# Load packages
# Core
library(tidyverse)
library(tidyquant)
# Source function
source("../00_scripts/simulate_accumulation.R")
Revise the code below.
symbols <- c("WMT", "TGT", "COST")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2024-06-28")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
Revise the code for weights.
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "COST" "TGT" "WMT"
# weights
weights <- c(0.4, 0.35, 0.25)
weights
## [1] 0.40 0.35 0.25
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 3 × 2
## symbols weights
## <chr> <dbl>
## 1 COST 0.4
## 2 TGT 0.35
## 3 WMT 0.25
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 138 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0278
## 2 2013-02-28 0.0164
## 3 2013-03-28 0.0634
## 4 2013-04-30 0.0288
## 5 2013-05-31 -0.00591
## 6 2013-06-28 -0.000995
## 7 2013-07-31 0.0473
## 8 2013-08-30 -0.0724
## 9 2013-09-30 0.0186
## 10 2013-10-31 0.0234
## # ℹ 128 more rows
# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.01245139
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.05273997
No need
sims <- 51
starts <- rep(100, sims) %>%
set_names(paste0("sim", 1:sims))
starts
## sim1 sim2 sim3 sim4 sim5 sim6 sim7 sim8 sim9 sim10 sim11 sim12 sim13
## 100 100 100 100 100 100 100 100 100 100 100 100 100
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26
## 100 100 100 100 100 100 100 100 100 100 100 100 100
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39
## 100 100 100 100 100 100 100 100 100 100 100 100 100
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51
## 100 100 100 100 100 100 100 100 100 100 100 100
# Simulate
# For reproducible research
set.seed(1234)
monte_carlo_sim_51 <- starts %>%
# simulate
map_dfc(.x = .,
.f = ~simulate_accumulation(initial_value = .x,
N = 240,
mean_return = mean_port_return,
sd_return = stddev_port_return)) %>%
# Add column - month
mutate(month = 1:nrow(.)) %>%
select(month, everything()) %>%
# Rearrange column name
set_names(c("month", names(starts))) %>%
# Transform to long form
pivot_longer(cols = -month, names_to = "sim", values_to = "growth")
monte_carlo_sim_51
## # A tibble: 12,291 × 3
## month sim growth
## <int> <chr> <dbl>
## 1 1 sim1 100
## 2 1 sim2 100
## 3 1 sim3 100
## 4 1 sim4 100
## 5 1 sim5 100
## 6 1 sim6 100
## 7 1 sim7 100
## 8 1 sim8 100
## 9 1 sim9 100
## 10 1 sim10 100
## # ℹ 12,281 more rows
# Find quantiles
monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
pull(growth) %>%
quantile(probs = c(0, 0.25, 0.50, 0.75, 1)) %>%
round(2)
## 0% 25% 50% 75% 100%
## 259.25 1017.84 1770.80 2904.51 6013.79
Line Plot of Simulations with Max, Median, and Min
sim_summary <- monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
summarise(max = max(growth),
median = median(growth),
min = min(growth))
sim_summary
## # A tibble: 1 × 3
## max median min
## <dbl> <dbl> <dbl>
## 1 6014. 1771. 259.
# Step 2 Plot
monte_carlo_sim_51 %>%
group_by(sim) %>%
filter(last(growth) == sim_summary$max |
last(growth) == sim_summary$median |
last(growth) == sim_summary$min) %>%
ungroup() %>%
# Plot
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5)) +
theme(plot.subtitle = element_text(hjust = 0.5)) +
labs(title = "Simulating Growth of $100 Over 240 Months",
subtitle = "Maximum, Median, and Minimum Simulation")
Based on the Monte Carlo simulation results, how much should you expect from your $100 investment after 20 years? What is the best-case scenario? What is the worst-case scenario? What are limitations of this simulation analysis?
Over the next 20 years, we can expect these investments to grow by around 2000. The best case scenario would be a growth of around 6000 while the worst case would be a growth of less than 500.
When we created this we used function R norm meaning normal distributions of return. In reality majority of the time investment returns are negativly skewed. These results are probably more optomistic than real which is one limitation. As for the next limitation, it involves the data base we used. Although we are using the time period of 2012 to present, there is still a lot of different market crashes and rises before 2012 that would possibly show different levels of data earlier than 2012. Even with these limitation, we are still able to grasp a decent understanding of what 20 years could look like.