Take-aways regarding general use and trust:
Take-aways regarding fire, specifically:
# Prepare agency response
agency_responses <-
responses %>%
filter(QuestionKey != 'Agency_Resources',
str_starts(QuestionKey, "Agency") ) %>%
mutate(QuestionKey = str_remove(QuestionKey, "Agency_"),
QuestionKey = str_replace_all(QuestionKey, "([[:upper:]])"," \\1"),
QuestionKey = str_trim(QuestionKey)) %>%
separate(QuestionKey, into = c('category', 'topic'), sep = ' ') %>%
mutate(agency = case_when(
OptionKey == 'NDGF' ~ 'ND Game & Fish',
OptionKey == 'PF' ~ 'Pheasants Forever',
OptionKey == 'USFWS' ~ 'US Fish & Wildlife',
OptionKey == 'audubon' ~ 'Audubon Society',
OptionKey == 'extension' ~ 'County Extension',
OptionKey == 'USFS' ~ 'US Forest Service',
TRUE ~ str_to_upper(OptionKey) ))
# Resources in general
agency_general <-
agency_responses %>%
filter(category != "Fire") %>%
mutate(Response = recode(topic,
"Trust" = "Trust",
"Use" = "Use"),
Response = fct_rev(Response)) %>%
ggplot() + theme_bw(16) +
geom_vline(xintercept = 0, lty = 2) +
geom_errorbarh(aes(xmin = min,
xmax = max,
y = agency,
color = Response),
lwd = 0.9,
position = position_dodge(width = 0.6)) +
geom_point(aes(x = mid, y = agency,
fill = Response,
shape = Response),
size = 4,
stroke = 1,
position = position_dodge(width = 0.6)) +
coord_cartesian(xlim = c(-1.15, 1.9)) +
labs(title = 'A. "In general, I personally use/trust resources from this organization"',
x = 'Agreement Index') +
scale_shape_manual(values = c(21, 24)) +
scale_color_manual(values = wes_palette("FantasticFox1")[c(3,5)]) +
scale_fill_manual(values = wes_palette("FantasticFox1")[c(3,5)]) +
theme(axis.title.y = element_blank(),
axis.text.y = element_text(color = 'black', size = 14),
plot.title.position = "plot",
legend.position = 'top',
legend.title=element_blank() )
# WRT fire, specifically
agency_fire <-
agency_responses %>%
filter(category == "Fire") %>%
mutate(Response = recode(topic,
"Trust" = "Trust regarding Rx fire",
"Use" = "Associate with Rx fire")) %>%
ggplot() + theme_bw(16) +
geom_vline(xintercept = 0, lty = 2) +
geom_errorbarh(aes(xmin = min,
xmax = max,
y = agency,
color = Response),
lwd = 0.9,
height = 0.5,
position = position_dodge(width = 0.6)) +
geom_point(aes(x = mid, y = agency,
fill = Response,
shape = Response),
size = 4,
stroke = 1,
position = position_dodge(width = 0.6)) +
coord_cartesian(xlim = c(-1.15, 1.9)) +
labs(title = 'B. "I associate/trust this organization with Rx fire activity or information"',
x = 'Agreement Index') +
scale_shape_manual(values = c(21, 24)) +
scale_color_manual(values = wes_palette("FantasticFox1")[c(3,5)]) +
scale_fill_manual(values = wes_palette("FantasticFox1")[c(3,5)]) +
theme(axis.title.y = element_blank(),
axis.text.y = element_text(color = 'black', size = 14),
plot.title.position = "plot",
legend.position = 'top',
legend.title=element_blank() )
plot_grid(agency_general,
agency_fire,
# labels = c('A', 'B'),
ncol = 1)Perceptions of various federal (US) and state (ND) agencies and non-governmental organizations regarding (A) use and trust in provided resources, in general; and (B) association and trust with respect to prescribed fire, specifically. TNC = The Nature Conservancy, NRCS = USDA Natural Resource Conservation Service; BLM = US Dept. of Interior Bureau of Land Management; ARS = USDA Agricultural Research Service.
Take-aways:
importance <-
responses %>%
filter(str_starts(QuestionKey, "Importance") ) %>%
mutate(response = case_when(
OptionKey == 'restore_prairie' ~ 'Restore prairie/grassland',
OptionKey == 'reduce_wildfire' ~ 'Reduce wildfire risk',
OptionKey == 'protect_wildlife' ~ 'Protect wildlife habitat',
OptionKey == 'heterogeneity' ~ 'Increase plant diversity',
OptionKey == 'control_woody' ~ 'Woody plant control',
OptionKey == 'control_invasives' ~ 'Invasive species control' )) %>%
ggplot() + theme_bw(16) +
geom_vline(xintercept = 0, lty = 2) +
geom_errorbarh(aes(xmin = min,
xmax = max,
y = fct_reorder(response, mid)),
color = wes_palette("FantasticFox1")[3],
height = 0.5,
lwd = 0.9 ) +
geom_point(aes(x = mid, y = response ),
fill = wes_palette("FantasticFox1")[3],
pch = 21,
size = 5,
stroke = 1 ) +
# coord_cartesian(xlim = c(-1.15, 1.9)) +
labs(title = 'A. "This environmental concern is important to me"',
x = 'Agreement Index') +
theme(axis.title.y = element_blank(),
axis.text.y = element_text(color = 'black', size = 14),
plot.title.position = "plot" )
influence <-
responses %>%
filter(str_starts(QuestionKey, "Influence") ) %>%
mutate(response = case_when(
OptionKey == 'research' ~ 'Scientific research/\nUniversity publications',
OptionKey == 'neighbors' ~ 'How my neighbors\nmanage their land',
OptionKey == 'good' ~ 'Being a good steward',
OptionKey == 'gen' ~ 'What previous generations\ntaught me',
OptionKey == 'advice' ~ 'Professional advice' )) %>%
ggplot() + theme_bw(16) +
geom_vline(xintercept = 0, lty = 2) +
geom_errorbarh(aes(xmin = min,
xmax = max,
y = fct_reorder(response, mid)),
color = wes_palette("FantasticFox1")[5],
height = 0.5,
lwd = 0.9 ) +
geom_point(aes(x = mid, y = response ),
fill = wes_palette("FantasticFox1")[5],
pch = 21,
size = 5,
stroke = 1 ) +
# coord_cartesian(xlim = c(-1.15, 1.9)) +
labs(title = 'B. "This consideration affects my management decisionmaking"',
x = 'Agreement Index') +
theme(axis.title.y = element_blank(),
axis.text.y = element_text(color = 'black', size = 14),
plot.title.position = "plot" )
plot_grid(importance,
influence,
# labels = c('A', 'B'),
ncol = 1)Degree to which respondents agreed that various management considerations (A) were important in their decisions, and (B) influenced their decisionmaking.
Take-aways
# Attitudes and beliefs about Rx fire
beliefs <-
responses %>%
filter(QuestionKey == "CommunityFireBeliefs") %>%
mutate(OptionKey = str_remove(OptionKey, 'burn_'),
response = case_when(
OptionKey == 'wildlife' ~ 'Negative impacts to wildlife',
OptionKey == 'soil_erosion' ~ 'Results in soil erosion',
OptionKey == 'smoke' ~ 'Produces harmful smoke',
OptionKey == 'safety' ~ 'Poses risk to human safety',
OptionKey == 'property_risk' ~ "Poses risk to nearby property",
OptionKey == 'forage' ~ 'Results in loss of forage' )) %>%
ggplot() + theme_bw(16) +
geom_vline(xintercept = 0, lty = 2) +
geom_errorbarh(aes(xmin = min,
xmax = max,
y = fct_reorder(response, desc(SurveyOrder))) ,
color = wes_palette("FantasticFox1")[3],
lwd = 0.9 ) +
geom_point(aes(x = mid, y = response ),
fill = wes_palette("FantasticFox1")[3],
pch = 21,
size = 4,
stroke = 1 ) +
# coord_cartesian(xlim = c(-1.15, 1.9)) +
labs(title = 'A. "Members of my community generally believe the following about Rx fire"',
x = 'Agreement Index') +
theme(axis.title.y = element_blank(),
axis.text.y = element_text(color = 'black', size = 14),
plot.title.position = "plot" )
attitudes <-
responses %>%
filter(str_starts(QuestionKey, "Attitudes") ) %>%
mutate(OptionKey = str_remove(OptionKey, 'burn_'),
response = case_when(
OptionKey == 'beneficial' ~ 'Rx fire is a beneficial\ntool for managing rangelands',
OptionKey == 'frequent' ~ 'People should be able to\nburn as frequently as they\n want for management',
OptionKey == 'limited' ~ 'Burning can be used in a\nlimited set of instances',
OptionKey == 'man_plan' ~ 'My management plan includes\nusing prescribed fire',
OptionKey == 'prepared' ~ "I'm prepared to use Rx fire\nif I choose to",
OptionKey == 'pros' ~ 'Fire should only be used\nby professionals',
OptionKey == 'shouldnt' ~ 'Burning is a poor management\noption that shouldn’t be used',
OptionKey == 'training' ~ 'Burning is a good option\nfor anyone with training')) %>%
ggplot() + theme_bw(16) +
geom_vline(xintercept = 0, lty = 2) +
geom_errorbarh(aes(xmin = min,
xmax = max,
y = fct_reorder(response, desc(SurveyOrder))) ,
height = 0.5,
color = wes_palette("FantasticFox1")[5],
lwd = 0.9 ) +
geom_point(aes(x = mid, y = response ),
fill = wes_palette("FantasticFox1")[5],
pch = 21,
size = 4,
stroke = 1 ) +
# coord_cartesian(xlim = c(-1.15, 1.9)) +
labs(title = 'B. "I personally believe the following"',
x = 'Agreement Index') +
theme(axis.title.y = element_blank(),
axis.text.y = element_text(color = 'black', size = 14),
plot.title.position = "plot" )
plot_grid(beliefs,
attitudes,
rel_heights = c(0.75, 1.5),
ncol = 1)Degree to which respondents agreed with statements about (A) community perceptions of prescribed fire effects, and (B) personal attitudes about prescribed fire use.
Take-aways
responses %>%
filter(QuestionKey == "PublicGrazingBeliefs",
OptionKey != 'public_fire') %>%
mutate(response = case_when(
OptionKey == 'increase_public_fire' ~ 'There should be more Rx fire\non public grazingland', OptionKey == 'amount_public_fire' ~'There is an appropriate amount of\nRx fire on public grazingland',
OptionKey == 'admin_users' ~ 'Administrators should manage to meet\nuser needs or preferences',
OptionKey == 'admin_science' ~ "Administrators should manage land\naccording to the best available science",
OptionKey == 'admin_good' ~ 'Public grazingland administrators\n do a good job managing the land' )) %>%
ggplot() + theme_bw(16) +
geom_vline(xintercept = 0, lty = 2) +
geom_errorbarh(aes(xmin = min,
xmax = max,
y = fct_reorder(response, desc(SurveyOrder))) ,
color = wes_palette("FantasticFox1")[3],
height = 0.5,
lwd = 0.9 ) +
geom_point(aes(x = mid, y = response ),
fill = wes_palette("FantasticFox1")[3],
pch = 21,
size = 4,
stroke = 1 ) +
# coord_cartesian(xlim = c(-1.15, 1.9)) +
labs(title = '"I personally believe the following about public grazingland management"',
x = 'Agreement Index') +
theme(axis.title.y = element_blank(),
axis.text.y = element_text(color = 'black', size = 14),
plot.title.position = "plot" )Respondent attitudes towards public grazingland administration and prescribed fire use.
responses %>%
filter(QuestionKey == 'Recreation' ) %>%
ggplot() + theme_bw(16) +
geom_vline(xintercept = 0, lty = 2) +
geom_errorbarh(aes(xmin = min,
xmax = max,
y = fct_reorder(SurveyText, mid) ) ,
color = wes_palette("FantasticFox1")[3],
height = 0.5,
lwd = 0.9 ) +
geom_point(aes(x = mid, y = SurveyText ),
fill = wes_palette("FantasticFox1")[3],
pch = 21,
size = 4,
stroke = 1 ) +
# coord_cartesian(xlim = c(-1.15, 1.9)) +
labs(title = '"Myself and/or my family use public grazingland for these recreation activities"',
x = 'Agreement Index') +
theme(axis.title.y = element_blank(),
axis.text.y = element_text(color = 'black', size = 14),
plot.title.position = "plot" )Respondents’ use of public grazingland for various recreation activies.