# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("AMZN", "MSFT", "TSLA")
prices <- tq_get (x = symbols,
get = "stock.price",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
weights <- c(0.3, 0.3, 0.4)
weights
## [1] 0.3 0.3 0.4
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 3 × 2
## symbols weights
## <chr> <dbl>
## 1 AMZN 0.3
## 2 MSFT 0.3
## 3 TSLA 0.4
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "quarters")
portfolio_returns_tbl
## # A tibble: 20 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-03-28 0.0861
## 2 2013-06-28 0.488
## 3 2013-09-30 0.262
## 4 2013-12-31 0.00993
## 5 2014-03-31 0.109
## 6 2014-06-30 0.0532
## 7 2014-09-30 0.0358
## 8 2014-12-31 -0.0439
## 9 2015-03-31 -0.0490
## 10 2015-06-30 0.213
## 11 2015-09-30 0.0214
## 12 2015-12-31 0.139
## 13 2016-03-31 -0.0556
## 14 2016-06-30 0.00358
## 15 2016-09-30 0.0686
## 16 2016-12-30 0.0102
## 17 2017-03-31 0.175
## 18 2017-06-30 0.147
## 19 2017-09-29 -0.000558
## 20 2017-12-29 0.0653
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = portfolio.returns)) +
geom_histogram(fill = "violet", binwidth = 0.01) +
geom_density() +
# Formatting
scale_x_continuous(label = scales::percent_format()) +
labs(x = "returns",
y = "distribution",
title = "Portfolio Histogram and Density")
What return should you expect from the portfolio in a typical quarter?
Returns are relatively flat but do have an uptick around the 5% to 8% range so I would expect this to be the range of a typical quarterly return.