# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899135
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347492
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1]  0.0245913356  0.0051049667 -0.0108268006  0.0228288200  0.0193465077
##   [6]  0.0177450754  0.0252659357 -0.0328379650  0.0446191212  0.0102866005
##  [11]  0.0470745122  0.0130757785  0.0185489812  0.0073051731  0.0022028364
##  [16]  0.0122468799  0.0146968929 -0.0156907004 -0.0276144382  0.0195822758
##  [21]  0.0215833875 -0.0078972443 -0.0175969867  0.0073526665  0.0010416342
##  [26]  0.0087938219  0.0340006428 -0.0186052161  0.0013075687 -0.0124702019
##  [31] -0.0200586143 -0.0037804463  0.0171417087  0.0060892769  0.0147800349
##  [36]  0.0331768195  0.0189022301  0.0166722826  0.0422529005 -0.0023586561
##  [41] -0.0122237522  0.0193353339  0.0270070220  0.0133695098  0.0014569060
##  [46]  0.0037669706 -0.0424861822  0.0278996968  0.0247508214  0.0331318828
##  [51]  0.0189387631  0.0052916946  0.0005247323  0.0013377710 -0.0397395788
##  [56] -0.0598187505  0.0206869620  0.0331290756  0.0243084242  0.0083264536
##  [61]  0.0014507881 -0.0460828635 -0.0430405928  0.0037381807  0.0050065918
##  [66]  0.0304525619  0.0609603862  0.0081772251  0.0240862442  0.0197496313
##  [71]  0.0209709731 -0.0079051247  0.0063759270  0.0172814165  0.0056820767
##  [76]  0.0044667281 -0.0054503867  0.0240722375  0.0205470389 -0.0329578765
##  [81]  0.0139783349 -0.0288087050 -0.0041352893 -0.0495899865 -0.0439337761
##  [86]  0.0116881177  0.0159006522 -0.0098440360 -0.0045533020 -0.0129073692
##  [91]  0.0078829197 -0.0303584545  0.0261045869  0.0093600095 -0.0078524297
##  [96]  0.0497549550  0.0313243385  0.0032187412 -0.0040406309 -0.0063115178
## [101]  0.0397533791  0.0337550632  0.0077766900  0.0140149419  0.0339458101
## [106]  0.0537001003  0.0147348895  0.0104140165  0.0358953725 -0.0029362120
## [111]  0.0374822796  0.0381927467 -0.0142330923 -0.0347303951  0.0183580749
## [116]  0.0170123145 -0.0213667867 -0.0133910041 -0.0277218377  0.0567301776
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   1.02 
##  3   1.01 
##  4   0.989
##  5   1.02 
##  6   1.02 
##  7   1.02 
##  8   1.03 
##  9   0.967
## 10   1.04 
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1   1   
##  2   1.02
##  3   1.03
##  4   1.02
##  5   1.04
##  6   1.06
##  7   1.08
##  8   1.11
##  9   1.07
## 10   1.12
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 8.462414

6 Simulation function

simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
    
        # Add a dollar
        simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N , mean_return, sd_return)))
    
        # Calculate the cumulative growth of a dollar
        simulated_growth <- simulated_returns_add_1 %>%
             mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
             select(growth)
    
        return(simulated_growth)
    
}

simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
    tail()
## # A tibble: 6 × 1
##   growth
##    <dbl>
## 1   336.
## 2   334.
## 3   333.
## 4   337.
## 5   333.
## 6   334.
dump(list = c("simulate_accumulation"),
     file = "../00_scripts/simulate_accumulation.R")

7 Running multiple simulations

sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste0("sim", 1:sims))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# Simulate
# For reproducible research
set.seed(1234)
monte_carlo_sim_51 <- starts %>%
    
    # simulate
    map_dfc(.x = .,
            .f = ~simulate_accumulation(initial_value = .x, 
                                       N            = 120, 
                                       mean_return  = mean_port_return, 
                                       sd_return    = stddev_port_return)) %>%
    # Add column - month
    mutate(month = 1:nrow(.)) %>%
    select(month, everything()) %>%
    
    # Rearrange column name
    set_names(c("month", names(starts))) %>%
    
    # Transform to long form
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # ℹ 6,161 more rows
# Find quantiles
monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
    
    quantile(probs = c(0, 0.25, 0.50, 0.75, 1)) %>%
    round(2)
##   0%  25%  50%  75% 100% 
## 1.17 1.59 1.98 2.40 3.88

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>%
    
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    labs(title = "Simulating Growth of $1 Over 120 Months")

Line plot with max, median, min

# Step 1: summarize data into max, median, and min of last value
sim_summary <- monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    
    summarise(max = max(growth),
              median = median(growth),
              min = min(growth))

sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  3.88   1.98  1.17
# Step 2 Plot
monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    filter(last(growth) == sim_summary$max |
               last(growth) == sim_summary$median |
               last(growth) == sim_summary$min) %>%
    ungroup() %>%
    
    # Plot
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(plot.subtitle = element_text(hjust = 0.5)) +
    
    labs(title = "Simulating Growth of $1 Over 120 Months",
         subtitle = "Maximum, Median, and Minimum Simulation")