You will see examples of how ancestry is depicted in maps.
You will be work with a 2020 Census file that was recently released (DDHCA).
You will learn different ways to map the concentration of an ancestry group in a county.
You will learn the challenges of measuring ancestral groups.
Most prevalent ancestry group: Ancestry Map of the United States
Number of people from a particular ancestry group: Mapping Immigrant America
Few recent examples
Number and percent of population in each tract identifying as Chinese
Number of people identifying as Chinese across Bexar County
Distribution of people identifying as Chinese across states
The API key gives you access raw data from the US Census
Obtain a key here: Request a U.S. Census Data API Key
Use the code below to install (first time) or overwrite (subsequent times) the key.
# A tibble: 6 × 3
name label concept
<chr> <chr> <chr>
1 H10_001N " !!Total:" TENURE…
2 H10_002N " !!Total:!!Owner occupied:" TENURE…
3 H10_003N " !!Total:!!Owner occupied:!!Householder who is White alone" TENURE…
4 H10_004N " !!Total:!!Owner occupied:!!Householder who is Black or Afr… TENURE…
5 H10_005N " !!Total:!!Owner occupied:!!Householder who is American Ind… TENURE…
6 H10_006N " !!Total:!!Owner occupied:!!Householder who is Asian alone" TENURE…
Simple feature collection with 375 features and 4 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -98.80655 ymin: 29.11444 xmax: -98.1169 ymax: 29.76071
Geodetic CRS: NAD83
# A tibble: 375 × 5
GEOID NAME variable value geometry
<chr> <chr> <chr> <dbl> <MULTIPOLYGON [°]>
1 48029171601 Census Tract 1716.01; B… P10_001N 2912 (((-98.62398 29.41355, -…
2 48029180604 Census Tract 1806.04; B… P10_001N 4521 (((-98.58517 29.47894, -…
3 48029151600 Census Tract 1516; Bexa… P10_001N 5467 (((-98.50388 29.34895, -…
4 48029150502 Census Tract 1505.02; B… P10_001N 2766 (((-98.53415 29.37502, -…
5 48029181712 Census Tract 1817.12; B… P10_001N 2897 (((-98.66604 29.48512, -…
6 48029180102 Census Tract 1801.02; B… P10_001N 1549 (((-98.54874 29.46871, -…
7 48029121508 Census Tract 1215.08; B… P10_001N 3772 (((-98.37162 29.5104, -9…
8 48029121404 Census Tract 1214.04; B… P10_001N 3749 (((-98.4041 29.47818, -9…
9 48029191505 Census Tract 1915.05; B… P10_001N 1761 (((-98.56706 29.55566, -…
10 48029190504 Census Tract 1905.04; B… P10_001N 1940 (((-98.516 29.46644, -98…
# ℹ 365 more rows
bexar_all$total<-bexar_all$value
bexar_all <- subset(bexar_all, select = c("GEOID","total"))
bexar_chinese_new <- subset(bexar_chinese, select = c("GEOID","value"))
bexar_chinese_new<-st_drop_geometry(bexar_chinese_new)
combined<-left_join(bexar_all,bexar_chinese_new, by=c("GEOID"))
combined<-replace(combined, is.na(combined),0)
combined$percent<-(combined$value)/(combined$total)
combined<-replace(combined, is.na(combined),0)Chinese_all <- get_decennial(
geography = "us",
variables = "T01001_001N",
year = 2020,
sumfile = "ddhca",
pop_group = "3822",
pop_group_label = TRUE)
Chinese_state <- get_decennial(
geography = "state",
variables = "T01001_001N",
year = 2020,
sumfile = "ddhca",
pop_group = "3822",
pop_group_label = TRUE)
Chinese_state$proportion<-(Chinese_state$value)/(Chinese_all$value)