d <- read.csv('https://stats.dip.jp/01_ds/data/load/load_tp_y2022_h12_tokyo.csv')
library(DT)
datatable(d)
n <- nrow(d)
ii.tr <- sample(1:n, size = floor(0.8*n))
d.tr <- d[ ii.tr, ]
d.te <- d[-ii.tr, ]
fit <- lm(gw ~ tp, data = d.tr)
tp_hat <- predict(fit, newdata = d.te)
RMSE <- sqrt(mean((d.te$tp - tp_hat)^2))
RMSE
## [1] 17.79893
get.accuracy <- function(yhat, y, digits = 2)
{
d <- data.frame(MBE = mean(yhat - y),
MAE = mean(abs(yhat - y)),
MAPE = mean(abs((yhat - y) / y)) * 100,
RMSE = sqrt(mean((yhat - y)^2)))
return(round(d, digits))
}
(a <- get.accuracy(tp_hat, d.te$tp))
## MBE MAE MAPE RMSE
## 1 16.65 16.65 127.31 17.8
fit <- lm(gw ~ poly(tp, 2, raw = TRUE), data = d)
library(sjPlot)
tab_model(fit)
|
gw
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
57.11
|
55.11 – 59.10
|
<0.001
|
tp [1st degree]
|
-2.85
|
-3.07 – -2.62
|
<0.001
|
tp [2nd degree]
|
0.08
|
0.07 – 0.08
|
<0.001
|
Observations
|
364
|
R2 / R2 adjusted
|
0.693 / 0.691
|
tp.p <- seq(0, max(d$gw), 5)
conf <- predict(fit, newdata = data.frame(tp = tp.p),
interval = 'confidence')
pred <- predict(fit, newdata = data.frame(tp = tp.p),
interval = 'prediction')
COL <- c(rgb(255, 0, 0, 105, max = 255), # 赤
rgb( 0, 0, 255, 105, max = 255), # 青
rgb( 0, 155, 0, 105, max = 255), # 緑
rgb(140, 140, 140, 105, max = 255), # 暗灰
rgb(180, 180, 180, 105, max = 255)) # 灰
matplot(x = d$tp, y = d$gw,
type = 'p', pch = 16, col = COL[1], ylim = c(min(d$gw)-5, max(d$gw)),
main = '気温と電力需要の予測',
xlab = '気温[tp]', ylab = '電力需要[gw]')
gray.area <- function(x, lwr, upr, col) {
polygon(c(x, rev(x)), c(lwr, rev(upr)), col = col, border = NA)
}
gray.area(tp.p, conf[, 'lwr'], conf[, 'upr'], col = COL[4])
gray.area(tp.p, pred[, 'lwr'], pred[, 'upr'], col = COL[5])
matlines(x = tp.p, y = conf[, 'fit'], col = COL[2], lwd = 3)
legend('topright',
pch = c(16, NA, NA, NA), col = COL[-3],
lty = c(NA, 1, NA, NA), lwd = c(NA, 3, NA, NA),
fill = c(NA, NA, COL[4], COL[5]), border = F,
legend = c('気温', '電力需要', '95%信頼区間', '95%予測区間'))
