# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize expected returns and risk to make it easier to compare the performance of multiple assets and portfolios.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("AMZN", "MSFT", "TSLA")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returnns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
weights <- c(0.3, 0.3, 0.4)
weights
## [1] 0.3 0.3 0.4
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 3 × 2
## symbols weights
## <chr> <dbl>
## 1 AMZN 0.3
## 2 MSFT 0.3
## 3 TSLA 0.4
portfolio_returns_tbl <- asset_returnns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "quarters")
portfolio_returns_tbl
## # A tibble: 20 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-03-28 0.0861
## 2 2013-06-28 0.488
## 3 2013-09-30 0.262
## 4 2013-12-31 0.00993
## 5 2014-03-31 0.109
## 6 2014-06-30 0.0532
## 7 2014-09-30 0.0358
## 8 2014-12-31 -0.0439
## 9 2015-03-31 -0.0490
## 10 2015-06-30 0.213
## 11 2015-09-30 0.0214
## 12 2015-12-31 0.139
## 13 2016-03-31 -0.0556
## 14 2016-06-30 0.00358
## 15 2016-09-30 0.0686
## 16 2016-12-30 0.0102
## 17 2017-03-31 0.175
## 18 2017-06-30 0.147
## 19 2017-09-29 -0.000558
## 20 2017-12-29 0.0653
portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = portfolio.returns,
performance_fun = table.Stats) %>%
select(Stdev) %>%
mutate(tq_sd = round(Stdev, 4))
portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 × 2
## Stdev tq_sd
## <dbl> <dbl>
## 1 0.128 0.128
portfolio_mean_tidyquant_builtin_percent <- mean(portfolio_returns_tbl$portfolio.returns)
portfolio_mean_tidyquant_builtin_percent
## [1] 0.08691008
sd_mean_tbl <- asset_returnns_tbl %>%
group_by(asset) %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Mean = ArithmeticMean, Stdev) %>%
ungroup() %>%
mutate(Stdev = Stdev * 100,
Mean = Mean * 100) %>%
#Add portfolio sd
add_row(tibble(asset = "Portfolio",
Mean = portfolio_mean_tidyquant_builtin_percent * 100,
Stdev = portfolio_sd_tidyquant_builtin_percent$tq_sd))
sd_mean_tbl
## # A tibble: 4 × 3
## asset Mean Stdev
## <chr> <dbl> <dbl>
## 1 AMZN 7.7 12.9
## 2 MSFT 6.48 8.55
## 3 TSLA 11.1 30.0
## 4 Portfolio 8.69 0.128
sd_mean_tbl %>%
ggplot(aes(x = Stdev, y = Mean, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset))
How should you expect your portfolio to perform relative to its assets in the portfolio? Would you invest all your money in any of the individual stocks instead of the portfolio? Discuss both in terms of expected return and risk.
My overall portfolio performs better than the individual Amazon and Microsoft stocks. The standard deviation is lower than 1% which means the volatility is extremely low (risk is really low). I belive that investing in the portfolio would be better than investing in one specific stock.