TAS Descriptive statistics

We will be going through

Step 1: Loading Packages

library(tidyverse)
library(readxl)

Step 2: Import the data

TAS_original_data <- read_excel("C:/ZZ Sher May/TAS_original_data.xlsx")

Step 3: Preview the data

view(TAS_original_data)
head(TAS_original_data)
## # A tibble: 6 × 75
##     TAS TAS05 TAS15 ER30001 ER30002 ER32000 ER32006 ER33801 ER33802 ER33803
##   <dbl> <dbl> <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
## 1     1    NA     1       4      39       2       2     289       3      60
## 2     1    NA     1       4      41       2       2    1157       3      30
## 3     1     1    NA       4     180       2       3     771       2      22
## 4     1     1    NA       5      32       2       2     624       3      30
## 5     1    NA     1       5      33       1       2    1504       3      30
## 6     1     1    NA       6      34       1       2    1202      51      30
## # ℹ 65 more variables: TA050001 <dbl>, TA050002 <dbl>, TA050003 <dbl>,
## #   TA050004 <dbl>, TA050044 <dbl>, TA050047 <dbl>, TA050050 <dbl>,
## #   TA050065 <dbl>, TA050066 <dbl>, TA050067 <dbl>, TA050070 <dbl>,
## #   TA050071 <dbl>, TA050127 <dbl>, TA050128 <dbl>, TA050129 <dbl>,
## #   TA050130 <dbl>, TA050573 <dbl>, TA050574 <dbl>, TA050575 <dbl>,
## #   TA050594 <dbl>, TA050595 <dbl>, TA050639 <dbl>, TA050663 <dbl>,
## #   TA050664 <dbl>, TA050665 <dbl>, TA050670 <dbl>, TA050675 <dbl>, …

Step 4: Descriptive statistics

2005

TA050044: B5A Responsibility for own

Count

TAS_original_data %>% count(TA050044)
## # A tibble: 6 × 2
##   TA050044     n
##      <dbl> <int>
## 1        1    31
## 2        2   124
## 3        3   155
## 4        4   238
## 5        5   197
## 6       NA  1641
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA050044))

Mean, sd, range

TAS_original_data %>% select(TA050044) %>% drop_na() %>% summarize(mean_B5A = mean(TA050044), sd_B5A = sd(TA050044), range_B5A = range(TA050044))
## # A tibble: 2 × 3
##   mean_B5A sd_B5A range_B5A
##      <dbl>  <dbl>     <dbl>
## 1     3.60   1.16         1
## 2     3.60   1.16         5

TA050047: B5D Responsibility for own money

Count

TAS_original_data %>% count(TA050047)
## # A tibble: 6 × 2
##   TA050047     n
##      <dbl> <int>
## 1        1    18
## 2        2    19
## 3        3    70
## 4        4   184
## 5        5   454
## 6       NA  1641
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA050047))

Mean, sd, range

TAS_original_data %>% select(TA050047) %>% drop_na() %>%  summarize(mean_B5D = mean(TA050047), sd_B5D = sd(TA050047), range_B5D = range(TA050047))
## # A tibble: 2 × 3
##   mean_B5D sd_B5D range_B5D
##      <dbl>  <dbl>     <dbl>
## 1     4.39  0.933         1
## 2     4.39  0.933         5

TA050050: B6C Scale on managing money

Count

TAS_original_data %>% count(TA050050)
## # A tibble: 8 × 2
##   TA050050     n
##      <dbl> <int>
## 1        1    15
## 2        2    26
## 3        3    39
## 4        4    92
## 5        5   204
## 6        6   170
## 7        7   199
## 8       NA  1641
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA050050))

Mean, sd, range

TAS_original_data %>% select(TA050050) %>% drop_na() %>%  summarize(mean_B6C = mean(TA050050), sd_B6C = sd(TA050050), range_B6C = range(TA050050))
## # A tibble: 2 × 3
##   mean_B6C sd_B6C range_B6C
##      <dbl>  <dbl>     <dbl>
## 1     5.35   1.47         1
## 2     5.35   1.47         7

TA050065: C2D Scale on worry about money

Count

TAS_original_data %>% count(TA050065)
## # A tibble: 8 × 2
##   TA050065     n
##      <dbl> <int>
## 1        1   114
## 2        2   115
## 3        3   122
## 4        4   130
## 5        5   113
## 6        6    70
## 7        7    81
## 8       NA  1641
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA050065))

Mean, sd, range

TAS_original_data %>% select(TA050065) %>% drop_na() %>%  summarize(mean_C2D = mean(TA050065), sd_C2D = sd(TA050065), range_C2D = range(TA050065))
## # A tibble: 2 × 3
##   mean_C2D sd_C2D range_C2D
##      <dbl>  <dbl>     <dbl>
## 1     3.73   1.90         1
## 2     3.73   1.90         7

TA050066: C2E Scale on worry about future job

Count

TAS_original_data %>% count(TA050066)
## # A tibble: 8 × 2
##   TA050066     n
##      <dbl> <int>
## 1        1   144
## 2        2   126
## 3        3   115
## 4        4    87
## 5        5   109
## 6        6    85
## 7        7    79
## 8       NA  1641
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA050066))

Mean, sd, range

TAS_original_data %>% select(TA050066) %>% drop_na() %>%  summarize(mean_C2E = mean(TA050066), sd_C2E = sd(TA050066), range_C2E = range(TA050066))
## # A tibble: 2 × 3
##   mean_C2E sd_C2E range_C2E
##      <dbl>  <dbl>     <dbl>
## 1     3.62   2.00         1
## 2     3.62   2.00         7

TA050067: C2F Scale on discouragement

Count

TAS_original_data %>% count(TA050067)
## # A tibble: 9 × 2
##   TA050067     n
##      <dbl> <int>
## 1        1   191
## 2        2   153
## 3        3   124
## 4        4   100
## 5        5    80
## 6        6    50
## 7        7    45
## 8        8     2
## 9       NA  1641
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA050067))

Mean, sd, range

TAS_original_data %>% select(TA050067) %>% drop_na() %>% filter(TA050067 <= 7) %>% summarize(mean_C2F = mean(TA050067), sd_C2F = sd(TA050067), range_C2F = range(TA050067))
## # A tibble: 2 × 3
##   mean_C2F sd_C2F range_C2F
##      <dbl>  <dbl>     <dbl>
## 1     3.07   1.84         1
## 2     3.07   1.84         7

TA050071: D2D3 Year Divorced

Count

TAS_original_data %>% count(TA050071)
## # A tibble: 3 × 2
##   TA050071     n
##      <dbl> <int>
## 1        0   744
## 2     2005     1
## 3       NA  1641

Mean, sd, range

TAS_original_data %>% select(TA050071) %>% drop_na() %>% filter(TA050071 > 0) %>% summarize(mean_D2D3 = mean(TA050071))
## # A tibble: 1 × 1
##   mean_D2D3
##       <dbl>
## 1      2005

TA050127: E1 Employment status 1st mention

Count

TAS_original_data %>% count(TA050127)
## # A tibble: 8 × 2
##   TA050127     n
##      <dbl> <int>
## 1        1   364
## 2        2     4
## 3        3    98
## 4        5     2
## 5        6    23
## 6        7   246
## 7        8     8
## 8       NA  1641
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA050127))

Mean, sd, range

TAS_original_data %>% select(TA050127) %>% drop_na() %>% filter(TA050127 <= 7) %>%  summarize(mean_E1 = mean(TA050127), sd_E1 = sd(TA050127), range_E1 = range(TA050127))
## # A tibble: 2 × 3
##   mean_E1 sd_E1 range_E1
##     <dbl> <dbl>    <dbl>
## 1    3.44  2.73        1
## 2    3.44  2.73        7

TA050128: E1 Employment status 2nd mention

Count

TAS_original_data %>% count(TA050128)
## # A tibble: 7 × 2
##   TA050128     n
##      <dbl> <int>
## 1        0   560
## 2        1    32
## 3        3    13
## 4        5     1
## 5        6     8
## 6        7   131
## 7       NA  1641
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA050128))

Mean, sd, range

TAS_original_data %>% select(TA050128) %>% drop_na() %>% filter(TA050128 > 0) %>%  summarize(mean_E1 = mean(TA050128), sd_E1 = sd(TA050128), range_E1 = range(TA050128))
## # A tibble: 2 × 3
##   mean_E1 sd_E1 range_E1
##     <dbl> <dbl>    <dbl>
## 1    5.63  2.36        1
## 2    5.63  2.36        7

TA050129: E1 Employment status 3rd mention

Count

TAS_original_data %>% count(TA050129)
## # A tibble: 6 × 2
##   TA050129     n
##      <dbl> <int>
## 1        0   740
## 2        1     1
## 3        3     1
## 4        6     1
## 5        7     2
## 6       NA  1641
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA050129))

Mean, sd, range

TAS_original_data %>% select(TA050129) %>% drop_na() %>% filter(TA050129 > 0) %>% summarize(mean_E1 = mean(TA050129), sd_E1 = sd(TA050129), range_E1 = range(TA050129))
## # A tibble: 2 × 3
##   mean_E1 sd_E1 range_E1
##     <dbl> <dbl>    <dbl>
## 1     4.8  2.68        1
## 2     4.8  2.68        7

TA050130: E3 Working

Count

TAS_original_data %>% count(TA050130)
## # A tibble: 5 × 2
##   TA050130     n
##      <dbl> <int>
## 1        0   400
## 2        1    86
## 3        5   258
## 4        9     1
## 5       NA  1641
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA050130))

Mean, sd, range

TAS_original_data %>% select(TA050130) %>% drop_na() %>% filter(TA050130 > 0) %>%  filter(TA050130 < 9) %>%  summarize(mean_E3 = mean(TA050130), sd_E3 = sd(TA050130), range_E3 = range(TA050130))
## # A tibble: 2 × 3
##   mean_E3 sd_E3 range_E3
##     <dbl> <dbl>    <dbl>
## 1       4  1.73        1
## 2       4  1.73        5

TA050573: G1 Graduated high school

Count

TAS_original_data %>% count(TA050573)
## # A tibble: 5 × 2
##   TA050573     n
##      <dbl> <int>
## 1        1   601
## 2        2    46
## 3        3    96
## 4        9     2
## 5       NA  1641
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA050573))

Mean, sd, range

TAS_original_data %>% select(TA050573) %>% drop_na() %>% filter(TA050573 < 3) %>%  summarize(mean_G1 = mean(TA050573), sd_G1 = sd(TA050573), range_G1 = range(TA050573))
## # A tibble: 2 × 3
##   mean_G1 sd_G1 range_G1
##     <dbl> <dbl>    <dbl>
## 1    1.07 0.257        1
## 2    1.07 0.257        2

TA050575: G2 Year Graduated high school

Count

TAS_original_data %>% count(TA050575)
## # A tibble: 8 × 2
##   TA050575     n
##      <dbl> <int>
## 1        0   146
## 2     2000     2
## 3     2001     2
## 4     2002    83
## 5     2003   164
## 6     2004   169
## 7     2005   179
## 8       NA  1641
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA050575))

Mean, sd, range

TAS_original_data %>% select(TA050575) %>% drop_na() %>% filter(TA050575 > 0) %>%  summarize(mean_G2 = mean(TA050575), sd_G2 = sd(TA050575), range_G2 = range(TA050575))
## # A tibble: 2 × 3
##   mean_G2 sd_G2 range_G2
##     <dbl> <dbl>    <dbl>
## 1   2004.  1.07     2000
## 2   2004.  1.07     2005

TA050594: G10 Attended college

Count

TAS_original_data %>% count(TA050594)
## # A tibble: 5 × 2
##   TA050594     n
##      <dbl> <int>
## 1        0    97
## 2        1   487
## 3        5   160
## 4        9     1
## 5       NA  1641
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA050594))

Mean, sd, range

TAS_original_data %>% select(TA050594) %>% drop_na() %>% filter(TA050594 > 0) %>% filter(TA050594 < 9) %>%  summarize(mean_G10 = mean(TA050594), sd_G10 = sd(TA050594), range_G10 = range(TA050594))
## # A tibble: 2 × 3
##   mean_G10 sd_G10 range_G10
##      <dbl>  <dbl>     <dbl>
## 1     1.99   1.73         1
## 2     1.99   1.73         5

TA050595: G11 Attending college

Count

TAS_original_data %>% count(TA050595)
## # A tibble: 4 × 2
##   TA050595     n
##      <dbl> <int>
## 1        0   258
## 2        1   397
## 3        5    90
## 4       NA  1641
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA050595))

Mean, sd, range

TAS_original_data %>% select(TA050595) %>% drop_na() %>% filter(TA050595 > 0) %>%  summarize(mean_G11 = mean(TA050595), sd_G11 = sd(TA050595), range_G11 = range(TA050595))
## # A tibble: 2 × 3
##   mean_G11 sd_G11 range_G11
##      <dbl>  <dbl>     <dbl>
## 1     1.74   1.55         1
## 2     1.74   1.55         5

TA050639: G30A Importance on job that pays well

Count

TAS_original_data %>% count(TA050639)
## # A tibble: 9 × 2
##   TA050639     n
##      <dbl> <int>
## 1        0    79
## 2        1     3
## 3        2     1
## 4        3     7
## 5        4    39
## 6        5   132
## 7        6   235
## 8        7   249
## 9       NA  1641
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA050639))

Mean, sd, range

TAS_original_data %>% select(TA050639) %>% drop_na() %>% filter(TA050639 > 0) %>%  summarize(mean_G30A = mean(TA050639), sd_G30A = sd(TA050639), range_G11 = range(TA050639))
## # A tibble: 2 × 3
##   mean_G30A sd_G30A range_G11
##       <dbl>   <dbl>     <dbl>
## 1      6.00    1.02         1
## 2      6.00    1.02         7

TA050663: G41A Importance of job with status and prestige

Count

TAS_original_data %>% count(TA050663)
## # A tibble: 8 × 2
##   TA050663     n
##      <dbl> <int>
## 1        1    26
## 2        2    29
## 3        3    47
## 4        4    78
## 5        5   168
## 6        6   160
## 7        7   237
## 8       NA  1641
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA050663))

Mean, sd, range

TAS_original_data %>% select(TA050663) %>% drop_na() %>%  summarize(mean_G41A = mean(TA050663), sd_G41A = sd(TA050663), range_G41A = range(TA050663))
## # A tibble: 2 × 3
##   mean_G41A sd_G41A range_G41A
##       <dbl>   <dbl>      <dbl>
## 1      5.36    1.62          1
## 2      5.36    1.62          7

TA050664: G41B Importance on job with decision making

Count

TAS_original_data %>% count(TA050664)
## # A tibble: 8 × 2
##   TA050664     n
##      <dbl> <int>
## 1        1     3
## 2        2     8
## 3        3    21
## 4        4    52
## 5        5   181
## 6        6   250
## 7        7   230
## 8       NA  1641
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA050664))

Mean, sd, range

TAS_original_data %>% select(TA050664) %>% drop_na() %>%  summarize(mean_G41B = mean(TA050664), sd_G41B = sd(TA050664), range_G41B = range(TA050664))
## # A tibble: 2 × 3
##   mean_G41B sd_G41B range_G41B
##       <dbl>   <dbl>      <dbl>
## 1      5.78    1.14          1
## 2      5.78    1.14          7

TA050665: G41C Importance of job with challenging problems

Count

TAS_original_data %>% count(TA050665)
## # A tibble: 8 × 2
##   TA050665     n
##      <dbl> <int>
## 1        1     2
## 2        2     9
## 3        3    29
## 4        4    94
## 5        5   212
## 6        6   223
## 7        7   176
## 8       NA  1641
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA050665))

Mean, sd, range

TAS_original_data %>% select(TA050665) %>% drop_na() %>%  summarize(mean_G41C = mean(TA050665), sd_G41C = sd(TA050665), range_G41C = range(TA050665))
## # A tibble: 2 × 3
##   mean_G41C sd_G41C range_G41C
##       <dbl>   <dbl>      <dbl>
## 1      5.52    1.19          1
## 2      5.52    1.19          7

TA050670: G41H Importance of job health care benefits

Count

TAS_original_data %>% count(TA050670)
## # A tibble: 8 × 2
##   TA050670     n
##      <dbl> <int>
## 1        1     3
## 2        2     4
## 3        3     8
## 4        4    28
## 5        5    74
## 6        6   176
## 7        7   452
## 8       NA  1641
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA050670))

Mean, sd, range

TAS_original_data %>% select(TA050670) %>% drop_na() %>%  summarize(mean_G41H = mean(TA050670), sd_G41H = sd(TA050670), range_G41H = range(TA050670))
## # A tibble: 2 × 3
##   mean_G41H sd_G41H range_G41H
##       <dbl>   <dbl>      <dbl>
## 1      6.36    1.01          1
## 2      6.36    1.01          7

TA050675: G41P Importance of job central to identity

Count

TAS_original_data %>% count(TA050675)
## # A tibble: 10 × 2
##    TA050675     n
##       <dbl> <int>
##  1        1    22
##  2        2    29
##  3        3    63
##  4        4   121
##  5        5   187
##  6        6   166
##  7        7   154
##  8        8     2
##  9        9     1
## 10       NA  1641
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA050675))

Mean, sd, range

TAS_original_data %>% select(TA050675) %>% drop_na() %>% filter(TA050675 < 8) %>%  summarize(mean_G41P = mean(TA050675), sd_G41P = sd(TA050675), range_G41P = range(TA050675))
## # A tibble: 2 × 3
##   mean_G41P sd_G41P range_G41P
##       <dbl>   <dbl>      <dbl>
## 1      5.07    1.54          1
## 2      5.07    1.54          7

TA050676: H1 Health level

Count

TAS_original_data %>% count(TA050676)
## # A tibble: 7 × 2
##   TA050676     n
##      <dbl> <int>
## 1        1   188
## 2        2   288
## 3        3   207
## 4        4    53
## 5        5     7
## 6        9     2
## 7       NA  1641
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA050676))

Mean, sd, range

TAS_original_data %>% select(TA050676) %>% drop_na() %>% filter(TA050676 < 8) %>%  summarize(mean_H1 = mean(TA050676), sd_H1 = sd(TA050676), range_H1 = range(TA050676))
## # A tibble: 2 × 3
##   mean_H1 sd_H1 range_H1
##     <dbl> <dbl>    <dbl>
## 1    2.20 0.930        1
## 2    2.20 0.930        5

TA050884: L7 Race mention 1

Count

TAS_original_data %>% count(TA050884)
## # A tibble: 9 × 2
##   TA050884     n
##      <dbl> <int>
## 1        1   378
## 2        2   312
## 3        3     6
## 4        4     8
## 5        5     3
## 6        7     8
## 7        8     2
## 8        9    28
## 9       NA  1641
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA050884))

Mean, sd, range

TAS_original_data %>% select(TA050884) %>% drop_na() %>% filter(TA050884 < 8) %>%  summarize(mean_L7 = mean(TA050884), sd_L7 = sd(TA050884), range_L7 = range(TA050884))
## # A tibble: 2 × 3
##   mean_L7 sd_L7 range_L7
##     <dbl> <dbl>    <dbl>
## 1    1.57 0.846        1
## 2    1.57 0.846        7

TA050885: L7 Race mention 2

Count

TAS_original_data %>% count(TA050885)
## # A tibble: 7 × 2
##   TA050885     n
##      <dbl> <int>
## 1        0   728
## 2        1     1
## 3        2     4
## 4        3     7
## 5        5     2
## 6        7     3
## 7       NA  1641
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA050885))

Mean, sd, range

TAS_original_data %>% select(TA050885) %>% drop_na() %>% filter(TA050885 > 0) %>%  summarize(mean_L7 = mean(TA050885), sd_L7 = sd(TA050885), range_L7 = range(TA050885))
## # A tibble: 2 × 3
##   mean_L7 sd_L7 range_L7
##     <dbl> <dbl>    <dbl>
## 1    3.59  1.91        1
## 2    3.59  1.91        7

TA050886: L7 Race mention 3

Count

TAS_original_data %>% count(TA050886)
## # A tibble: 4 × 2
##   TA050886     n
##      <dbl> <int>
## 1        0   743
## 2        3     1
## 3        5     1
## 4       NA  1641
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA050886))

Mean, sd, range

TAS_original_data %>% select(TA050886) %>% drop_na() %>% filter(TA050886 > 0) %>% summarize(mean_L7 = mean(TA050886), sd_L7 = sd(TA050886), range_L7 = range(TA050886))
## # A tibble: 2 × 3
##   mean_L7 sd_L7 range_L7
##     <dbl> <dbl>    <dbl>
## 1       4  1.41        3
## 2       4  1.41        5

2015

TA150045: B5A Responsibility for own

Count

TAS_original_data %>% count(TA150045)
## # A tibble: 7 × 2
##   TA150045     n
##      <dbl> <int>
## 1        1    52
## 2        2   147
## 3        3   217
## 4        4   422
## 5        5   800
## 6        8     3
## 7       NA   745
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA150045))

Mean, sd, range

TAS_original_data %>% select(TA150045) %>% drop_na() %>% filter(TA150045 < 8) %>%  summarize(mean_B5A = mean(TA150045), sd_B5A = sd(TA150045), range_B5A = range(TA150045))
## # A tibble: 2 × 3
##   mean_B5A sd_B5A range_B5A
##      <dbl>  <dbl>     <dbl>
## 1     4.08   1.12         1
## 2     4.08   1.12         5

TA150048: B5D Responsibility for own money

Count

TAS_original_data %>% count(TA150048)
## # A tibble: 7 × 2
##   TA150048     n
##      <dbl> <int>
## 1        1    28
## 2        2    39
## 3        3    92
## 4        4   243
## 5        5  1237
## 6        9     2
## 7       NA   745
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA150048))

Mean, sd, range

TAS_original_data %>% select(TA150048) %>% drop_na() %>% filter(TA150048 < 8) %>% summarize(mean_B5D = mean(TA150048), sd_B5D = sd(TA150048), range_B5D = range(TA150048))
## # A tibble: 2 × 3
##   mean_B5D sd_B5D range_B5D
##      <dbl>  <dbl>     <dbl>
## 1     4.60  0.837         1
## 2     4.60  0.837         5

TA150051: B6C Scale on managing money

Count

TAS_original_data %>% count(TA150051)
## # A tibble: 8 × 2
##   TA150051     n
##      <dbl> <int>
## 1        1    13
## 2        2    29
## 3        3    76
## 4        4   229
## 5        5   470
## 6        6   428
## 7        7   396
## 8       NA   745
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA150051))

Mean, sd, range

TAS_original_data %>% select(TA150051) %>% drop_na() %>%  summarize(mean_B6C = mean(TA150051), sd_B6C = sd(TA150051), range_B6C = range(TA150051))
## # A tibble: 2 × 3
##   mean_B6C sd_B6C range_B6C
##      <dbl>  <dbl>     <dbl>
## 1     5.43   1.29         1
## 2     5.43   1.29         7

TA150066: C2D Scale on worry about money

Count

TAS_original_data %>% count(TA150066)
## # A tibble: 8 × 2
##   TA150066     n
##      <dbl> <int>
## 1        1   268
## 2        2   285
## 3        3   283
## 4        4   257
## 5        5   245
## 6        6   141
## 7        7   162
## 8       NA   745
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA150066))

Mean, sd, range

TAS_original_data %>% select(TA150066) %>% drop_na() %>%  summarize(mean_C2D = mean(TA150066), sd_C2D = sd(TA150066), range_C2D = range(TA150066))
## # A tibble: 2 × 3
##   mean_C2D sd_C2D range_C2D
##      <dbl>  <dbl>     <dbl>
## 1     3.61   1.89         1
## 2     3.61   1.89         7

TA150067: C2E Scale on worry about future job

Count

TAS_original_data %>% count(TA150067)
## # A tibble: 8 × 2
##   TA150067     n
##      <dbl> <int>
## 1        1   321
## 2        2   308
## 3        3   249
## 4        4   243
## 5        5   215
## 6        6   130
## 7        7   175
## 8       NA   745
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA150067))

Mean, sd, range

TAS_original_data %>% select(TA150067) %>% drop_na() %>%  summarize(mean_C2E = mean(TA150067), sd_C2E = sd(TA150067), range_C2E = range(TA150067))
## # A tibble: 2 × 3
##   mean_C2E sd_C2E range_C2E
##      <dbl>  <dbl>     <dbl>
## 1     3.50   1.95         1
## 2     3.50   1.95         7

TA150068: C2F Scale on discouragement

Count

TAS_original_data %>% count(TA150068)
## # A tibble: 8 × 2
##   TA150068     n
##      <dbl> <int>
## 1        1   378
## 2        2   375
## 3        3   272
## 4        4   239
## 5        5   194
## 6        6    86
## 7        7    97
## 8       NA   745
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA150068))

Mean, sd, range

TAS_original_data %>% select(TA150068) %>% drop_na() %>% filter(TA150068 <= 7) %>% summarize(mean_C2F = mean(TA150068), sd_C2F = sd(TA150068), range_C2F = range(TA150068))
## # A tibble: 2 × 3
##   mean_C2F sd_C2F range_C2F
##      <dbl>  <dbl>     <dbl>
## 1     3.09   1.78         1
## 2     3.09   1.78         7

TA150072: D2D3 Year Divorced

Count

TAS_original_data %>% count(TA150072)
## # A tibble: 7 × 2
##   TA150072     n
##      <dbl> <int>
## 1        0  1620
## 2     2009     2
## 3     2010     2
## 4     2011     1
## 5     2012     4
## 6     2014    12
## 7       NA   745

Mean, sd, range

TAS_original_data %>% select(TA150072) %>% drop_na() %>% filter(TA150072 > 0) %>% summarize(mean_D2D3 = mean(TA150072))
## # A tibble: 1 × 1
##   mean_D2D3
##       <dbl>
## 1     2013.

TA150128: E1 Employment status 1st mention

Count

TAS_original_data %>% count(TA150128)
## # A tibble: 7 × 2
##   TA150128     n
##      <dbl> <int>
## 1        1  1103
## 2        2     6
## 3        3   246
## 4        5     9
## 5        6    60
## 6        7   217
## 7       NA   745
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA150128))

Mean, sd, range

TAS_original_data %>% select(TA150128) %>% drop_na() %>% filter(TA150128 <= 7) %>%  summarize(mean_E1 = mean(TA150128), sd_E1 = sd(TA150128), range_E1 = range(TA150128))
## # A tibble: 2 × 3
##   mean_E1 sd_E1 range_E1
##     <dbl> <dbl>    <dbl>
## 1    2.30  2.16        1
## 2    2.30  2.16        7

TA150129: E1 Employment status 2nd mention

Count

TAS_original_data %>% count(TA150129)
## # A tibble: 7 × 2
##   TA150129     n
##      <dbl> <int>
## 1        0  1248
## 2        1    55
## 3        2     1
## 4        3    34
## 5        6    36
## 6        7   267
## 7       NA   745
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA150129))

Mean, sd, range

TAS_original_data %>% select(TA150129) %>% drop_na() %>% filter(TA150129 > 0) %>%  summarize(mean_E1 = mean(TA150129), sd_E1 = sd(TA150129), range_E1 = range(TA150129))
## # A tibble: 2 × 3
##   mean_E1 sd_E1 range_E1
##     <dbl> <dbl>    <dbl>
## 1    5.71  2.22        1
## 2    5.71  2.22        7

TA150130: E1 Employment status 3rd mention

Count

TAS_original_data %>% count(TA150130)
## # A tibble: 6 × 2
##   TA150130     n
##      <dbl> <int>
## 1        0  1637
## 2        1     1
## 3        3     1
## 4        6     1
## 5        7     1
## 6       NA   745
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA150130))

Mean, sd, range

TAS_original_data %>% select(TA150130) %>% drop_na() %>% filter(TA150130 > 0) %>% summarize(mean_E1 = mean(TA150130), sd_E1 = sd(TA150130), range_E1 = range(TA150130))
## # A tibble: 2 × 3
##   mean_E1 sd_E1 range_E1
##     <dbl> <dbl>    <dbl>
## 1    4.25  2.75        1
## 2    4.25  2.75        7

TA150131: E3 Working

Count

TAS_original_data %>% count(TA150131)
## # A tibble: 5 × 2
##   TA150131     n
##      <dbl> <int>
## 1        0  1165
## 2        1    51
## 3        5   424
## 4        9     1
## 5       NA   745
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA150131))

Mean, sd, range

TAS_original_data %>% select(TA150131) %>% drop_na() %>% filter(TA150131 > 0) %>%  filter(TA150131 < 9) %>%  summarize(mean_E3 = mean(TA150131), sd_E3 = sd(TA150131), range_E3 = range(TA150131))
## # A tibble: 2 × 3
##   mean_E3 sd_E3 range_E3
##     <dbl> <dbl>    <dbl>
## 1    4.57  1.24        1
## 2    4.57  1.24        5

TA150701: G1 Graduated high school

Count

TAS_original_data %>% count(TA150701)
## # A tibble: 6 × 2
##   TA150701     n
##      <dbl> <int>
## 1        0   710
## 2        1   799
## 3        2    52
## 4        3    79
## 5        9     1
## 6       NA   745
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA150701))

Mean, sd, range

TAS_original_data %>% select(TA150701) %>% drop_na() %>% filter(TA150701 > 0) %>% filter(TA150701 < 3) %>%  summarize(mean_G1 = mean(TA150701), sd_G1 = sd(TA150701), range_G1 = range(TA150701))
## # A tibble: 2 × 3
##   mean_G1 sd_G1 range_G1
##     <dbl> <dbl>    <dbl>
## 1    1.06 0.240        1
## 2    1.06 0.240        2

TA150703: G2 Year Graduated high school

Count

TAS_original_data %>% count(TA150703)
## # A tibble: 14 × 2
##    TA150703     n
##       <dbl> <int>
##  1        0   940
##  2     2001     1
##  3     2004     1
##  4     2006    15
##  5     2007    31
##  6     2008    37
##  7     2009    55
##  8     2010    93
##  9     2011   146
## 10     2012    32
## 11     2013    36
## 12     2014   163
## 13     2015    91
## 14       NA   745

Mean, sd, range

TAS_original_data %>% select(TA150703) %>% drop_na() %>% filter(TA150703 > 0) %>%  summarize(mean_G2 = mean(TA150703), sd_G2 = sd(TA150703), range_G2 = range(TA150703))
## # A tibble: 2 × 3
##   mean_G2 sd_G2 range_G2
##     <dbl> <dbl>    <dbl>
## 1   2012.  2.54     2001
## 2   2012.  2.54     2015

TA150730: G10 Attended college

Count

TAS_original_data %>% count(TA150730)
## # A tibble: 4 × 2
##   TA150730     n
##      <dbl> <int>
## 1        0   762
## 2        1   531
## 3        5   348
## 4       NA   745
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA150730))

Mean, sd, range

TAS_original_data %>% select(TA150730) %>% drop_na() %>% filter(TA150730 > 0) %>% filter(TA150730 < 9) %>%  summarize(mean_G10 = mean(TA150730), sd_G10 = sd(TA150730), range_G10 = range(TA150730))
## # A tibble: 2 × 3
##   mean_G10 sd_G10 range_G10
##      <dbl>  <dbl>     <dbl>
## 1     2.58   1.96         1
## 2     2.58   1.96         5

TA150731: G11 Attending college

Count

TAS_original_data %>% count(TA150731)
## # A tibble: 4 × 2
##   TA150731     n
##      <dbl> <int>
## 1        0   455
## 2        1   482
## 3        5   704
## 4       NA   745
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA150731))

Mean, sd, range

TAS_original_data %>% select(TA150731) %>% drop_na() %>% filter(TA150731 > 0) %>%  summarize(mean_G11 = mean(TA150731), sd_G11 = sd(TA150731), range_G11 = range(TA150731))
## # A tibble: 2 × 3
##   mean_G11 sd_G11 range_G11
##      <dbl>  <dbl>     <dbl>
## 1     3.37   1.97         1
## 2     3.37   1.97         5

TA150784: G30A Importance on job that pays well

Count

TAS_original_data %>% count(TA150784)
## # A tibble: 9 × 2
##   TA150784     n
##      <dbl> <int>
## 1        1     8
## 2        2     7
## 3        3    19
## 4        4    99
## 5        5   332
## 6        6   453
## 7        7   721
## 8        9     2
## 9       NA   745
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA150784))

Mean, sd, range

TAS_original_data %>% select(TA150784) %>% drop_na() %>% filter(TA150784 > 0) %>% filter(TA150784 < 9) %>%   summarize(mean_G30A = mean(TA150784), sd_G30A = sd(TA150784), range_G11 = range(TA150784))
## # A tibble: 2 × 3
##   mean_G30A sd_G30A range_G11
##       <dbl>   <dbl>     <dbl>
## 1      6.04    1.09         1
## 2      6.04    1.09         7

TA150808: G41A Importance of job with status and prestige

Count

TAS_original_data %>% count(TA150808)
## # A tibble: 9 × 2
##   TA150808     n
##      <dbl> <int>
## 1        1   140
## 2        2   108
## 3        3   122
## 4        4   231
## 5        5   372
## 6        6   286
## 7        7   380
## 8        9     2
## 9       NA   745
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA150808))

Mean, sd, range

TAS_original_data %>% select(TA150808) %>% drop_na() %>% filter(TA150808 < 8) %>% summarize(mean_G41A = mean(TA150808), sd_G41A = sd(TA150808), range_G41A = range(TA150808))
## # A tibble: 2 × 3
##   mean_G41A sd_G41A range_G41A
##       <dbl>   <dbl>      <dbl>
## 1      4.81    1.86          1
## 2      4.81    1.86          7

TA150809: G41B Importance on job with decision making

Count

TAS_original_data %>% count(TA150809)
## # A tibble: 9 × 2
##   TA150809     n
##      <dbl> <int>
## 1        1    38
## 2        2    21
## 3        3    55
## 4        4   146
## 5        5   429
## 6        6   451
## 7        7   499
## 8        9     2
## 9       NA   745
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA150809))

Mean, sd, range

TAS_original_data %>% select(TA150809) %>% drop_na() %>% filter(TA150809 < 8) %>% summarize(mean_G41B = mean(TA150809), sd_G41B = sd(TA150809), range_G41B = range(TA150809))
## # A tibble: 2 × 3
##   mean_G41B sd_G41B range_G41B
##       <dbl>   <dbl>      <dbl>
## 1      5.60    1.36          1
## 2      5.60    1.36          7

TA150810: G41C Importance of job with challenging problems

Count

TAS_original_data %>% count(TA150810)
## # A tibble: 10 × 2
##    TA150810     n
##       <dbl> <int>
##  1        0   500
##  2        1    16
##  3        2    12
##  4        3    51
##  5        4   132
##  6        5   319
##  7        6   326
##  8        7   283
##  9        9     2
## 10       NA   745
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA150810))

Mean, sd, range

TAS_original_data %>% select(TA150810) %>% drop_na() %>% filter(TA150810 > 0) %>% filter(TA150810 < 8) %>% summarize(mean_G41C = mean(TA150810), sd_G41C = sd(TA150810), range_G41C = range(TA150810))
## # A tibble: 2 × 3
##   mean_G41C sd_G41C range_G41C
##       <dbl>   <dbl>      <dbl>
## 1      5.49    1.29          1
## 2      5.49    1.29          7

TA150815: G41H Importance of job health care benefits

Count

TAS_original_data %>% count(TA150815)
## # A tibble: 9 × 2
##   TA150815     n
##      <dbl> <int>
## 1        1    22
## 2        2    22
## 3        3    25
## 4        4    67
## 5        5   213
## 6        6   377
## 7        7   913
## 8        9     2
## 9       NA   745
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA150815))

Mean, sd, range

TAS_original_data %>% select(TA150815) %>% drop_na() %>% filter(TA150815 < 8) %>% summarize(mean_G41H = mean(TA150815), sd_G41H = sd(TA150815), range_G41H = range(TA150815))
## # A tibble: 2 × 3
##   mean_G41H sd_G41H range_G41H
##       <dbl>   <dbl>      <dbl>
## 1      6.18    1.23          1
## 2      6.18    1.23          7

TA150820: G41P Importance of job central to identity

Count

TAS_original_data %>% count(TA150820)
## # A tibble: 10 × 2
##    TA150820     n
##       <dbl> <int>
##  1        1    79
##  2        2    83
##  3        3   126
##  4        4   303
##  5        5   387
##  6        6   300
##  7        7   358
##  8        8     2
##  9        9     3
## 10       NA   745
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA150820))

Mean, sd, range

TAS_original_data %>% select(TA150820) %>% drop_na() %>% filter(TA150820 < 8) %>%  summarize(mean_G41P = mean(TA150820), sd_G41P = sd(TA150820), range_G41P = range(TA150820))
## # A tibble: 2 × 3
##   mean_G41P sd_G41P range_G41P
##       <dbl>   <dbl>      <dbl>
## 1      4.94    1.67          1
## 2      4.94    1.67          7

TA150821: H1 Health level

Count

TAS_original_data %>% count(TA150821)
## # A tibble: 7 × 2
##   TA150821     n
##      <dbl> <int>
## 1        1   333
## 2        2   694
## 3        3   423
## 4        4   170
## 5        5    19
## 6        9     2
## 7       NA   745
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA150821))

Mean, sd, range

TAS_original_data %>% select(TA150821) %>% drop_na() %>% filter(TA150821 < 8) %>%  summarize(mean_H1 = mean(TA150821), sd_H1 = sd(TA150821), range_H1 = range(TA150821))
## # A tibble: 2 × 3
##   mean_H1 sd_H1 range_H1
##     <dbl> <dbl>    <dbl>
## 1    2.30 0.945        1
## 2    2.30 0.945        5

TA151132: L7 Race mention 1

Count

TAS_original_data %>% count(TA151132)
## # A tibble: 9 × 2
##   TA151132     n
##      <dbl> <int>
## 1        1   818
## 2        2   694
## 3        3    15
## 4        4    32
## 5        5     3
## 6        7    70
## 7        8     1
## 8        9     8
## 9       NA   745
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA151132))

Mean, sd, range

TAS_original_data %>% select(TA151132) %>% drop_na() %>% filter(TA151132 < 8) %>%  summarize(mean_L7 = mean(TA151132), sd_L7 = sd(TA151132), range_L7 = range(TA151132))
## # A tibble: 2 × 3
##   mean_L7 sd_L7 range_L7
##     <dbl> <dbl>    <dbl>
## 1    1.77  1.27        1
## 2    1.77  1.27        7

TA151133: L7 Race mention 2

Count

TAS_original_data %>% count(TA151133)
## # A tibble: 9 × 2
##   TA151133     n
##      <dbl> <int>
## 1        0  1523
## 2        1    15
## 3        2    17
## 4        3    56
## 5        4     7
## 6        5     8
## 7        7    14
## 8        9     1
## 9       NA   745
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA151133))

Mean, sd, range

TAS_original_data %>% select(TA151133) %>% drop_na() %>% filter(TA151133 > 0) %>% filter(TA151133 < 8) %>% summarize(mean_L7 = mean(TA151133), sd_L7 = sd(TA151133), range_L7 = range(TA151133))
## # A tibble: 2 × 3
##   mean_L7 sd_L7 range_L7
##     <dbl> <dbl>    <dbl>
## 1    3.27  1.69        1
## 2    3.27  1.69        7

TA151134: L7 Race mention 3

Count

TAS_original_data %>% count(TA151134)
## # A tibble: 6 × 2
##   TA151134     n
##      <dbl> <int>
## 1        0  1625
## 2        1     9
## 3        3     4
## 4        5     1
## 5        7     2
## 6       NA   745
ggplot(data=TAS_original_data) + geom_bar(mapping = aes(x=TA151134))

Mean, sd, range

TAS_original_data %>% select(TA151134) %>% drop_na() %>% filter(TA151134 > 0) %>% summarize(mean_L7 = mean(TA151134), sd_L7 = sd(TA151134), range_L7 = range(TA151134))
## # A tibble: 2 × 3
##   mean_L7 sd_L7 range_L7
##     <dbl> <dbl>    <dbl>
## 1     2.5  2.13        1
## 2     2.5  2.13        7