5252 -0.3931 -0.2425 1.694e-06
    MBAS_b-WHO_ps -0.5837 -0.4621 -0.3203 1.025e-08
    MBAS_b-WHO_s -0.3172 -0.1591 0.007566 0.06132
    MBAS_b-WHO_n -0.3681 -0.2148 -0.05005 0.01112
    MBAS_b-GCLS_ 0.03452 0.1999 0.3546 0.01832
    MBAS_h-WHO_ph -0.3515 -0.1965 -0.031 0.02044
    MBAS_h-WHO_ps -0.3905 -0.2395 -0.07605 0.004513
    MBAS_h-WHO_s -0.2384 -0.07489 0.09277 0.3809
    MBAS_h-WHO_n -0.3346 -0.178 -0.01182 0.03608
    MBAS_h-GCLS_ 0.1342 0.2941 0.4391 0.0004403
    WHO_ph-WHO_ps 0.5789 0.6799 0.7603 3.497e-20
    WHO_ph-WHO_s 0.053 0.2176 0.3707 0.01008
    WHO_ph-WHO_n 0.4753 0.5947 0.6927 1.166e-14
    WHO_ph-GCLS_ -0.573 -0.4494 -0.3058 2.866e-08
    WHO_ps-WHO_s 0.2518 0.4015 0.5324 9.664e-07
    WHO_ps-WHO_n 0.4455 0.5698 0.6725 2.475e-13
    WHO_ps-GCLS_ -0.6596 -0.5539 -0.4268 1.517e-12
    WHO_s-WHO_n 0.1443 0.3035 0.4474 0.0002809
    WHO_s-GCLS_ -0.314 -0.1556 0.0112 0.0674
    WHO_n-GCLS_ -0.6033 -0.4856 -0.3471 1.374e-09
  • ci2:

    lower r upper p p.adj
    -0.04619 0.1212 0.2821 0.1551 1
    -0.1339 0.03339 0.1988 0.6964 1
    -0.005602 0.161 0.319 0.05823 0.6987
    -0.1213 0.04613 0.211 0.5897 1
    -0.2411 -0.0777 0.08996 0.3632 1
    -0.1716 -0.005256 0.1614 0.951 1
    -0.3278 -0.1706 -0.004219 0.04465 0.5805
    -0.2042 -0.03901 0.1283 0.6484 1
    -0.2929 -0.1329 0.03436 0.1188 1
    0.693 0.7706 0.8305 1.381e-28 6.075e-27
    0.729 0.7986 0.8518 5.309e-32 2.389e-30
    0.4007 0.5317 0.6414 1.64e-11 6.398e-10
    -0.5219 -0.3892 -0.2382 2.183e-06 6.986e-05
    -0.6083 -0.4916 -0.3541 7.987e-10 3.035e-08
    -0.3335 -0.1768 -0.0106 0.03735 0.5772
    -0.4125 -0.2641 -0.1021 0.001681 0.04202
    0.237 0.3882 0.521 2.34e-06 7.255e-05
    0.1902 0.3457 0.4843 3.067e-05 0.0008895
    0.06285 0.227 0.3791 0.00721 0.1658
    -0.3686 -0.2153 -0.05063 0.01091 0.2292
    -0.4575 -0.315 -0.1567 0.0001589 0.004448
    -0.2881 -0.1277 0.03961 0.134 1
    -0.3336 -0.177 -0.01079 0.03715 0.5772
    0.2154 0.3686 0.5042 7.998e-06 0.00024
    0.03961 0.2048 0.359 0.01561 0.2965
    -0.5252 -0.3931 -0.2425 1.694e-06 5.59e-05
    -0.5837 -0.4621 -0.3203 1.025e-08 3.689e-07
    -0.3172 -0.1591 0.007566 0.06132 0.6987
    -0.3681 -0.2148 -0.05005 0.01112 0.2292
    0.03452 0.1999 0.3546 0.01832 0.3298
    -0.3515 -0.1965 -0.031 0.02044 0.3474
    -0.3905 -0.2395 -0.07605 0.004513 0.1083
    -0.2384 -0.07489 0.09277 0.3809 1
    -0.3346 -0.178 -0.01182 0.03608 0.5772
    0.1342 0.2941 0.4391 0.0004403 0.01145
    0.5789 0.6799 0.7603 3.497e-20 1.504e-18
    0.053 0.2176 0.3707 0.01008 0.2218
    0.4753 0.5947 0.6927 1.166e-14 4.899e-13
    -0.573 -0.4494 -0.3058 2.866e-08 1.003e-06
    0.2518 0.4015 0.5324 9.664e-07 3.286e-05
    0.4455 0.5698 0.6725 2.475e-13 1.015e-11
    -0.6596 -0.5539 -0.4268 1.517e-12 6.068e-11
    0.1443 0.3035 0.4474 0.0002809 0.007583
    -0.314 -0.1556 0.0112 0.0674 0.6987
    -0.6033 -0.4856 -0.3471 1.374e-09 5.084e-08
  • ci.adj:

    lower.adj upper.adj
    -0.1084 0.3386
    -0.1575 0.2219
    -0.08304 0.3869
    -0.1665 0.2546
    -0.295 0.1473
    -0.1716 0.1614
    -0.3971 0.07543
    -0.2396 0.1647
    -0.3553 0.1037
    0.6308 0.8619
    0.6723 0.8797
    0.3062 0.7007
    -0.5929 -0.1388
    -0.6716 -0.2568
    -0.4041 0.07107
    -0.4896 -0.005522
    0.1383 0.5916
    0.09157 0.5576
    -0.03184 0.4573
    -0.4456 0.04175
    -0.5327 -0.05816
    -0.3478 0.1056
    -0.4058 0.0727
    0.1167 0.576
    -0.05017 0.4346
    -0.5963 -0.1425
    -0.6493 -0.2221
    -0.3832 0.08263
    -0.4442 0.04107
    -0.05385 0.4294
    -0.4252 0.05587
    -0.4685 0.01968
    -0.2876 0.1448
    -0.4081 0.07338
    0.0371 0.5147
    0.5008 0.8031
    -0.04057 0.4485
    0.386 0.7456
    -0.6395 -0.2075
    0.1515 0.6032
    0.3539 0.728
    -0.7167 -0.3339
    0.04643 0.5229
    -0.3779 0.08364
    -0.6668 -0.25
  • stars:

    Table continues below
      Age MBAS_total MBAS_mus MBAS_bf MBAS_height
    Age 1*** 0.12 0.03 0.16 0.05
    MBAS_total 0.12 1*** 0.77*** 0.8*** 0.53***
    MBAS_mus 0.03 0.77*** 1*** 0.35*** 0.23
    MBAS_bf 0.16 0.8*** 0.35*** 1*** 0.2
    MBAS_height 0.05 0.53*** 0.23** 0.2* 1***
    WHO_phys -0.08 -0.39*** -0.22* -0.39*** -0.2*
    WHO_psych -0.01 -0.49*** -0.31*** -0.46*** -0.24**
    WHO_social -0.17* -0.18* -0.13 -0.16 -0.07
    WHO_enviro -0.04 -0.26** -0.18* -0.21* -0.18*
    GCLS_gender -0.13 0.39*** 0.37*** 0.2* 0.29***
      WHO_phys WHO_psych WHO_social WHO_enviro GCLS_gender
    Age -0.08 -0.01 -0.17 -0.04 -0.13
    MBAS_total -0.39*** -0.49*** -0.18 -0.26* 0.39***
    MBAS_mus -0.22 -0.31** -0.13 -0.18 0.37***
    MBAS_bf -0.39*** -0.46*** -0.16 -0.21 0.2
    MBAS_height -0.2 -0.24 -0.07 -0.18 0.29*
    WHO_phys 1*** 0.68*** 0.22 0.59*** -0.45***
    WHO_psych 0.68*** 1*** 0.4*** 0.57*** -0.55***
    WHO_social 0.22* 0.4*** 1*** 0.3** -0.16
    WHO_enviro 0.59*** 0.57*** 0.3*** 1*** -0.49***
    GCLS_gender -0.45*** -0.55*** -0.16 -0.49*** 1***
  • Call: corr.test(x = as.matrix(TGD_BI_num))

Internal Consistency

We note that the social subscale of the WHO_QoL Bref Scale and the Chest Subscale of the GCLS produce several warnings. This is likely due to the small number of items, as there are no missing values and the variances are positive for each item. We suggest that readers interpret this internal consistency metric with caution due to this. However, the inter-item correlations remain moderate to high, indicating these measures are appropriate.

## $est
## [1] 0.8574545
## 
## $se
## [1] 0.03056729
## 
## $ci.lower
## [1] 0.7879052
## 
## $ci.upper
## [1] 0.8984369
## 
## $conf.level
## [1] 0.95
## 
## $type
## [1] "omega"
## 
## $interval.type
## [1] "bca bootstrap"
## $est
## [1] 0.8542028
## 
## $se
## [1] 0.01785174
## 
## $ci.lower
## [1] 0.8094937
## 
## $ci.upper
## [1] 0.8843366
## 
## $conf.level
## [1] 0.95
## 
## $type
## [1] "omega"
## 
## $interval.type
## [1] "bca bootstrap"
## $est
## [1] 0.832173
## 
## $se
## [1] 0.02319907
## 
## $ci.lower
## [1] 0.7856959
## 
## $ci.upper
## [1] 0.8785376
## 
## $conf.level
## [1] 0.95
## 
## $type
## [1] "omega"
## 
## $interval.type
## [1] "bca bootstrap"
## $est
## [1] 0.7468072
## 
## $se
## [1] 25.60312
## 
## $ci.lower
## [1] 0.5818945
## 
## $ci.upper
## [1] 0.9536727
## 
## $conf.level
## [1] 0.95
## 
## $type
## [1] "omega"
## 
## $interval.type
## [1] "bca bootstrap"
## $est
## [1] 0.7510876
## 
## $se
## [1] 0.03092647
## 
## $ci.lower
## [1] 0.6937791
## 
## $ci.upper
## [1] 0.8130531
## 
## $conf.level
## [1] 0.95
## 
## $type
## [1] "omega"
## 
## $interval.type
## [1] "bca bootstrap"
## $est
## [1] 0.8330046
## 
## $se
## [1] 0.02103421
## 
## $ci.lower
## [1] 0.7799369
## 
## $ci.upper
## [1] 0.8691478
## 
## $conf.level
## [1] 0.95
## 
## $type
## [1] "omega"
## 
## $interval.type
## [1] "bca bootstrap"
## $est
## [1] 0.920726
## 
## $se
## [1] 0.01208281
## 
## $ci.lower
## [1] 0.8889187
## 
## $ci.upper
## [1] 0.9396951
## 
## $conf.level
## [1] 0.95
## 
## $type
## [1] "omega"
## 
## $interval.type
## [1] "bca bootstrap"
## $est
## [1] 0.7737753
## 
## $se
## [1] 0.03136535
## 
## $ci.lower
## [1] 0.6896021
## 
## $ci.upper
## [1] 0.8196568
## 
## $conf.level
## [1] 0.95
## 
## $type
## [1] "omega"
## 
## $interval.type
## [1] "bca bootstrap"
## $est
## [1] 0.8181998
## 
## $se
## [1] 0.03272694
## 
## $ci.lower
## [1] 0.7316209
## 
## $ci.upper
## [1] 0.8651273
## 
## $conf.level
## [1] 0.95
## 
## $type
## [1] "omega"
## 
## $interval.type
## [1] "bca bootstrap"
## $est
## [1] 0.9088533
## 
## $se
## [1] 0.01063989
## 
## $ci.lower
## [1] 0.8859616
## 
## $ci.upper
## [1] 0.928002
## 
## $conf.level
## [1] 0.95
## 
## $type
## [1] "omega"
## 
## $interval.type
## [1] "bca bootstrap"

Primary Analyses

We pre-registered the following analysis on the OSF. We standardised each of our variables below. The coefficients reported are, therefore, standardised betas. We control for age (in years) and satisfaction with stage of transition below (yes or no).

## lavaan 0.6.17 ended normally after 36 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        30
## 
##   Number of observations                           139
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   MBAS_total ~                                        
##     GCLS_gn   (a1)    0.392    0.090    4.346    0.000
##     Age               0.061    0.024    2.562    0.010
##     satis            -0.091    0.183   -0.497    0.619
##   WHO_phys ~                                          
##     GCLS_gn  (cp1)   -0.400    0.085   -4.702    0.000
##     MBAS_tt (b1.1)   -0.236    0.092   -2.553    0.011
##     Age              -0.029    0.025   -1.153    0.249
##     satis            -0.133    0.168   -0.792    0.428
##   WHO_psych ~                                         
##     GCLS_gn  (cp2)   -0.389    0.088   -4.422    0.000
##     MBAS_tt (b1.2)   -0.316    0.078   -4.077    0.000
##     Age              -0.014    0.025   -0.576    0.565
##     satis             0.208    0.166    1.248    0.212
##   WHO_social ~                                        
##     GCLS_gn  (cp3)   -0.110    0.098   -1.120    0.263
##     MBAS_tt (b1.3)   -0.098    0.094   -1.047    0.295
##     Age              -0.063    0.029   -2.197    0.028
##     satis             0.141    0.205    0.688    0.492
##   WHO_enviro ~                                        
##     GCLS_gn  (cp4)   -0.405    0.097   -4.187    0.000
##     MBAS_tt (b1.4)   -0.064    0.082   -0.777    0.437
##     Age              -0.041    0.025   -1.642    0.101
##     satis             0.314    0.170    1.850    0.064
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##  .WHO_phys ~~                                         
##    .WHO_psych         0.361    0.053    6.861    0.000
##    .WHO_social        0.104    0.073    1.430    0.153
##    .WHO_enviro        0.354    0.059    6.024    0.000
##  .WHO_psych ~~                                        
##    .WHO_social        0.266    0.059    4.488    0.000
##    .WHO_enviro        0.260    0.057    4.595    0.000
##  .WHO_social ~~                                       
##    .WHO_enviro        0.192    0.068    2.835    0.005
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .MBAS_total        0.811    0.102    7.980    0.000
##    .WHO_phys          0.726    0.081    9.014    0.000
##    .WHO_psych         0.590    0.069    8.584    0.000
##    .WHO_social        0.920    0.103    8.929    0.000
##    .WHO_enviro        0.726    0.079    9.217    0.000
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     ab1              -0.092    0.044   -2.087    0.037
##     ab2              -0.124    0.042   -2.940    0.003
##     ab3              -0.038    0.039   -0.988    0.323
##     ab4              -0.038    0.039   -0.988    0.323
##            lhs op         rhs label    est    se      z pvalue ci.lower
## 1   MBAS_total  ~ GCLS_gender    a1  0.392 0.090  4.346  0.000    0.223
## 2   MBAS_total  ~         Age        0.061 0.024  2.562  0.010    0.016
## 3   MBAS_total  ~       satis       -0.091 0.183 -0.497  0.619   -0.468
## 4     WHO_phys  ~ GCLS_gender   cp1 -0.400 0.085 -4.702  0.000   -0.569
## 5     WHO_phys  ~  MBAS_total  b1.1 -0.236 0.092 -2.553  0.011   -0.422
## 6     WHO_phys  ~         Age       -0.029 0.025 -1.153  0.249   -0.083
## 7     WHO_phys  ~       satis       -0.133 0.168 -0.792  0.428   -0.483
## 8    WHO_psych  ~ GCLS_gender   cp2 -0.389 0.088 -4.422  0.000   -0.561
## 9    WHO_psych  ~  MBAS_total  b1.2 -0.316 0.078 -4.077  0.000   -0.478
## 10   WHO_psych  ~         Age       -0.014 0.025 -0.576  0.565   -0.063
## 11   WHO_psych  ~       satis        0.208 0.166  1.248  0.212   -0.113
## 12  WHO_social  ~ GCLS_gender   cp3 -0.110 0.098 -1.120  0.263   -0.306
## 13  WHO_social  ~  MBAS_total  b1.3 -0.098 0.094 -1.047  0.295   -0.298
## 14  WHO_social  ~         Age       -0.063 0.029 -2.197  0.028   -0.121
## 15  WHO_social  ~       satis        0.141 0.205  0.688  0.492   -0.283
## 16  WHO_enviro  ~ GCLS_gender   cp4 -0.405 0.097 -4.187  0.000   -0.606
## 17  WHO_enviro  ~  MBAS_total  b1.4 -0.064 0.082 -0.777  0.437   -0.233
## 18  WHO_enviro  ~         Age       -0.041 0.025 -1.642  0.101   -0.089
## 19  WHO_enviro  ~       satis        0.314 0.170  1.850  0.064   -0.015
## 20  MBAS_total ~~  MBAS_total        0.811 0.102  7.980  0.000    0.647
## 21    WHO_phys ~~    WHO_phys        0.726 0.081  9.014  0.000    0.594
## 22   WHO_psych ~~   WHO_psych        0.590 0.069  8.584  0.000    0.481
## 23  WHO_social ~~  WHO_social        0.920 0.103  8.929  0.000    0.768
## 24  WHO_enviro ~~  WHO_enviro        0.726 0.079  9.217  0.000    0.605
## 25    WHO_phys ~~   WHO_psych        0.361 0.053  6.861  0.000    0.275
## 26    WHO_phys ~~  WHO_social        0.104 0.073  1.430  0.153   -0.047
## 27    WHO_phys ~~  WHO_enviro        0.354 0.059  6.024  0.000    0.260
## 28   WHO_psych ~~  WHO_social        0.266 0.059  4.488  0.000    0.156
## 29   WHO_psych ~~  WHO_enviro        0.260 0.057  4.595  0.000    0.158
## 30  WHO_social ~~  WHO_enviro        0.192 0.068  2.835  0.005    0.067
## 31 GCLS_gender ~~ GCLS_gender        0.993 0.000     NA     NA    0.993
## 32 GCLS_gender ~~         Age       -0.397 0.000     NA     NA   -0.397
## 33 GCLS_gender ~~       satis       -0.230 0.000     NA     NA   -0.230
## 34         Age ~~         Age        8.971 0.000     NA     NA    8.971
## 35         Age ~~       satis        0.357 0.000     NA     NA    0.357
## 36       satis ~~       satis        0.247 0.000     NA     NA    0.247
## 37         ab1 :=     a1*b1.1   ab1 -0.092 0.044 -2.087  0.037   -0.202
## 38         ab2 :=     a1*b1.2   ab2 -0.124 0.042 -2.940  0.003   -0.234
## 39         ab3 :=     a1*b1.3   ab3 -0.038 0.039 -0.988  0.323   -0.148
## 40         ab4 :=     a1*b1.3   ab4 -0.038 0.039 -0.988  0.323   -0.148
##    ci.upper
## 1     0.575
## 2     0.110
## 3     0.252
## 4    -0.241
## 5    -0.061
## 6     0.016
## 7     0.184
## 8    -0.203
## 9    -0.170
## 10    0.034
## 11    0.540
## 12    0.096
## 13    0.083
## 14   -0.008
## 15    0.517
## 16   -0.226
## 17    0.095
## 18    0.009
## 19    0.644
## 20    1.049
## 21    0.957
## 22    0.767
## 23    1.210
## 24    0.930
## 25    0.485
## 26    0.242
## 27    0.495
## 28    0.399
## 29    0.381
## 30    0.330
## 31    0.993
## 32   -0.397
## 33   -0.230
## 34    8.971
## 35    0.357
## 36    0.247
## 37   -0.026
## 38   -0.059
## 39    0.022
## 40    0.022

Exploratory Analysis

The following are some exploratory analyses that we did not pre-register.