library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.3.3
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ lubridate 1.9.3 ✔ tibble 3.2.1
## ✔ purrr 1.0.2 ✔ tidyr 1.3.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(magick)
## Warning: package 'magick' was built under R version 4.3.3
## Linking to ImageMagick 6.9.12.98
## Enabled features: cairo, freetype, fftw, ghostscript, heic, lcms, pango, raw, rsvg, webp
## Disabled features: fontconfig, x11
library(dplyr)
library(gganimate)
## Warning: package 'gganimate' was built under R version 4.3.3
library(zoo)
## Warning: package 'zoo' was built under R version 4.3.3
##
## Attaching package: 'zoo'
##
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
library(xlsx)
library(DT)
t <- read.xlsx("F:/R/data1/thnn1.xlsx", sheetIndex=1, header=T)
str(t)
## 'data.frame': 41 obs. of 4 variables:
## $ Q : Date, format: "2014-03-31" "2014-06-30" ...
## $ i : num 9.09e+08 8.02e+08 5.95e+08 7.49e+08 6.45e+08 ...
## $ dt: num 9.25e+09 1.09e+10 7.03e+09 1.12e+10 6.21e+09 ...
## $ d : num 1 2 3 4 5 6 7 8 9 10 ...
cor(t$i,t$dt)
## [1] 0.4497163
data <- data.frame(day=t\(Q,col1=t\)i,col2=t$dt)
data <- data.frame(day=t$d,col1=t$i,col2=t$dt)
datatable(data)
a <- rollapply(data, width=6, function(x) cor(x[,2],x[,3]),by.column=FALSE)
print(a)
## [1] 0.63499183 0.69372800 0.75675473 0.15773933 0.34554417 -0.08771749
## [7] -0.76182929 -0.90745724 -0.80995743 -0.57094434 -0.73477741 -0.84895661
## [13] -0.94281035 -0.78539561 -0.75930192 -0.78243970 -0.65975231 -0.56329728
## [19] -0.37927124 -0.67779155 -0.18763144 0.20310724 0.35435037 0.69445668
## [25] 0.46984940 0.69495309 0.80312404 0.90705966 0.95543698 0.97978704
## [31] 0.96933827 0.29533802 0.23798325 0.64796359 0.68106831 0.61876515
ds <- data.frame(d=c(1:36),a=a)
datatable(ds)
ds %>% ggplot(aes(x=d,y=a))+ geom_line() + geom_point(size=1)