# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899139
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.0234749
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1] -0.006364202 -0.002359221  0.029079301  0.019726820  0.036795197
##   [6] -0.006081116  0.026116845  0.015912407 -0.005148813  0.002195865
##  [11] -0.013531151  0.023668721  0.009241287  0.080414885  0.008194806
##  [16] -0.011367869  0.017957269 -0.016249765  0.031378859  0.032024538
##  [21] -0.028085887  0.038529639 -0.034020999  0.016841881 -0.015382626
##  [26]  0.006736834  0.013060511  0.007033977  0.015270569  0.010824296
##  [31] -0.013110649  0.012182511  0.001369074  0.013702402  0.005749258
##  [36]  0.001682415  0.011105159  0.001523402  0.029238390 -0.037674403
##  [41] -0.037734386 -0.012337218  0.008117245 -0.019980498  0.023927546
##  [46]  0.044749135  0.038439161  0.011853538  0.001425708  0.011067283
##  [51]  0.018102984 -0.003252270  0.001855150 -0.011613947 -0.010737182
##  [56] -0.001449613 -0.011791873  0.010506820  0.008531397 -0.003742265
##  [61]  0.032596557 -0.009055393  0.006211510  0.014165361  0.027394471
##  [66] -0.020955311 -0.039098376  0.004637834  0.002701922 -0.025286289
##  [71] -0.024607594  0.023706025 -0.021624480  0.040574401  0.017402421
##  [76] -0.034002741 -0.052617343 -0.007427890  0.005860666  0.008551787
##  [81]  0.018414980  0.009633565 -0.021211863 -0.010242906  0.011427322
##  [86]  0.013619665  0.034214988 -0.013851381  0.010681047  0.001758385
##  [91]  0.024216851  0.024803075 -0.028902996  0.006623165  0.004712816
##  [96]  0.017477874 -0.026687299  0.002726956  0.027395668  0.019230369
## [101] -0.049431914  0.013048431  0.008284489  0.013480777  0.019770438
## [106]  0.012611366 -0.005678052  0.002441636  0.003803613  0.046843660
## [111]  0.020578710 -0.005408630  0.038157750  0.043233454 -0.006594046
## [116]  0.028285433  0.035848248  0.007328806  0.051496280  0.013020343
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   0.994
##  3   0.998
##  4   1.03 
##  5   1.02 
##  6   1.04 
##  7   0.994
##  8   1.03 
##  9   1.02 
## 10   0.995
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1  1    
##  2  0.994
##  3  0.991
##  4  1.02 
##  5  1.04 
##  6  1.08 
##  7  1.07 
##  8  1.10 
##  9  1.12 
## 10  1.11 
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 7.567705

6 Simulation function

simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
    
        # Add a dollar
    
        simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N , mean_return, sd_return)))
    
        # Calculate the cumulative growth of a dollar
        
        simulated_growth <- simulated_returns_add_1 %>%
             mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
             select(growth)
    
        return(simulated_growth)
    
}
simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
    tail()
## # A tibble: 6 × 1
##   growth
##    <dbl>
## 1   411.
## 2   414.
## 3   409.
## 4   412.
## 5   412.
## 6   411.

7 Running multiple simulations

sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste0("sim", 1:sims))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# Simulate
# For reproducible research

set.seed(1234)
monte_carlo_sim_51 <- starts %>%
    
    # simulate
    
    map_dfc(.x = .,
            .f = ~simulate_accumulation(initial_value = .x, 
                                       N            = 120, 
                                       mean_return  = mean_port_return, 
                                       sd_return    = stddev_port_return)) %>%
    # Add column - month
    
    mutate(month = 1:nrow(.)) %>%
    select(month, everything()) %>%
    
    # Rearrange column name
    
    set_names(c("month", names(starts))) %>%
    
    # Transform to long form
    
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # ℹ 6,161 more rows
# Find quantities

monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    
    ungroup() %>%
    
    pull(growth) %>%
    
    quantile(probs = c(0, 0.25, 0.50, 0.75, 1)) %>%
    round(2)
##   0%  25%  50%  75% 100% 
## 1.17 1.59 1.98 2.40 3.88

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>%
    
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    labs(title = "Simulating Growth of $1 Over 120 Months")

Line plot with max, median, min

# Step 1: summarize data into max, median, and min of last value

sim_summary <- monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    
    summarise(max = max(growth),
              median = median(growth),
              min = min(growth))

sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  3.88   1.98  1.17
# Step 2 Plot

monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    filter(last(growth) == sim_summary$max |
               last(growth) == sim_summary$median |
               last(growth) == sim_summary$min) %>%
    ungroup() %>%
    
    # Plot
    
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(plot.subtitle = element_text(hjust = 0.5)) +
    
    labs(title = "Simulating Growth of $1 Over 120 Months",
         subtitle = "Maximum, Median, and Minimum Simulation")