Qualifications Final

Note: “focalman” and “focalwoman” indicate the which columns the focal man and focal woman are in.

Demographics

Raw

table(vig_raw1$part_gend)/nrow(vig_raw1); paste0("Mean: ", mean(vig_raw1$Age, na.rm = TRUE)); paste0("SD: ", sd(vig_raw1$Age, na.rm = TRUE))
## 
## Female   Male 
##   0.60   0.38
## [1] "Mean: 36.0883233532934"
## [1] "SD: 10.959909834093"

Clean

Passed Manipulation Check

with(vig_raw1, table(cond_f, manip_check_label))
##                 manip_check_label
## cond_f             0   1
##   dei_nobacklash  26 200
##   control          7 213
##   dei_backlash    29 192
(mccheck <- as.data.frame(with(vig_raw1, table(cond_f, manip_check_label))) %>%
  pivot_wider(names_from = "manip_check_label", values_from = "Freq")%>%
  rename("Fail" = 2, "Pass" = 3))
paste0("Passed: ", sum(mccheck$Pass))
## [1] "Passed: 605"
with(vig_raw1, table(Nonsense))
## Nonsense
##   0   1 
##   7 661
table(vig_clean1_wide$part_gend)/nrow(vig_clean1_wide); paste0("Mean: ", mean(vig_clean1_wide$Age, na.rm = TRUE)); paste0("SD: ", sd(vig_clean1_wide$Age, na.rm = TRUE))
## 
## Female   Male 
##   0.60   0.39
## [1] "Mean: 36.2624584717608"
## [1] "SD: 10.9813433952543"

Items

Ranking

vig_measures %>% ungroup() %>% dplyr::summarize(mean = mean(rank_r, na.rm = TRUE), sd = sd(rank_r, na.rm = TRUE))

VQ

with(vig_measures, cor.test(vq_1, vq_2))
## 
##  Pearson's product-moment correlation
## 
## data:  vq_1 and vq_2
## t = 73, df = 2406, p-value <0.0000000000000002
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.82 0.84
## sample estimates:
##  cor 
## 0.83

VS

with(vig_measures, cor.test(vs_1, vs_2))
## 
##  Pearson's product-moment correlation
## 
## data:  vs_1 and vs_2
## t = 59, df = 2405, p-value <0.0000000000000002
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.75 0.78
## sample estimates:
##  cor 
## 0.77

Interest

vig_measures %>% ungroup() %>% dplyr::summarize(mean = mean(interest), sd = sd(interest))

Analyses

Ranking

Regression

summary(rank_mod)
## Call:
## clm2(location = rank_rf ~ cond_reg * gendertarget_f + (1 | person_num) + 
##     (1 | pid), data = v1clean)
## 
## Location coefficients:
##                                               Estimate Std. Error z value Pr(>|z|)            
## cond_reg2.Backlash                             -0.623    0.128     -4.853 0.000001216511      
## cond_reg3.NoBacklash                           -0.769    0.128     -6.008 0.000000001878      
## gendertarget_fWoman trgt                        0.250    0.125      2.003 0.045               
## cond_reg2.Backlash:gendertarget_fWoman trgt     1.225    0.182      6.740 0.000000000016      
## cond_reg3.NoBacklash:gendertarget_fWoman trgt   1.500    0.181      8.287 < 0.0000000000000002
## 
## No scale coefficients
## 
## Threshold coefficients:
##     Estimate Std. Error z value
## 1|2  -1.095    0.094    -11.689
## 2|3   0.128    0.090      1.415
## 3|4   1.341    0.095     14.101
## 
## log-likelihood: -3175.94 
## AIC: 6367.88 
## Condition number of Hessian: 117.06 
## (8 observations deleted due to missingness)

Full posthoc tests

rankconfint <- data.frame(confint(emmeans(lmer(rank_r~cond_reg*gendertarget_f + (1|person_num) + (1|pid), data = v1clean), pairwise~cond_reg*gendertarget_f)$contrasts)) %>%
  dplyr::select(contrast, lower.CL, upper.CL)
## boundary (singular) fit: see help('isSingular')
rankemmeans <- emmeans(lmer(rank_r~cond_reg*gendertarget_f + (1|person_num) + (1|pid), data = v1clean), pairwise~cond_reg*gendertarget_f)$contrasts %>% as.data.frame()
## boundary (singular) fit: see help('isSingular')
ranktukey <- left_join(
  rankemmeans, rankconfint, by = "contrast"
)
 
ranktukey %>%
  separate(contrast, into = c("Condition1", "Condition2"), sep = " - ", extra = "merge")%>%
  separate(Condition1, into = c("DEICondition", "GenderTarget"), sep = " ", extra = "merge")%>%
  separate(Condition2, into = c("DEICondition2", "GenderTarget2"), sep = " ", extra = "merge") %>%
  dplyr::select(-c(t.ratio))

Estimated marginal means

Graph

Voice Solicitation

Regression

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: vs ~ cond_reg * gendertarget_f + (1 | person) + (1 | pid)
##    Data: v1clean
## 
## REML criterion at convergence: 8717
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.293 -0.505  0.046  0.576  3.065 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.17912  1.0859  
##  person   (Intercept) 0.00315  0.0562  
##  Residual             1.52931  1.2367  
## Number of obs: 2408, groups:  pid, 602; person, 4
## 
## Fixed effects:
##                                               Estimate Std. Error       df t value             Pr(>|t|)    
## (Intercept)                                      4.495      0.103   27.645   43.45 < 0.0000000000000002 ***
## cond_reg2.Backlash                              -0.290      0.139  910.097   -2.09              0.03715 *  
## cond_reg3.NoBacklash                            -0.292      0.138  910.097   -2.12              0.03422 *  
## gendertarget_fWoman trgt                         0.362      0.102    6.582    3.56              0.01027 *  
## cond_reg2.Backlash:gendertarget_fWoman trgt      0.412      0.123 1801.001    3.35              0.00083 ***
## cond_reg3.NoBacklash:gendertarget_fWoman trgt    0.617      0.122 1801.001    5.05           0.00000049 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cn_2.B c_3.NB gnd_Wt c_2.Bt
## cnd_rg2.Bck -0.636                            
## cnd_rg3.NBc -0.640  0.477                     
## gndrtrgt_Wt -0.491  0.255  0.256              
## cnd_2.B:_Wt  0.282 -0.444 -0.212 -0.574       
## cn_3.NB:_Wt  0.284 -0.212 -0.444 -0.578  0.477

Full posthoc tests

vsconfint <- data.frame(confint(emmeans(vs_mod, pairwise~cond_reg*gendertarget_f)$contrasts)) %>%   dplyr::select(contrast, lower.CL, upper.CL)
vsemmeans <- emmeans(vs_mod, pairwise~cond_reg*gendertarget_f)$contrasts %>% as.data.frame()
vstukey <- left_join(
  vsemmeans, vsconfint, by = "contrast"
)
 
vstukey %>%
  separate(contrast, into = c("Condition1", "Condition2"), sep = " - ", extra = "merge")%>%
  separate(Condition1, into = c("DEICondition", "GenderTarget"), sep = " ", extra = "merge")%>%
  separate(Condition2, into = c("DEICondition2", "GenderTarget2"), sep = " ", extra = "merge") %>%
  dplyr::select(-c(t.ratio))

Estimated marginal means

Graph

Voice Quality

Regressoin

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: vq ~ cond_reg * gendertarget_f + (1 | person) + (1 | pid)
##    Data: v1clean
## 
## REML criterion at convergence: 8281
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.618 -0.526  0.056  0.557  3.105 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.82124  0.9062  
##  person   (Intercept) 0.00251  0.0501  
##  Residual             1.32805  1.1524  
## Number of obs: 2408, groups:  pid, 602; person, 4
## 
## Fixed effects:
##                                                Estimate Std. Error        df t value             Pr(>|t|)    
## (Intercept)                                      4.5094     0.0907   23.9386   49.71 < 0.0000000000000002 ***
## cond_reg2.Backlash                              -0.1917     0.1213  966.8850   -1.58               0.1143    
## cond_reg3.NoBacklash                            -0.3190     0.1205  966.8850   -2.65               0.0082 ** 
## gendertarget_fWoman trgt                         0.3474     0.0935    6.8733    3.72               0.0078 ** 
## cond_reg2.Backlash:gendertarget_fWoman trgt      0.3440     0.1147 1801.0004    3.00               0.0027 ** 
## cond_reg3.NoBacklash:gendertarget_fWoman trgt    0.6437     0.1139 1801.0004    5.65          0.000000019 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cn_2.B c_3.NB gnd_Wt c_2.Bt
## cnd_rg2.Bck -0.634                            
## cnd_rg3.NBc -0.638  0.477                     
## gndrtrgt_Wt -0.515  0.275  0.277              
## cnd_2.B:_Wt  0.300 -0.473 -0.226 -0.581       
## cn_3.NB:_Wt  0.302 -0.226 -0.473 -0.585  0.477

Full posthoc tests

vqconfint <- data.frame(confint(emmeans(vq_mod, pairwise~cond_reg*gendertarget_f)$contrasts)) %>%   dplyr::select(contrast, lower.CL, upper.CL)
vqemmeans <- emmeans(vq_mod, pairwise~cond_reg*gendertarget_f)$contrasts %>% as.data.frame()
vqtukey <- left_join(
  vqemmeans, vqconfint, by = "contrast"
)
 
vqtukey %>%
  separate(contrast, into = c("Condition1", "Condition2"), sep = " - ", extra = "merge")%>%
  separate(Condition1, into = c("DEICondition", "GenderTarget"), sep = " ", extra = "merge")%>%
  separate(Condition2, into = c("DEICondition2", "GenderTarget2"), sep = " ", extra = "merge") %>%
  dplyr::select(-c(t.ratio))

Estimated marginal means

Graph

Interest

Regression

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: interest ~ cond_reg * gendertarget_f + (1 | person) + (1 | pid)
##    Data: v1clean
## 
## REML criterion at convergence: 8251
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.764 -0.507 -0.007  0.548  3.389 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.857    0.926   
##  person   (Intercept) 0.000    0.000   
##  Residual             1.297    1.139   
## Number of obs: 2408, groups:  pid, 602; person, 4
## 
## Fixed effects:
##                                                Estimate Std. Error        df t value             Pr(>|t|)    
## (Intercept)                                      4.5775     0.0841  949.0684   54.44 < 0.0000000000000002 ***
## cond_reg2.Backlash                              -0.5775     0.1221  949.0684   -4.73    0.000002597730273 ***
## cond_reg3.NoBacklash                            -0.4074     0.1213  949.0684   -3.36              0.00081 ***
## gendertarget_fWoman trgt                         0.2347     0.0780 1803.0000    3.01              0.00266 ** 
## cond_reg2.Backlash:gendertarget_fWoman trgt      0.6324     0.1133 1803.0000    5.58    0.000000027544499 ***
## cond_reg3.NoBacklash:gendertarget_fWoman trgt    0.8566     0.1126 1803.0000    7.61    0.000000000000044 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cn_2.B c_3.NB gnd_Wt c_2.Bt
## cnd_rg2.Bck -0.689                            
## cnd_rg3.NBc -0.693  0.477                     
## gndrtrgt_Wt -0.464  0.319  0.322              
## cnd_2.B:_Wt  0.319 -0.464 -0.221 -0.689       
## cn_3.NB:_Wt  0.322 -0.221 -0.464 -0.693  0.477
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')

Full posthoc tests

interestconfint <- data.frame(confint(emmeans(interest_mod, pairwise~cond_reg*gendertarget_f)$contrasts)) %>%   dplyr::select(contrast, lower.CL, upper.CL)
interestemmeans <- emmeans(interest_mod, pairwise~cond_reg*gendertarget_f)$contrasts %>% as.data.frame()
interesttukey <- left_join(
  interestemmeans, interestconfint, by = "contrast"
)
 
interesttukey %>%
  separate(contrast, into = c("Condition1", "Condition2"), sep = " - ", extra = "merge")%>%
  separate(Condition1, into = c("DEICondition", "GenderTarget"), sep = " ", extra = "merge")%>%
  separate(Condition2, into = c("DEICondition2", "GenderTarget2"), sep = " ", extra = "merge") %>%
  dplyr::select(-c(t.ratio))

Estimated marginal means

Graph

In Paper - Mediation

v1cleanmed <- v1clean %>%
  mutate(
    gendertarget_num = case_when(
      gendertarget == "Man trgt" ~ 0,
      gendertarget == "Woman trgt" ~ 1),
    deivscontrol = case_when(
      cond_num == -1 ~ .5,
      cond_num == 0 ~ .5,
      cond_num == 1 ~ -1),
    deivscontroltext = case_when(
      deivscontrol == -1 ~ "control",
      deivscontrol == .5 ~ "DEI"),
   deivscontrol_f = factor(deivscontrol)) %>%
  drop_na(rank)


detach_package <- function(pkg, character.only = FALSE)
{
  if(!character.only)
  {
    pkg <- deparse(substitute(pkg))
  }
  search_item <- paste("package", pkg, sep = ":")
  while(search_item %in% search())
  {
    detach(search_item, unload = TRUE, character.only = TRUE)
  }
}

detach_package("afex", TRUE)
detach_package("lmerTest", TRUE)
## Warning: 'lmerTest' namespace cannot be unloaded:
##   namespace 'lmerTest' is imported by 'multilevelTools' so cannot be unloaded

Moderated mediation - Normally coded

cond_num cond
1 DEI-Backlash
0 DEI-No Backlash
-1 Control

DV: VS

Mediator: Interest

library(mediation) analyses

summary(modelm <- lmer(interest~gendertarget*cond +  (1 | pid), v1cleanmed))
## Linear mixed model fit by REML ['lmerMod']
## Formula: interest ~ gendertarget * cond + (1 | pid)
##    Data: v1cleanmed
## 
## REML criterion at convergence: 8225
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.767 -0.508 -0.009  0.549  3.395 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.861    0.928   
##  Residual             1.296    1.139   
## Number of obs: 2400, groups:  pid, 600
## 
## Fixed effects:
##                                           Estimate Std. Error t value
## (Intercept)                                 4.5775     0.0842   54.38
## gendertargetWoman trgt                      0.2347     0.0780    3.01
## conddei_backlash                           -0.5827     0.1224   -4.76
## conddei_nobacklash                         -0.4116     0.1216   -3.39
## gendertargetWoman trgt:conddei_backlash     0.6422     0.1135    5.66
## gendertargetWoman trgt:conddei_nobacklash   0.8622     0.1127    7.65
## 
## Correlation of Fixed Effects:
##                        (Intr) gndrWt cndd_b cndd_n gndrtrgtWmntrgt:cndd_b
## gndrtrgtWmt            -0.463                                            
## cndd_bcklsh            -0.688  0.319                                     
## cndd_nbckls            -0.692  0.321  0.476                              
## gndrtrgtWmntrgt:cndd_b  0.319 -0.688 -0.463 -0.221                       
## gndrtrgtWmntrgt:cndd_n  0.321 -0.692 -0.221 -0.463  0.476
summary(modely <- lmer(vs~ gendertarget*cond+interest + (1 | pid), v1cleanmed))
## Linear mixed model fit by REML ['lmerMod']
## Formula: vs ~ gendertarget * cond + interest + (1 | pid)
##    Data: v1cleanmed
## 
## REML criterion at convergence: 7864
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -4.066 -0.495  0.043  0.550  3.813 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.808    0.899   
##  Residual             1.090    1.044   
## Number of obs: 2400, groups:  pid, 600
## 
## Fixed effects:
##                                           Estimate Std. Error t value
## (Intercept)                                 1.7712     0.1177   15.05
## gendertargetWoman trgt                      0.2218     0.0717    3.09
## conddei_backlash                            0.0583     0.1164    0.50
## conddei_nobacklash                         -0.0411     0.1154   -0.36
## interest                                    0.5951     0.0189   31.44
## gendertargetWoman trgt:conddei_backlash     0.0272     0.1048    0.26
## gendertargetWoman trgt:conddei_nobacklash   0.1139     0.1046    1.09
## 
## Correlation of Fixed Effects:
##                        (Intr) gndrWt cndd_b cndd_n intrst gndrtrgtWmntrgt:cndd_b
## gndrtrgtWmt            -0.258                                                   
## cndd_bcklsh            -0.533  0.301                                            
## cndd_nbckls            -0.517  0.305  0.479                                     
## interest               -0.736 -0.062  0.095  0.068                              
## gndrtrgtWmntrgt:cndd_b  0.293 -0.674 -0.455 -0.220 -0.116                       
## gndrtrgtWmntrgt:cndd_n  0.323 -0.673 -0.225 -0.453 -0.156  0.485
Results
summary(mediate(model.m = modelm, model.y = modely, treat = "gendertarget", mediator = "interest", covariates = list(cond = "dei_backlash"), sims = 5000))
## Warning in mediate(model.m = modelm, model.y = modely, treat = "gendertarget", : treatment and control values do not match factor levels; using Man trgt and Woman trgt as control and treatment, respectively
## 
## Causal Mediation Analysis 
## 
## Quasi-Bayesian Confidence Intervals
## 
## (Inference Conditional on the Covariate Values Specified in `covariates')
## 
## Mediator Groups: pid 
## 
## Outcome Groups: pid 
## 
## Output Based on Overall Averages Across Groups 
## 
##                Estimate 95% CI Lower 95% CI Upper             p-value    
## ACME              0.522        0.424         0.63 <0.0000000000000002 ***
## ADE               0.247        0.098         0.40              0.0008 ***
## Total Effect      0.770        0.593         0.95 <0.0000000000000002 ***
## Prop. Mediated    0.679        0.554         0.84 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Sample Size Used: 2400 
## 
## 
## Simulations: 5000
summary(mediate(model.m = modelm, model.y = modely, treat = "gendertarget", mediator = "interest", covariates = list(cond = "dei_nobacklash"), sims = 5000))
## Warning in mediate(model.m = modelm, model.y = modely, treat = "gendertarget", : treatment and control values do not match factor levels; using Man trgt and Woman trgt as control and treatment, respectively
## 
## Causal Mediation Analysis 
## 
## Quasi-Bayesian Confidence Intervals
## 
## (Inference Conditional on the Covariate Values Specified in `covariates')
## 
## Mediator Groups: pid 
## 
## Outcome Groups: pid 
## 
## Output Based on Overall Averages Across Groups 
## 
##                Estimate 95% CI Lower 95% CI Upper             p-value    
## ACME              0.654        0.551         0.76 <0.0000000000000002 ***
## ADE               0.336        0.182         0.49 <0.0000000000000002 ***
## Total Effect      0.989        0.814         1.17 <0.0000000000000002 ***
## Prop. Mediated    0.661        0.560         0.78 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Sample Size Used: 2400 
## 
## 
## Simulations: 5000
summary(mediate(model.m = modelm, model.y = modely, treat = "gendertarget", mediator = "interest", covariates = list(cond = "control"), sims = 5000))
## Warning in mediate(model.m = modelm, model.y = modely, treat = "gendertarget", : treatment and control values do not match factor levels; using Man trgt and Woman trgt as control and treatment, respectively
## 
## Causal Mediation Analysis 
## 
## Quasi-Bayesian Confidence Intervals
## 
## (Inference Conditional on the Covariate Values Specified in `covariates')
## 
## Mediator Groups: pid 
## 
## Outcome Groups: pid 
## 
## Output Based on Overall Averages Across Groups 
## 
##                Estimate 95% CI Lower 95% CI Upper             p-value    
## ACME             0.1389       0.0458         0.23              0.0032 ** 
## ADE              0.2209       0.0839         0.36              0.0004 ***
## Total Effect     0.3597       0.1962         0.53 <0.0000000000000002 ***
## Prop. Mediated   0.3844       0.1634         0.65              0.0032 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Sample Size Used: 2400 
## 
## 
## Simulations: 5000

library(bruceR) analyses

bruceR::PROCESS(
  data = v1cleanmed,
  x = "gendertarget",
  meds = c("interest"),
  mods = c("cond"),
  y = "vs",
  mod.path = "x-m",
  cluster = "pid",
  nsim = 5000
)
## 
## NOTE: 
## ci has been reset to "mcmc" because bootstrap method is not applicable to multilevel models.
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 7 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Moderated Mediation
## -    Outcome (Y) : vs
## -  Predictor (X) : gendertarget (recoded: Man trgt=0, Woman trgt=1)
## -  Mediators (M) : interest
## - Moderators (W) : cond
## - Covariates (C) : -
## -   HLM Clusters : pid
## 
## All numeric predictors have been grand-mean centered.
## (For details, please see the help page of PROCESS.)
## 
## Formula of Mediator:
## -    interest ~ gendertarget*cond + (1 | pid)
## Formula of Outcome:
## -    vs ~ gendertarget + cond + interest + (1 | pid)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────
##                                  (1) vs        (2) interest  (3) vs      
## ─────────────────────────────────────────────────────────────────────────
## (Intercept)                         4.658 ***     4.695 ***     4.630 ***
##                                    (0.051)       (0.075)       (0.071)   
## gendertarget                        0.697 ***     0.235 **      0.266 ***
##                                    (0.051)       (0.078)       (0.045)   
## conddei_backlash                                 -0.262 *       0.073    
##                                                  (0.108)       (0.104)   
## conddei_nobacklash                                0.019         0.016    
##                                                  (0.108)       (0.103)   
## gendertarget:conddei_backlash                     0.642 ***              
##                                                  (0.113)                 
## gendertarget:conddei_nobacklash                   0.862 ***              
##                                                  (0.113)                 
## interest                                                        0.598 ***
##                                                                (0.019)   
## ─────────────────────────────────────────────────────────────────────────
## Marginal R^2                        0.043         0.077         0.323    
## Conditional R^2                     0.454         0.446         0.611    
## AIC                              8711.579      8241.141      7873.628    
## BIC                              8734.712      8287.407      7914.111    
## Num. obs.                        2400          2400          2400        
## Num. groups: pid                  600           600           600        
## Var: pid (Intercept)                1.168         0.861         0.808    
## Var: Residual                       1.551         1.296         1.090    
## ─────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0), ‘interactions’ (v1.1.5)
## Effect Type : Moderated Mediation (Model 7)
## Sample Size : 2400
## Random Seed : set.seed()
## Simulations : 5000 (Bootstrap)
## 
## Direct Effect: "gendertarget" (X) ==> "vs" (Y)
## Computing profile confidence intervals ...
## ──────────────────────────────────────────────────────────
##              Effect    S.E.     t     p           [95% CI]
## ──────────────────────────────────────────────────────────
## Direct (c')   0.266 (0.045) 5.941 <.001 *** [0.178, 0.353]
## ──────────────────────────────────────────────────────────
## 
## Interaction Effect on "interest" (M)
## ─────────────────────────────────────────────
##                          F df1  df2     p    
## ─────────────────────────────────────────────
## gendertarget * cond  31.90   2 1797 <.001 ***
## ─────────────────────────────────────────────
## 
## Simple Slopes: "gendertarget" (X) ==> "interest" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────
##  "cond"         Effect    S.E.      t     p           [95% CI]
## ──────────────────────────────────────────────────────────────
##  control         0.235 (0.078)  3.009  .003 **  [0.082, 0.388]
##  dei_backlash    0.877 (0.082) 10.645 <.001 *** [0.716, 1.038]
##  dei_nobacklash  1.097 (0.081) 13.489 <.001 *** [0.938, 1.256]
## ──────────────────────────────────────────────────────────────
## 
## Running 5000 * 3 simulations...
## Indirect Path: "gendertarget" (X) ==> "interest" (M) ==> "vs" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ──────────────────────────────────────────────────────────────
##  "cond"         Effect    S.E.      z     p      [MCMC 95% CI]
## ──────────────────────────────────────────────────────────────
##  control         0.140 (0.046)  3.023  .003 **  [0.050, 0.230]
##  dei_backlash    0.524 (0.052) 10.049 <.001 *** [0.422, 0.626]
##  dei_nobacklash  0.656 (0.052) 12.505 <.001 *** [0.555, 0.764]
## ──────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 5000 Monte Carlo samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)

Calculate CI of indirect effect

bootstrappedp5 <- parameters::bootstrap_model(modely, iterations = 10)["gendertargetWoman trgt:conddei_backlash"]
bootstrappedp5 <- parameters::bootstrap_model(modelm, iterations = 10)

Mediator: VQ

summary(modelm <- lmer(vq~gendertarget*cond +  (1 | pid), v1cleanmed))
## Linear mixed model fit by REML ['lmerMod']
## Formula: vq ~ gendertarget * cond + (1 | pid)
##    Data: v1cleanmed
## 
## REML criterion at convergence: 8258
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.590 -0.518  0.049  0.558  3.126 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.822    0.906   
##  Residual             1.332    1.154   
## Number of obs: 2400, groups:  pid, 600
## 
## Fixed effects:
##                                           Estimate Std. Error t value
## (Intercept)                                 4.5094     0.0836   53.96
## gendertargetWoman trgt                      0.3474     0.0791    4.39
## conddei_backlash                           -0.1979     0.1215   -1.63
## conddei_nobacklash                         -0.3181     0.1207   -2.63
## gendertargetWoman trgt:conddei_backlash     0.3463     0.1150    3.01
## gendertargetWoman trgt:conddei_nobacklash   0.6500     0.1142    5.69
## 
## Correlation of Fixed Effects:
##                        (Intr) gndrWt cndd_b cndd_n gndrtrgtWmntrgt:cndd_b
## gndrtrgtWmt            -0.473                                            
## cndd_bcklsh            -0.688  0.325                                     
## cndd_nbckls            -0.692  0.328  0.476                              
## gndrtrgtWmntrgt:cndd_b  0.325 -0.688 -0.473 -0.225                       
## gndrtrgtWmntrgt:cndd_n  0.328 -0.692 -0.225 -0.473  0.476
summary(modely <- lmer(vs~ gendertarget*cond+vq + (1 | pid), v1cleanmed))
## Linear mixed model fit by REML ['lmerMod']
## Formula: vs ~ gendertarget * cond + vq + (1 | pid)
##    Data: v1cleanmed
## 
## REML criterion at convergence: 6849
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.937 -0.448  0.026  0.475  4.112 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.572    0.756   
##  Residual             0.700    0.837   
## Number of obs: 2400, groups:  pid, 600
## 
## Fixed effects:
##                                           Estimate Std. Error t value
## (Intercept)                                 0.8885     0.0949    9.36
## gendertargetWoman trgt                      0.0836     0.0576    1.45
## conddei_backlash                           -0.1302     0.0957   -1.36
## conddei_nobacklash                         -0.0317     0.0952   -0.33
## vq                                          0.7998     0.0152   52.69
## gendertargetWoman trgt:conddei_backlash     0.1325     0.0836    1.59
## gendertargetWoman trgt:conddei_nobacklash   0.1071     0.0834    1.28
## 
## Correlation of Fixed Effects:
##                        (Intr) gndrWt cndd_b cndd_n vq     gndrtrgtWmntrgt:cndd_b
## gndrtrgtWmt            -0.235                                                   
## cndd_bcklsh            -0.499  0.295                                            
## cndd_nbckls            -0.516  0.295  0.477                                     
## vq                     -0.721 -0.092  0.031  0.051                              
## gndrtrgtWmntrgt:cndd_b  0.253 -0.678 -0.437 -0.210 -0.063                       
## gndrtrgtWmntrgt:cndd_n  0.293 -0.674 -0.210 -0.438 -0.118  0.479
Results
summary(mediate(model.m = modelm, model.y = modely, treat = "gendertarget", mediator = "vq", covariates = list(cond = "dei_backlash"), sims = 5000))
## Warning in mediate(model.m = modelm, model.y = modely, treat = "gendertarget", : treatment and control values do not match factor levels; using Man trgt and Woman trgt as control and treatment, respectively
## 
## Causal Mediation Analysis 
## 
## Quasi-Bayesian Confidence Intervals
## 
## (Inference Conditional on the Covariate Values Specified in `covariates')
## 
## Mediator Groups: pid 
## 
## Outcome Groups: pid 
## 
## Output Based on Overall Averages Across Groups 
## 
##                Estimate 95% CI Lower 95% CI Upper             p-value    
## ACME              0.556        0.422         0.69 <0.0000000000000002 ***
## ADE               0.216        0.100         0.34 <0.0000000000000002 ***
## Total Effect      0.773        0.599         0.95 <0.0000000000000002 ***
## Prop. Mediated    0.720        0.600         0.85 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Sample Size Used: 2400 
## 
## 
## Simulations: 5000
summary(mediate(model.m = modelm, model.y = modely, treat = "gendertarget", mediator = "vq", covariates = list(cond = "dei_nobacklash"), sims = 5000))
## Warning in mediate(model.m = modelm, model.y = modely, treat = "gendertarget", : treatment and control values do not match factor levels; using Man trgt and Woman trgt as control and treatment, respectively
## 
## Causal Mediation Analysis 
## 
## Quasi-Bayesian Confidence Intervals
## 
## (Inference Conditional on the Covariate Values Specified in `covariates')
## 
## Mediator Groups: pid 
## 
## Outcome Groups: pid 
## 
## Output Based on Overall Averages Across Groups 
## 
##                Estimate 95% CI Lower 95% CI Upper             p-value    
## ACME             0.7996       0.6694         0.93 <0.0000000000000002 ***
## ADE              0.1900       0.0678         0.31              0.0016 ** 
## Total Effect     0.9896       0.8140         1.16 <0.0000000000000002 ***
## Prop. Mediated   0.8086       0.7118         0.92 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Sample Size Used: 2400 
## 
## 
## Simulations: 5000
summary(mediate(model.m = modelm, model.y = modely, treat = "gendertarget", mediator = "vq", covariates = list(cond = "control"), sims = 5000))
## Warning in mediate(model.m = modelm, model.y = modely, treat = "gendertarget", : treatment and control values do not match factor levels; using Man trgt and Woman trgt as control and treatment, respectively
## 
## Causal Mediation Analysis 
## 
## Quasi-Bayesian Confidence Intervals
## 
## (Inference Conditional on the Covariate Values Specified in `covariates')
## 
## Mediator Groups: pid 
## 
## Outcome Groups: pid 
## 
## Output Based on Overall Averages Across Groups 
## 
##                Estimate 95% CI Lower 95% CI Upper             p-value    
## ACME             0.2779       0.1502         0.40 <0.0000000000000002 ***
## ADE              0.0834      -0.0289         0.19                0.15    
## Total Effect     0.3613       0.1968         0.53 <0.0000000000000002 ***
## Prop. Mediated   0.7691       0.5445         1.12 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Sample Size Used: 2400 
## 
## 
## Simulations: 5000

library(bruceR) analyses

bruceR::PROCESS(
  data = v1cleanmed,
  x = "gendertarget",
  meds = c("vq"),
  mods = c("cond"),
  y = "vs",
  mod.path = "x-m",
  cluster = "pid", nsim = 5000
)
## 
## NOTE: 
## ci has been reset to "mcmc" because bootstrap method is not applicable to multilevel models.
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 7 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Moderated Mediation
## -    Outcome (Y) : vs
## -  Predictor (X) : gendertarget (recoded: Man trgt=0, Woman trgt=1)
## -  Mediators (M) : vq
## - Moderators (W) : cond
## - Covariates (C) : -
## -   HLM Clusters : pid
## 
## All numeric predictors have been grand-mean centered.
## (For details, please see the help page of PROCESS.)
## 
## Formula of Mediator:
## -    vq ~ gendertarget*cond + (1 | pid)
## Formula of Outcome:
## -    vs ~ gendertarget + cond + vq + (1 | pid)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────
##                                  (1) vs        (2) vq        (3) vs      
## ─────────────────────────────────────────────────────────────────────────
## (Intercept)                         4.658 ***     4.683 ***     4.672 ***
##                                    (0.051)       (0.074)       (0.059)   
## gendertarget                        0.697 ***     0.347 ***     0.159 ***
##                                    (0.051)       (0.079)       (0.036)   
## conddei_backlash                                 -0.025        -0.064    
##                                                  (0.107)       (0.086)   
## conddei_nobacklash                                0.007         0.022    
##                                                  (0.106)       (0.086)   
## gendertarget:conddei_backlash                     0.346 **               
##                                                  (0.115)                 
## gendertarget:conddei_nobacklash                   0.650 ***              
##                                                  (0.114)                 
## vq                                                              0.802 ***
##                                                                (0.015)   
## ─────────────────────────────────────────────────────────────────────────
## Marginal R^2                        0.043         0.057         0.544    
## Conditional R^2                     0.454         0.417         0.749    
## AIC                              8711.579      8273.893      6859.063    
## BIC                              8734.712      8320.159      6899.545    
## Num. obs.                        2400          2400          2400        
## Num. groups: pid                  600           600           600        
## Var: pid (Intercept)                1.168         0.822         0.572    
## Var: Residual                       1.551         1.332         0.701    
## ─────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0), ‘interactions’ (v1.1.5)
## Effect Type : Moderated Mediation (Model 7)
## Sample Size : 2400
## Random Seed : set.seed()
## Simulations : 5000 (Bootstrap)
## 
## Direct Effect: "gendertarget" (X) ==> "vs" (Y)
## Computing profile confidence intervals ...
## ──────────────────────────────────────────────────────────
##              Effect    S.E.     t     p           [95% CI]
## ──────────────────────────────────────────────────────────
## Direct (c')   0.159 (0.036) 4.466 <.001 *** [0.089, 0.229]
## ──────────────────────────────────────────────────────────
## 
## Interaction Effect on "vq" (M)
## ─────────────────────────────────────────────
##                          F df1  df2     p    
## ─────────────────────────────────────────────
## gendertarget * cond  16.25   2 1797 <.001 ***
## ─────────────────────────────────────────────
## 
## Simple Slopes: "gendertarget" (X) ==> "vq" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────
##  "cond"         Effect    S.E.      t     p           [95% CI]
## ──────────────────────────────────────────────────────────────
##  control         0.347 (0.079)  4.394 <.001 *** [0.192, 0.502]
##  dei_backlash    0.694 (0.083)  8.308 <.001 *** [0.530, 0.857]
##  dei_nobacklash  0.997 (0.082) 12.101 <.001 *** [0.836, 1.159]
## ──────────────────────────────────────────────────────────────
## 
## Running 5000 * 3 simulations...
## Indirect Path: "gendertarget" (X) ==> "vq" (M) ==> "vs" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ──────────────────────────────────────────────────────────────
##  "cond"         Effect    S.E.      z     p      [MCMC 95% CI]
## ──────────────────────────────────────────────────────────────
##  control         0.278 (0.064)  4.363 <.001 *** [0.153, 0.403]
##  dei_backlash    0.558 (0.068)  8.179 <.001 *** [0.429, 0.692]
##  dei_nobacklash  0.802 (0.068) 11.710 <.001 *** [0.669, 0.941]
## ──────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 5000 Monte Carlo samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)

DV: Rank

Mediator: Interest

library(mediation) analyses

summary(modelm <- lmer(interest~gendertarget*cond +  (1 | pid), v1cleanmed))
## Linear mixed model fit by REML ['lmerMod']
## Formula: interest ~ gendertarget * cond + (1 | pid)
##    Data: v1cleanmed
## 
## REML criterion at convergence: 8225
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.767 -0.508 -0.009  0.549  3.395 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.861    0.928   
##  Residual             1.296    1.139   
## Number of obs: 2400, groups:  pid, 600
## 
## Fixed effects:
##                                           Estimate Std. Error t value
## (Intercept)                                 4.5775     0.0842   54.38
## gendertargetWoman trgt                      0.2347     0.0780    3.01
## conddei_backlash                           -0.5827     0.1224   -4.76
## conddei_nobacklash                         -0.4116     0.1216   -3.39
## gendertargetWoman trgt:conddei_backlash     0.6422     0.1135    5.66
## gendertargetWoman trgt:conddei_nobacklash   0.8622     0.1127    7.65
## 
## Correlation of Fixed Effects:
##                        (Intr) gndrWt cndd_b cndd_n gndrtrgtWmntrgt:cndd_b
## gndrtrgtWmt            -0.463                                            
## cndd_bcklsh            -0.688  0.319                                     
## cndd_nbckls            -0.692  0.321  0.476                              
## gndrtrgtWmntrgt:cndd_b  0.319 -0.688 -0.463 -0.221                       
## gndrtrgtWmntrgt:cndd_n  0.321 -0.692 -0.221 -0.463  0.476
summary(modely <- lmer(rank_r~ gendertarget*cond+interest + (1 | pid), v1cleanmed))
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML ['lmerMod']
## Formula: rank_r ~ gendertarget * cond + interest + (1 | pid)
##    Data: v1cleanmed
## 
## REML criterion at convergence: 6901
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3121 -0.7791  0.0252  0.8295  2.4566 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.00     0.00    
##  Residual             1.03     1.01    
## Number of obs: 2400, groups:  pid, 600
## 
## Fixed effects:
##                                           Estimate Std. Error t value
## (Intercept)                                 1.5819     0.0811   19.49
## gendertargetWoman trgt                      0.1022     0.0695    1.47
## conddei_backlash                           -0.2568     0.0719   -3.57
## conddei_nobacklash                         -0.3742     0.0712   -5.26
## interest                                    0.1847     0.0141   13.09
## gendertargetWoman trgt:conddei_backlash     0.6102     0.1014    6.02
## gendertargetWoman trgt:conddei_nobacklash   0.7411     0.1011    7.33
## 
## Correlation of Fixed Effects:
##                        (Intr) gndrWt cndd_b cndd_n intrst gndrtrgtWmntrgt:cndd_b
## gndrtrgtWmt            -0.390                                                   
## cndd_bcklsh            -0.504  0.477                                            
## cndd_nbckls            -0.483  0.483  0.481                                     
## interest               -0.796 -0.048  0.114  0.082                              
## gndrtrgtWmntrgt:cndd_b  0.364 -0.680 -0.710 -0.341 -0.089                       
## gndrtrgtWmntrgt:cndd_n  0.390 -0.681 -0.346 -0.709 -0.120  0.481                
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
Results
summary(mediate(model.m = modelm, model.y = modely, treat = "gendertarget", mediator = "interest", covariates = list(cond = "dei_backlash"), sims = 5000))
## Warning in mediate(model.m = modelm, model.y = modely, treat = "gendertarget", : treatment and control values do not match factor levels; using Man trgt and Woman trgt as control and treatment, respectively
## 
## Causal Mediation Analysis 
## 
## Quasi-Bayesian Confidence Intervals
## 
## (Inference Conditional on the Covariate Values Specified in `covariates')
## 
## Mediator Groups: pid 
## 
## Outcome Groups: pid 
## 
## Output Based on Overall Averages Across Groups 
## 
##                Estimate 95% CI Lower 95% CI Upper             p-value    
## ACME              0.162        0.127         0.20 <0.0000000000000002 ***
## ADE               0.712        0.566         0.86 <0.0000000000000002 ***
## Total Effect      0.874        0.725         1.02 <0.0000000000000002 ***
## Prop. Mediated    0.185        0.141         0.24 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Sample Size Used: 2400 
## 
## 
## Simulations: 5000
summary(mediate(model.m = modelm, model.y = modely, treat = "gendertarget", mediator = "interest", covariates = list(cond = "dei_nobacklash"), sims = 5000))
## Warning in mediate(model.m = modelm, model.y = modely, treat = "gendertarget", : treatment and control values do not match factor levels; using Man trgt and Woman trgt as control and treatment, respectively
## 
## Causal Mediation Analysis 
## 
## Quasi-Bayesian Confidence Intervals
## 
## (Inference Conditional on the Covariate Values Specified in `covariates')
## 
## Mediator Groups: pid 
## 
## Outcome Groups: pid 
## 
## Output Based on Overall Averages Across Groups 
## 
##                Estimate 95% CI Lower 95% CI Upper             p-value    
## ACME              0.203        0.161         0.25 <0.0000000000000002 ***
## ADE               0.843        0.701         0.98 <0.0000000000000002 ***
## Total Effect      1.046        0.905         1.19 <0.0000000000000002 ***
## Prop. Mediated    0.194        0.153         0.24 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Sample Size Used: 2400 
## 
## 
## Simulations: 5000
summary(mediate(model.m = modelm, model.y = modely, treat = "gendertarget", mediator = "interest", covariates = list(cond = "control"), sims = 5000))
## Warning in mediate(model.m = modelm, model.y = modely, treat = "gendertarget", : treatment and control values do not match factor levels; using Man trgt and Woman trgt as control and treatment, respectively
## 
## Causal Mediation Analysis 
## 
## Quasi-Bayesian Confidence Intervals
## 
## (Inference Conditional on the Covariate Values Specified in `covariates')
## 
## Mediator Groups: pid 
## 
## Outcome Groups: pid 
## 
## Output Based on Overall Averages Across Groups 
## 
##                Estimate 95% CI Lower 95% CI Upper p-value   
## ACME            0.04327      0.01471         0.07  0.0012 **
## ADE             0.10139     -0.03446         0.24  0.1448   
## Total Effect    0.14467      0.00548         0.29  0.0432 * 
## Prop. Mediated  0.28765      0.05024         1.60  0.0436 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Sample Size Used: 2400 
## 
## 
## Simulations: 5000
library(bruceR) analyses
bruceR::PROCESS(
  data = v1cleanmed,
  x = "gendertarget",
  meds = c("interest"),
  mods = c("cond"),
  y = "rank_r",
  mod.path = "x-m",
  cluster = "pid",
  nsim = 5000
)
## 
## NOTE: 
## ci has been reset to "mcmc" because bootstrap method is not applicable to multilevel models.
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 7 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Moderated Mediation
## -    Outcome (Y) : rank_r
## -  Predictor (X) : gendertarget (recoded: Man trgt=0, Woman trgt=1)
## -  Mediators (M) : interest
## - Moderators (W) : cond
## - Covariates (C) : -
## -   HLM Clusters : pid
## 
## All numeric predictors have been grand-mean centered.
## (For details, please see the help page of PROCESS.)
## 
## Formula of Mediator:
## -    interest ~ gendertarget*cond + (1 | pid)
## Formula of Outcome:
## -    rank_r ~ gendertarget + cond + interest + (1 | pid)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
## 
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## 
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────
##                                  (1) rank_r    (2) interest  (3) rank_r  
## ─────────────────────────────────────────────────────────────────────────
## (Intercept)                         2.500 ***     4.695 ***     2.485 ***
##                                    (0.022)       (0.075)       (0.035)   
## gendertarget                        0.672 ***     0.235 **      0.529 ***
##                                    (0.044)       (0.078)       (0.043)   
## conddei_backlash                                 -0.262 *       0.052    
##                                                  (0.108)       (0.051)   
## conddei_nobacklash                                0.019        -0.004    
##                                                  (0.108)       (0.051)   
## gendertarget:conddei_backlash                     0.642 ***              
##                                                  (0.113)                 
## gendertarget:conddei_nobacklash                   0.862 ***              
##                                                  (0.113)                 
## interest                                                        0.199 ***
##                                                                (0.014)   
## ─────────────────────────────────────────────────────────────────────────
## Marginal R^2                        0.090         0.077         0.159    
## Conditional R^2                     0.090         0.446         0.159    
## AIC                              7137.751      8241.141      6970.050    
## BIC                              7160.884      8287.407      7010.533    
## Num. obs.                        2400          2400          2400        
## Num. groups: pid                  600           600           600        
## Var: pid (Intercept)                0.000         0.861         0.000    
## Var: Residual                       1.138         1.296         1.053    
## ─────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0), ‘interactions’ (v1.1.5)
## Effect Type : Moderated Mediation (Model 7)
## Sample Size : 2400
## Random Seed : set.seed()
## Simulations : 5000 (Bootstrap)
## 
## Direct Effect: "gendertarget" (X) ==> "rank_r" (Y)
## Computing profile confidence intervals ...
## ───────────────────────────────────────────────────────────
##              Effect    S.E.      t     p           [95% CI]
## ───────────────────────────────────────────────────────────
## Direct (c')   0.529 (0.043) 12.255 <.001 *** [0.444, 0.613]
## ───────────────────────────────────────────────────────────
## 
## Interaction Effect on "interest" (M)
## ─────────────────────────────────────────────
##                          F df1  df2     p    
## ─────────────────────────────────────────────
## gendertarget * cond  31.90   2 1797 <.001 ***
## ─────────────────────────────────────────────
## 
## Simple Slopes: "gendertarget" (X) ==> "interest" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────
##  "cond"         Effect    S.E.      t     p           [95% CI]
## ──────────────────────────────────────────────────────────────
##  control         0.235 (0.078)  3.009  .003 **  [0.082, 0.388]
##  dei_backlash    0.877 (0.082) 10.645 <.001 *** [0.716, 1.038]
##  dei_nobacklash  1.097 (0.081) 13.489 <.001 *** [0.938, 1.256]
## ──────────────────────────────────────────────────────────────
## 
## Running 5000 * 3 simulations...
## Indirect Path: "gendertarget" (X) ==> "interest" (M) ==> "rank_r" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ─────────────────────────────────────────────────────────────
##  "cond"         Effect    S.E.     z     p      [MCMC 95% CI]
## ─────────────────────────────────────────────────────────────
##  control         0.047 (0.016) 2.980  .003 **  [0.017, 0.078]
##  dei_backlash    0.174 (0.021) 8.421 <.001 *** [0.134, 0.215]
##  dei_nobacklash  0.218 (0.022) 9.845 <.001 *** [0.176, 0.263]
## ─────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 5000 Monte Carlo samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)

Mediator: VQ

summary(modelm <- lmer(vq~gendertarget*cond +  (1 | pid), v1cleanmed))
## Linear mixed model fit by REML ['lmerMod']
## Formula: vq ~ gendertarget * cond + (1 | pid)
##    Data: v1cleanmed
## 
## REML criterion at convergence: 8258
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.590 -0.518  0.049  0.558  3.126 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.822    0.906   
##  Residual             1.332    1.154   
## Number of obs: 2400, groups:  pid, 600
## 
## Fixed effects:
##                                           Estimate Std. Error t value
## (Intercept)                                 4.5094     0.0836   53.96
## gendertargetWoman trgt                      0.3474     0.0791    4.39
## conddei_backlash                           -0.1979     0.1215   -1.63
## conddei_nobacklash                         -0.3181     0.1207   -2.63
## gendertargetWoman trgt:conddei_backlash     0.3463     0.1150    3.01
## gendertargetWoman trgt:conddei_nobacklash   0.6500     0.1142    5.69
## 
## Correlation of Fixed Effects:
##                        (Intr) gndrWt cndd_b cndd_n gndrtrgtWmntrgt:cndd_b
## gndrtrgtWmt            -0.473                                            
## cndd_bcklsh            -0.688  0.325                                     
## cndd_nbckls            -0.692  0.328  0.476                              
## gndrtrgtWmntrgt:cndd_b  0.325 -0.688 -0.473 -0.225                       
## gndrtrgtWmntrgt:cndd_n  0.328 -0.692 -0.225 -0.473  0.476
summary(modely <- lmer(rank_r~ gendertarget*cond+vq + (1 | pid), v1cleanmed))
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML ['lmerMod']
## Formula: rank_r ~ gendertarget * cond + vq + (1 | pid)
##    Data: v1cleanmed
## 
## REML criterion at convergence: 6668
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6198 -0.7795  0.0309  0.7766  2.9658 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.000    0.000   
##  Residual             0.933    0.966   
## Number of obs: 2400, groups:  pid, 600
## 
## Fixed effects:
##                                           Estimate Std. Error t value
## (Intercept)                                 1.1651     0.0766   15.20
## gendertargetWoman trgt                      0.0483     0.0663    0.73
## conddei_backlash                           -0.3090     0.0681   -4.54
## conddei_nobacklash                         -0.3612     0.0677   -5.33
## vq                                          0.2799     0.0135   20.80
## gendertargetWoman trgt:conddei_backlash     0.6319     0.0963    6.56
## gendertargetWoman trgt:conddei_nobacklash   0.7184     0.0960    7.49
## 
## Correlation of Fixed Effects:
##                        (Intr) gndrWt cndd_b cndd_n vq     gndrtrgtWmntrgt:cndd_b
## gndrtrgtWmt            -0.375                                                   
## cndd_bcklsh            -0.450  0.482                                            
## cndd_nbckls            -0.472  0.483  0.477                                     
## vq                     -0.792 -0.070  0.039  0.063                              
## gndrtrgtWmntrgt:cndd_b  0.335 -0.682 -0.708 -0.339 -0.048                       
## gndrtrgtWmntrgt:cndd_n  0.370 -0.681 -0.338 -0.709 -0.091  0.478                
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
library(mediation) analyses
summary(mediate(model.m = modelm, model.y = modely, treat = "gendertarget", mediator = "vq", covariates = list(cond = "dei_backlash"), sims = 5000))
## Warning in mediate(model.m = modelm, model.y = modely, treat = "gendertarget", : treatment and control values do not match factor levels; using Man trgt and Woman trgt as control and treatment, respectively
## 
## Causal Mediation Analysis 
## 
## Quasi-Bayesian Confidence Intervals
## 
## (Inference Conditional on the Covariate Values Specified in `covariates')
## 
## Mediator Groups: pid 
## 
## Outcome Groups: pid 
## 
## Output Based on Overall Averages Across Groups 
## 
##                Estimate 95% CI Lower 95% CI Upper             p-value    
## ACME              0.194        0.146         0.24 <0.0000000000000002 ***
## ADE               0.679        0.536         0.82 <0.0000000000000002 ***
## Total Effect      0.873        0.728         1.02 <0.0000000000000002 ***
## Prop. Mediated    0.222        0.169         0.29 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Sample Size Used: 2400 
## 
## 
## Simulations: 5000
summary(mediate(model.m = modelm, model.y = modely, treat = "gendertarget", mediator = "vq", covariates = list(cond = "dei_nobacklash"), sims = 5000))
## Warning in mediate(model.m = modelm, model.y = modely, treat = "gendertarget", : treatment and control values do not match factor levels; using Man trgt and Woman trgt as control and treatment, respectively
## 
## Causal Mediation Analysis 
## 
## Quasi-Bayesian Confidence Intervals
## 
## (Inference Conditional on the Covariate Values Specified in `covariates')
## 
## Mediator Groups: pid 
## 
## Outcome Groups: pid 
## 
## Output Based on Overall Averages Across Groups 
## 
##                Estimate 95% CI Lower 95% CI Upper             p-value    
## ACME              0.279        0.229         0.33 <0.0000000000000002 ***
## ADE               0.766        0.625         0.91 <0.0000000000000002 ***
## Total Effect      1.045        0.903         1.19 <0.0000000000000002 ***
## Prop. Mediated    0.266        0.217         0.33 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Sample Size Used: 2400 
## 
## 
## Simulations: 5000
summary(mediate(model.m = modelm, model.y = modely, treat = "gendertarget", mediator = "vq", covariates = list(cond = "control"), sims = 5000))
## Warning in mediate(model.m = modelm, model.y = modely, treat = "gendertarget", : treatment and control values do not match factor levels; using Man trgt and Woman trgt as control and treatment, respectively
## 
## Causal Mediation Analysis 
## 
## Quasi-Bayesian Confidence Intervals
## 
## (Inference Conditional on the Covariate Values Specified in `covariates')
## 
## Mediator Groups: pid 
## 
## Outcome Groups: pid 
## 
## Output Based on Overall Averages Across Groups 
## 
##                Estimate 95% CI Lower 95% CI Upper             p-value    
## ACME            0.09723      0.05466         0.14 <0.0000000000000002 ***
## ADE             0.04767     -0.08539         0.17               0.473    
## Total Effect    0.14490      0.00721         0.28               0.036 *  
## Prop. Mediated  0.65731      0.26965         3.52               0.036 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Sample Size Used: 2400 
## 
## 
## Simulations: 5000
library(bruceR) analyses
bruceR::PROCESS(
  data = v1cleanmed,
  x = "gendertarget",
  meds = c("vq"),
  mods = c("cond"),
  y = "rank_r",
  mod.path = "x-m",
  cluster = "pid", nsim = 5000
)
## 
## NOTE: 
## ci has been reset to "mcmc" because bootstrap method is not applicable to multilevel models.
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 7 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Moderated Mediation
## -    Outcome (Y) : rank_r
## -  Predictor (X) : gendertarget (recoded: Man trgt=0, Woman trgt=1)
## -  Mediators (M) : vq
## - Moderators (W) : cond
## - Covariates (C) : -
## -   HLM Clusters : pid
## 
## All numeric predictors have been grand-mean centered.
## (For details, please see the help page of PROCESS.)
## 
## Formula of Mediator:
## -    vq ~ gendertarget*cond + (1 | pid)
## Formula of Outcome:
## -    rank_r ~ gendertarget + cond + vq + (1 | pid)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
## 
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## 
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────
##                                  (1) rank_r    (2) vq        (3) rank_r  
## ─────────────────────────────────────────────────────────────────────────
## (Intercept)                         2.500 ***     4.683 ***     2.498 ***
##                                    (0.022)       (0.074)       (0.034)   
## gendertarget                        0.672 ***     0.347 ***     0.478 ***
##                                    (0.044)       (0.079)       (0.041)   
## conddei_backlash                                 -0.025         0.007    
##                                                  (0.107)       (0.049)   
## conddei_nobacklash                                0.007        -0.002    
##                                                  (0.106)       (0.048)   
## gendertarget:conddei_backlash                     0.346 **               
##                                                  (0.115)                 
## gendertarget:conddei_nobacklash                   0.650 ***              
##                                                  (0.114)                 
## vq                                                              0.289 ***
##                                                                (0.014)   
## ─────────────────────────────────────────────────────────────────────────
## Marginal R^2                        0.090         0.057         0.235    
## Conditional R^2                     0.090         0.417         0.235    
## AIC                              7137.751      8273.893      6743.166    
## BIC                              7160.884      8320.159      6783.649    
## Num. obs.                        2400          2400          2400        
## Num. groups: pid                  600           600           600        
## Var: pid (Intercept)                0.000         0.822         0.000    
## Var: Residual                       1.138         1.332         0.958    
## ─────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0), ‘interactions’ (v1.1.5)
## Effect Type : Moderated Mediation (Model 7)
## Sample Size : 2400
## Random Seed : set.seed()
## Simulations : 5000 (Bootstrap)
## 
## Direct Effect: "gendertarget" (X) ==> "rank_r" (Y)
## Computing profile confidence intervals ...
## ───────────────────────────────────────────────────────────
##              Effect    S.E.      t     p           [95% CI]
## ───────────────────────────────────────────────────────────
## Direct (c')   0.478 (0.041) 11.659 <.001 *** [0.398, 0.558]
## ───────────────────────────────────────────────────────────
## 
## Interaction Effect on "vq" (M)
## ─────────────────────────────────────────────
##                          F df1  df2     p    
## ─────────────────────────────────────────────
## gendertarget * cond  16.25   2 1797 <.001 ***
## ─────────────────────────────────────────────
## 
## Simple Slopes: "gendertarget" (X) ==> "vq" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────
##  "cond"         Effect    S.E.      t     p           [95% CI]
## ──────────────────────────────────────────────────────────────
##  control         0.347 (0.079)  4.394 <.001 *** [0.192, 0.502]
##  dei_backlash    0.694 (0.083)  8.308 <.001 *** [0.530, 0.857]
##  dei_nobacklash  0.997 (0.082) 12.101 <.001 *** [0.836, 1.159]
## ──────────────────────────────────────────────────────────────
## 
## Running 5000 * 3 simulations...
## Indirect Path: "gendertarget" (X) ==> "vq" (M) ==> "rank_r" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ──────────────────────────────────────────────────────────────
##  "cond"         Effect    S.E.      z     p      [MCMC 95% CI]
## ──────────────────────────────────────────────────────────────
##  control         0.100 (0.023)  4.273 <.001 *** [0.054, 0.147]
##  dei_backlash    0.202 (0.026)  7.797 <.001 *** [0.153, 0.253]
##  dei_nobacklash  0.289 (0.027) 10.587 <.001 *** [0.237, 0.342]
## ──────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 5000 Monte Carlo samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)

Dual mediatiors

Rank

bruceR::PROCESS(
  data = v1cleanmed,
  x = "gendertarget",
  meds = c("interest", "vq"),
  mods = c("cond"),
  y = "rank_r",
  mod.path = "x-m",
  cluster = "pid", nsim = 5000
)
## 
## NOTE: 
## ci has been reset to "mcmc" because bootstrap method is not applicable to multilevel models.
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 7 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Parallel Multiple Moderated Mediation (2 meds)
## -    Outcome (Y) : rank_r
## -  Predictor (X) : gendertarget (recoded: Man trgt=0, Woman trgt=1)
## -  Mediators (M) : interest, vq
## - Moderators (W) : cond
## - Covariates (C) : -
## -   HLM Clusters : pid
## 
## All numeric predictors have been grand-mean centered.
## (For details, please see the help page of PROCESS.)
## 
## Formula of Mediator:
## -    interest ~ gendertarget*cond + (1 | pid)
## -    vq ~ gendertarget*cond + (1 | pid)
## Formula of Outcome:
## -    rank_r ~ gendertarget + cond + interest + vq + (1 | pid)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
## 
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## 
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────
##                                  (1) rank_r    (2) interest  (3) vq        (4) rank_r  
## ───────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                         2.500 ***     4.695 ***     4.683 ***     2.495 ***
##                                    (0.022)       (0.075)       (0.074)       (0.034)   
## gendertarget                        0.672 ***     0.235 **      0.347 ***     0.464 ***
##                                    (0.044)       (0.078)       (0.079)       (0.041)   
## conddei_backlash                                 -0.262 *      -0.025         0.018    
##                                                  (0.108)       (0.107)       (0.049)   
## conddei_nobacklash                                0.019         0.007        -0.003    
##                                                  (0.108)       (0.106)       (0.048)   
## gendertarget:conddei_backlash                     0.642 ***     0.346 **               
##                                                  (0.113)       (0.115)                 
## gendertarget:conddei_nobacklash                   0.862 ***     0.650 ***              
##                                                  (0.113)       (0.114)                 
## interest                                                                      0.044 ** 
##                                                                              (0.017)   
## vq                                                                            0.263 ***
##                                                                              (0.017)   
## ───────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                        0.090         0.077         0.057         0.237    
## Conditional R^2                     0.090         0.446         0.417         0.237    
## AIC                              7137.751      8241.141      8273.893      6744.575    
## BIC                              7160.884      8287.407      8320.159      6790.841    
## Num. obs.                        2400          2400          2400          2400        
## Num. groups: pid                  600           600           600           600        
## Var: pid (Intercept)                0.000         0.861         0.822         0.000    
## Var: Residual                       1.138         1.296         1.332         0.956    
## ───────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0), ‘interactions’ (v1.1.5)
## Effect Type : Parallel Multiple Moderated Mediation (2 meds) (Model 7)
## Sample Size : 2400
## Random Seed : set.seed()
## Simulations : 5000 (Bootstrap)
## 
## Direct Effect: "gendertarget" (X) ==> "rank_r" (Y)
## Computing profile confidence intervals ...
## ───────────────────────────────────────────────────────────
##              Effect    S.E.      t     p           [95% CI]
## ───────────────────────────────────────────────────────────
## Direct (c')   0.464 (0.041) 11.227 <.001 *** [0.383, 0.544]
## ───────────────────────────────────────────────────────────
## 
## Interaction Effect on "interest" (M)
## ─────────────────────────────────────────────
##                          F df1  df2     p    
## ─────────────────────────────────────────────
## gendertarget * cond  31.90   2 1797 <.001 ***
## ─────────────────────────────────────────────
## 
## Simple Slopes: "gendertarget" (X) ==> "interest" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────
##  "cond"         Effect    S.E.      t     p           [95% CI]
## ──────────────────────────────────────────────────────────────
##  control         0.235 (0.078)  3.009  .003 **  [0.082, 0.388]
##  dei_backlash    0.877 (0.082) 10.645 <.001 *** [0.716, 1.038]
##  dei_nobacklash  1.097 (0.081) 13.489 <.001 *** [0.938, 1.256]
## ──────────────────────────────────────────────────────────────
## 
## Running 5000 * 3 simulations...
## Indirect Path: "gendertarget" (X) ==> "interest" (M) ==> "rank_r" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ─────────────────────────────────────────────────────────────
##  "cond"         Effect    S.E.     z     p      [MCMC 95% CI]
## ─────────────────────────────────────────────────────────────
##  control         0.010 (0.005) 1.924  .054 .   [0.002, 0.022]
##  dei_backlash    0.039 (0.015) 2.565  .010 *   [0.010, 0.069]
##  dei_nobacklash  0.048 (0.019) 2.590  .010 **  [0.012, 0.086]
## ─────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 5000 Monte Carlo samples.)
## 
## Interaction Effect on "vq" (M)
## ─────────────────────────────────────────────
##                          F df1  df2     p    
## ─────────────────────────────────────────────
## gendertarget * cond  16.25   2 1797 <.001 ***
## ─────────────────────────────────────────────
## 
## Simple Slopes: "gendertarget" (X) ==> "vq" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────
##  "cond"         Effect    S.E.      t     p           [95% CI]
## ──────────────────────────────────────────────────────────────
##  control         0.347 (0.079)  4.394 <.001 *** [0.192, 0.502]
##  dei_backlash    0.694 (0.083)  8.308 <.001 *** [0.530, 0.857]
##  dei_nobacklash  0.997 (0.082) 12.101 <.001 *** [0.836, 1.159]
## ──────────────────────────────────────────────────────────────
## 
## Running 5000 * 3 simulations...
## Indirect Path: "gendertarget" (X) ==> "vq" (M) ==> "rank_r" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ─────────────────────────────────────────────────────────────
##  "cond"         Effect    S.E.     z     p      [MCMC 95% CI]
## ─────────────────────────────────────────────────────────────
##  control         0.091 (0.022) 4.166 <.001 *** [0.048, 0.135]
##  dei_backlash    0.183 (0.025) 7.364 <.001 *** [0.136, 0.233]
##  dei_nobacklash  0.263 (0.027) 9.616 <.001 *** [0.211, 0.318]
## ─────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 5000 Monte Carlo samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)

VS

bruceR::PROCESS(
  data = v1cleanmed,
  x = "gendertarget",
  meds = c("interest", "vq"),
  mods = c("cond"),
  y = "vs",
  mod.path = "x-m",
  cluster = "pid", nsim = 5000
)
## 
## NOTE: 
## ci has been reset to "mcmc" because bootstrap method is not applicable to multilevel models.
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 7 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Parallel Multiple Moderated Mediation (2 meds)
## -    Outcome (Y) : vs
## -  Predictor (X) : gendertarget (recoded: Man trgt=0, Woman trgt=1)
## -  Mediators (M) : interest, vq
## - Moderators (W) : cond
## - Covariates (C) : -
## -   HLM Clusters : pid
## 
## All numeric predictors have been grand-mean centered.
## (For details, please see the help page of PROCESS.)
## 
## Formula of Mediator:
## -    interest ~ gendertarget*cond + (1 | pid)
## -    vq ~ gendertarget*cond + (1 | pid)
## Formula of Outcome:
## -    vs ~ gendertarget + cond + interest + vq + (1 | pid)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────
##                                  (1) vs        (2) interest  (3) vq        (4) vs      
## ───────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                         4.658 ***     4.695 ***     4.683 ***     4.656 ***
##                                    (0.051)       (0.075)       (0.074)       (0.058)   
## gendertarget                        0.697 ***     0.235 **      0.347 ***     0.087 *  
##                                    (0.051)       (0.078)       (0.079)       (0.035)   
## conddei_backlash                                 -0.262 *      -0.025        -0.012    
##                                                  (0.108)       (0.107)       (0.085)   
## conddei_nobacklash                                0.019         0.007         0.019    
##                                                  (0.108)       (0.106)       (0.084)   
## gendertarget:conddei_backlash                     0.642 ***     0.346 **               
##                                                  (0.113)       (0.115)                 
## gendertarget:conddei_nobacklash                   0.862 ***     0.650 ***              
##                                                  (0.113)       (0.114)                 
## interest                                                                      0.210 ***
##                                                                              (0.018)   
## vq                                                                            0.683 ***
##                                                                              (0.018)   
## ───────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                        0.043         0.077         0.057         0.569    
## Conditional R^2                     0.454         0.446         0.417         0.766    
## AIC                              8711.579      8241.141      8273.893      6732.225    
## BIC                              8734.712      8287.407      8320.159      6778.491    
## Num. obs.                        2400          2400          2400          2400        
## Num. groups: pid                  600           600           600           600        
## Var: pid (Intercept)                1.168         0.861         0.822         0.554    
## Var: Residual                       1.551         1.296         1.332         0.659    
## ───────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0), ‘interactions’ (v1.1.5)
## Effect Type : Parallel Multiple Moderated Mediation (2 meds) (Model 7)
## Sample Size : 2400
## Random Seed : set.seed()
## Simulations : 5000 (Bootstrap)
## 
## Direct Effect: "gendertarget" (X) ==> "vs" (Y)
## Computing profile confidence intervals ...
## ──────────────────────────────────────────────────────────
##              Effect    S.E.     t     p           [95% CI]
## ──────────────────────────────────────────────────────────
## Direct (c')   0.087 (0.035) 2.493  .013 *   [0.019, 0.156]
## ──────────────────────────────────────────────────────────
## 
## Interaction Effect on "interest" (M)
## ─────────────────────────────────────────────
##                          F df1  df2     p    
## ─────────────────────────────────────────────
## gendertarget * cond  31.90   2 1797 <.001 ***
## ─────────────────────────────────────────────
## 
## Simple Slopes: "gendertarget" (X) ==> "interest" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────
##  "cond"         Effect    S.E.      t     p           [95% CI]
## ──────────────────────────────────────────────────────────────
##  control         0.235 (0.078)  3.009  .003 **  [0.082, 0.388]
##  dei_backlash    0.877 (0.082) 10.645 <.001 *** [0.716, 1.038]
##  dei_nobacklash  1.097 (0.081) 13.489 <.001 *** [0.938, 1.256]
## ──────────────────────────────────────────────────────────────
## 
## Running 5000 * 3 simulations...
## Indirect Path: "gendertarget" (X) ==> "interest" (M) ==> "vs" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ─────────────────────────────────────────────────────────────
##  "cond"         Effect    S.E.     z     p      [MCMC 95% CI]
## ─────────────────────────────────────────────────────────────
##  control         0.049 (0.017) 2.921  .003 **  [0.017, 0.084]
##  dei_backlash    0.184 (0.024) 7.792 <.001 *** [0.138, 0.232]
##  dei_nobacklash  0.230 (0.026) 9.013 <.001 *** [0.182, 0.282]
## ─────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 5000 Monte Carlo samples.)
## 
## Interaction Effect on "vq" (M)
## ─────────────────────────────────────────────
##                          F df1  df2     p    
## ─────────────────────────────────────────────
## gendertarget * cond  16.25   2 1797 <.001 ***
## ─────────────────────────────────────────────
## 
## Simple Slopes: "gendertarget" (X) ==> "vq" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────
##  "cond"         Effect    S.E.      t     p           [95% CI]
## ──────────────────────────────────────────────────────────────
##  control         0.347 (0.079)  4.394 <.001 *** [0.192, 0.502]
##  dei_backlash    0.694 (0.083)  8.308 <.001 *** [0.530, 0.857]
##  dei_nobacklash  0.997 (0.082) 12.101 <.001 *** [0.836, 1.159]
## ──────────────────────────────────────────────────────────────
## 
## Running 5000 * 3 simulations...
## Indirect Path: "gendertarget" (X) ==> "vq" (M) ==> "vs" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ──────────────────────────────────────────────────────────────
##  "cond"         Effect    S.E.      z     p      [MCMC 95% CI]
## ──────────────────────────────────────────────────────────────
##  control         0.236 (0.055)  4.315 <.001 *** [0.129, 0.344]
##  dei_backlash    0.475 (0.058)  8.200 <.001 *** [0.366, 0.593]
##  dei_nobacklash  0.683 (0.059) 11.583 <.001 *** [0.569, 0.799]
## ──────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 5000 Monte Carlo samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)

Moderated mediation - Contrast Coded

DV: VS

Mediator: Interest

summary(modelm <- lmer(interest~gendertarget_num*deivscontroltext +  (1 | pid), v1cleanmed))
## Linear mixed model fit by REML ['lmerMod']
## Formula: interest ~ gendertarget_num * deivscontroltext + (1 | pid)
##    Data: v1cleanmed
## 
## REML criterion at convergence: 8230
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.684 -0.571 -0.013  0.545  3.409 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.872    0.934   
##  Residual             1.298    1.139   
## Number of obs: 2400, groups:  pid, 600
## 
## Fixed effects:
##                                      Estimate Std. Error t value
## (Intercept)                            4.5775     0.0845   54.18
## gendertarget_num                       0.2347     0.0781    3.01
## deivscontroltextDEI                   -0.4961     0.1052   -4.72
## gendertarget_num:deivscontroltextDEI   0.7536     0.0972    7.75
## 
## Correlation of Fixed Effects:
##             (Intr) gndrt_ dvsDEI
## gndrtrgt_nm -0.462              
## dvscntrlDEI -0.803  0.371       
## gndrtr_:DEI  0.371 -0.803 -0.462
summary(modely <- lmer(vs~ gendertarget_num*deivscontroltext+interest + (1 | pid), v1cleanmed))
## Linear mixed model fit by REML ['lmerMod']
## Formula: vs ~ gendertarget_num * deivscontroltext + interest + (1 | pid)
##    Data: v1cleanmed
## 
## REML criterion at convergence: 7860
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -4.053 -0.500  0.051  0.550  3.799 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.806    0.898   
##  Residual             1.090    1.044   
## Number of obs: 2400, groups:  pid, 600
## 
## Fixed effects:
##                                      Estimate Std. Error t value
## (Intercept)                           1.77066    0.11755   15.06
## gendertarget_num                      0.22178    0.07168    3.09
## deivscontroltextDEI                   0.00798    0.09963    0.08
## interest                              0.59523    0.01888   31.52
## gendertarget_num:deivscontroltextDEI  0.07105    0.09021    0.79
## 
## Correlation of Fixed Effects:
##             (Intr) gndrt_ dvsDEI intrst
## gndrtrgt_nm -0.258                     
## dvscntrlDEI -0.611  0.353              
## interest    -0.735 -0.062  0.094       
## gndrtr_:DEI  0.357 -0.782 -0.456 -0.158
summary(mediate(model.m = modelm, model.y = modely, treat = "gendertarget_num", mediator = "interest", covariates = list(deivscontroltext = "control"), sims = 5000))
## 
## Causal Mediation Analysis 
## 
## Quasi-Bayesian Confidence Intervals
## 
## (Inference Conditional on the Covariate Values Specified in `covariates')
## 
## Mediator Groups: pid 
## 
## Outcome Groups: pid 
## 
## Output Based on Overall Averages Across Groups 
## 
##                Estimate 95% CI Lower 95% CI Upper             p-value    
## ACME             0.1395       0.0445         0.23              0.0032 ** 
## ADE              0.2229       0.0820         0.37              0.0036 ** 
## Total Effect     0.3624       0.1940         0.53 <0.0000000000000002 ***
## Prop. Mediated   0.3858       0.1602         0.65              0.0032 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Sample Size Used: 2400 
## 
## 
## Simulations: 5000
summary(mediate(model.m = modelm, model.y = modely, treat = "gendertarget_num", mediator = "interest", covariates = list(deivscontroltext = "DEI"), sims = 5000))
## 
## Causal Mediation Analysis 
## 
## Quasi-Bayesian Confidence Intervals
## 
## (Inference Conditional on the Covariate Values Specified in `covariates')
## 
## Mediator Groups: pid 
## 
## Outcome Groups: pid 
## 
## Output Based on Overall Averages Across Groups 
## 
##                Estimate 95% CI Lower 95% CI Upper             p-value    
## ACME              0.588        0.513         0.67 <0.0000000000000002 ***
## ADE               0.293        0.184         0.40 <0.0000000000000002 ***
## Total Effect      0.881        0.756         1.00 <0.0000000000000002 ***
## Prop. Mediated    0.667        0.583         0.77 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Sample Size Used: 2400 
## 
## 
## Simulations: 5000

Mediator: VQ

summary(modelm <- lmer(vq~gendertarget_num*deivscontroltext +  (1 | pid), v1cleanmed))
## Linear mixed model fit by REML ['lmerMod']
## Formula: vq ~ gendertarget_num * deivscontroltext + (1 | pid)
##    Data: v1cleanmed
## 
## REML criterion at convergence: 8260
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.515 -0.536  0.060  0.572  3.119 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.819    0.905   
##  Residual             1.336    1.156   
## Number of obs: 2400, groups:  pid, 600
## 
## Fixed effects:
##                                      Estimate Std. Error t value
## (Intercept)                            4.5094     0.0835   53.98
## gendertarget_num                       0.3474     0.0792    4.39
## deivscontroltextDEI                   -0.2587     0.1040   -2.49
## gendertarget_num:deivscontroltextDEI   0.5001     0.0986    5.07
## 
## Correlation of Fixed Effects:
##             (Intr) gndrt_ dvsDEI
## gndrtrgt_nm -0.474              
## dvscntrlDEI -0.803  0.381       
## gndrtr_:DEI  0.381 -0.803 -0.474
summary(modely <- lmer(vs~ gendertarget_num*deivscontroltext+vq + (1 | pid), v1cleanmed))
## Linear mixed model fit by REML ['lmerMod']
## Formula: vs ~ gendertarget_num * deivscontroltext + vq + (1 | pid)
##    Data: v1cleanmed
## 
## REML criterion at convergence: 6844
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.933 -0.444  0.025  0.483  4.112 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.572    0.756   
##  Residual             0.700    0.837   
## Number of obs: 2400, groups:  pid, 600
## 
## Fixed effects:
##                                      Estimate Std. Error t value
## (Intercept)                            0.8892     0.0949    9.37
## gendertarget_num                       0.0837     0.0576    1.45
## deivscontroltextDEI                   -0.0804     0.0820   -0.98
## vq                                     0.7997     0.0152   52.77
## gendertarget_num:deivscontroltextDEI   0.1197     0.0718    1.67
## 
## Correlation of Fixed Effects:
##             (Intr) gndrt_ dvsDEI vq    
## gndrtrgt_nm -0.235                     
## dvscntrlDEI -0.591  0.344              
## vq          -0.720 -0.091  0.048       
## gndrtr_:DEI  0.317 -0.786 -0.438 -0.106
summary(mediate(model.m = modelm, model.y = modely, treat = "gendertarget_num", mediator = "vq", covariates = list(deivscontroltext = "control"), sims = 5000))
## 
## Causal Mediation Analysis 
## 
## Quasi-Bayesian Confidence Intervals
## 
## (Inference Conditional on the Covariate Values Specified in `covariates')
## 
## Mediator Groups: pid 
## 
## Outcome Groups: pid 
## 
## Output Based on Overall Averages Across Groups 
## 
##                Estimate 95% CI Lower 95% CI Upper             p-value    
## ACME             0.2774       0.1529         0.40 <0.0000000000000002 ***
## ADE              0.0836      -0.0290         0.20                0.14    
## Total Effect     0.3611       0.1923         0.53 <0.0000000000000002 ***
## Prop. Mediated   0.7673       0.5377         1.12 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Sample Size Used: 2400 
## 
## 
## Simulations: 5000
summary(mediate(model.m = modelm, model.y = modely, treat = "gendertarget_num", mediator = "vq", covariates = list(deivscontroltext = "DEI"), sims = 5000))
## 
## Causal Mediation Analysis 
## 
## Quasi-Bayesian Confidence Intervals
## 
## (Inference Conditional on the Covariate Values Specified in `covariates')
## 
## Mediator Groups: pid 
## 
## Outcome Groups: pid 
## 
## Output Based on Overall Averages Across Groups 
## 
##                Estimate 95% CI Lower 95% CI Upper             p-value    
## ACME              0.677        0.581         0.77 <0.0000000000000002 ***
## ADE               0.203        0.115         0.29 <0.0000000000000002 ***
## Total Effect      0.881        0.752         1.00 <0.0000000000000002 ***
## Prop. Mediated    0.769        0.693         0.86 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Sample Size Used: 2400 
## 
## 
## Simulations: 5000

DV: Rank

Mediator: Interest

summary(modelm <- lmer(interest~gendertarget_num*deivscontroltext +  (1 | pid), v1cleanmed))
## Linear mixed model fit by REML ['lmerMod']
## Formula: interest ~ gendertarget_num * deivscontroltext + (1 | pid)
##    Data: v1cleanmed
## 
## REML criterion at convergence: 8230
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.684 -0.571 -0.013  0.545  3.409 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.872    0.934   
##  Residual             1.298    1.139   
## Number of obs: 2400, groups:  pid, 600
## 
## Fixed effects:
##                                      Estimate Std. Error t value
## (Intercept)                            4.5775     0.0845   54.18
## gendertarget_num                       0.2347     0.0781    3.01
## deivscontroltextDEI                   -0.4961     0.1052   -4.72
## gendertarget_num:deivscontroltextDEI   0.7536     0.0972    7.75
## 
## Correlation of Fixed Effects:
##             (Intr) gndrt_ dvsDEI
## gndrtrgt_nm -0.462              
## dvscntrlDEI -0.803  0.371       
## gndrtr_:DEI  0.371 -0.803 -0.462
summary(modely <- lmer(rank_r~ gendertarget_num*deivscontroltext+interest + (1 | pid), v1cleanmed))
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML ['lmerMod']
## Formula: rank_r ~ gendertarget_num * deivscontroltext + interest + (1 |      pid)
##    Data: v1cleanmed
## 
## REML criterion at convergence: 6896
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3041 -0.8091 -0.0043  0.8365  2.5132 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.00     0.00    
##  Residual             1.03     1.01    
## Number of obs: 2400, groups:  pid, 600
## 
## Fixed effects:
##                                      Estimate Std. Error t value
## (Intercept)                            1.5844     0.0810   19.56
## gendertarget_num                       0.1023     0.0695    1.47
## deivscontroltextDEI                   -0.3165     0.0616   -5.14
## interest                               0.1841     0.0141   13.09
## gendertarget_num:deivscontroltextDEI   0.6769     0.0871    7.77
## 
## Correlation of Fixed Effects:
##             (Intr) gndrt_ dvsDEI intrst
## gndrtrgt_nm -0.391                     
## dvscntrlDEI -0.574  0.558              
## interest    -0.795 -0.047  0.113       
## gndrtr_:DEI  0.439 -0.790 -0.711 -0.122
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
summary(mediate(model.m = modelm, model.y = modely, treat = "gendertarget_num", mediator = "interest", covariates = list(deivscontroltext = "control"), sims = 5000))
## 
## Causal Mediation Analysis 
## 
## Quasi-Bayesian Confidence Intervals
## 
## (Inference Conditional on the Covariate Values Specified in `covariates')
## 
## Mediator Groups: pid 
## 
## Outcome Groups: pid 
## 
## Output Based on Overall Averages Across Groups 
## 
##                Estimate 95% CI Lower 95% CI Upper p-value   
## ACME            0.04333      0.01448         0.07  0.0032 **
## ADE             0.10204     -0.03279         0.24  0.1412   
## Total Effect    0.14537      0.00571         0.28  0.0408 * 
## Prop. Mediated  0.29062      0.04110         1.62  0.0440 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Sample Size Used: 2400 
## 
## 
## Simulations: 5000
summary(mediate(model.m = modelm, model.y = modely, treat = "gendertarget_num", mediator = "interest", covariates = list(deivscontroltext = "DEI"), sims = 5000))
## 
## Causal Mediation Analysis 
## 
## Quasi-Bayesian Confidence Intervals
## 
## (Inference Conditional on the Covariate Values Specified in `covariates')
## 
## Mediator Groups: pid 
## 
## Outcome Groups: pid 
## 
## Output Based on Overall Averages Across Groups 
## 
##                Estimate 95% CI Lower 95% CI Upper             p-value    
## ACME              0.182        0.149         0.22 <0.0000000000000002 ***
## ADE               0.779        0.674         0.88 <0.0000000000000002 ***
## Total Effect      0.961        0.860         1.07 <0.0000000000000002 ***
## Prop. Mediated    0.189        0.152         0.23 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Sample Size Used: 2400 
## 
## 
## Simulations: 5000

Mediator: VQ

summary(modelm <- lmer(vq~gendertarget_num*deivscontroltext +  (1 | pid), v1cleanmed))
## Linear mixed model fit by REML ['lmerMod']
## Formula: vq ~ gendertarget_num * deivscontroltext + (1 | pid)
##    Data: v1cleanmed
## 
## REML criterion at convergence: 8260
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.515 -0.536  0.060  0.572  3.119 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.819    0.905   
##  Residual             1.336    1.156   
## Number of obs: 2400, groups:  pid, 600
## 
## Fixed effects:
##                                      Estimate Std. Error t value
## (Intercept)                            4.5094     0.0835   53.98
## gendertarget_num                       0.3474     0.0792    4.39
## deivscontroltextDEI                   -0.2587     0.1040   -2.49
## gendertarget_num:deivscontroltextDEI   0.5001     0.0986    5.07
## 
## Correlation of Fixed Effects:
##             (Intr) gndrt_ dvsDEI
## gndrtrgt_nm -0.474              
## dvscntrlDEI -0.803  0.381       
## gndrtr_:DEI  0.381 -0.803 -0.474
summary(modely <- lmer(rank_r~ gendertarget_num*deivscontroltext+vq + (1 | pid), v1cleanmed))
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML ['lmerMod']
## Formula: rank_r ~ gendertarget_num * deivscontroltext + vq + (1 | pid)
##    Data: v1cleanmed
## 
## REML criterion at convergence: 6662
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6038 -0.7800  0.0486  0.7940  2.9955 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.000    0.000   
##  Residual             0.932    0.965   
## Number of obs: 2400, groups:  pid, 600
## 
## Fixed effects:
##                                      Estimate Std. Error t value
## (Intercept)                            1.1630     0.0766   15.19
## gendertarget_num                       0.0481     0.0663    0.73
## deivscontroltextDEI                   -0.3353     0.0583   -5.75
## vq                                     0.2804     0.0134   20.86
## gendertarget_num:deivscontroltextDEI   0.6755     0.0826    8.17
## 
## Correlation of Fixed Effects:
##             (Intr) gndrt_ dvsDEI vq    
## gndrtrgt_nm -0.375                     
## dvscntrlDEI -0.537  0.561              
## vq          -0.792 -0.070  0.060       
## gndrtr_:DEI  0.410 -0.793 -0.708 -0.081
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
summary(mediate(model.m = modelm, model.y = modely, treat = "gendertarget_num", mediator = "vq", covariates = list(deivscontroltext = "control"), sims = 5000))
## 
## Causal Mediation Analysis 
## 
## Quasi-Bayesian Confidence Intervals
## 
## (Inference Conditional on the Covariate Values Specified in `covariates')
## 
## Mediator Groups: pid 
## 
## Outcome Groups: pid 
## 
## Output Based on Overall Averages Across Groups 
## 
##                Estimate 95% CI Lower 95% CI Upper             p-value    
## ACME            0.09762      0.05333         0.14 <0.0000000000000002 ***
## ADE             0.04840     -0.08177         0.18               0.446    
## Total Effect    0.14602      0.00905         0.28               0.038 *  
## Prop. Mediated  0.64952      0.25685         3.16               0.038 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Sample Size Used: 2400 
## 
## 
## Simulations: 5000
summary(mediate(model.m = modelm, model.y = modely, treat = "gendertarget_num", mediator = "vq", covariates = list(deivscontroltext = "DEI"), sims = 5000))
## 
## Causal Mediation Analysis 
## 
## Quasi-Bayesian Confidence Intervals
## 
## (Inference Conditional on the Covariate Values Specified in `covariates')
## 
## Mediator Groups: pid 
## 
## Outcome Groups: pid 
## 
## Output Based on Overall Averages Across Groups 
## 
##                Estimate 95% CI Lower 95% CI Upper             p-value    
## ACME              0.238        0.200         0.28 <0.0000000000000002 ***
## ADE               0.723        0.625         0.82 <0.0000000000000002 ***
## Total Effect      0.961        0.860         1.06 <0.0000000000000002 ***
## Prop. Mediated    0.248        0.207         0.29 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Sample Size Used: 2400 
## 
## 
## Simulations: 5000
bruceR::PROCESS(data = v1cleanmed,
                x = "gendertarget",
                meds = c("vq"),
                y = "vs",
                mods = "deivscontroltext",
                clusters = "pid",
                med.type = "parallel",
                mod.type = "2-way",
                mod.path = "x-m",
                mod1.val = c("control", "DEI"), nsim = 5000, seed = 1)
## 
## NOTE: 
## ci has been reset to "mcmc" because bootstrap method is not applicable to multilevel models.
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 7 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Moderated Mediation
## -    Outcome (Y) : vs
## -  Predictor (X) : gendertarget (recoded: Man trgt=0, Woman trgt=1)
## -  Mediators (M) : vq
## - Moderators (W) : deivscontroltext
## - Covariates (C) : -
## -   HLM Clusters : pid
## 
## All numeric predictors have been grand-mean centered.
## (For details, please see the help page of PROCESS.)
## 
## Formula of Mediator:
## -    vq ~ gendertarget*deivscontroltext + (1 | pid)
## Formula of Outcome:
## -    vs ~ gendertarget + deivscontroltext + vq + (1 | pid)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────
##                                   (1) vs        (2) vq        (3) vs      
## ──────────────────────────────────────────────────────────────────────────
## (Intercept)                          4.658 ***     4.683 ***     4.672 ***
##                                     (0.051)       (0.074)       (0.059)   
## gendertarget                         0.697 ***     0.347 ***     0.159 ***
##                                     (0.051)       (0.079)       (0.036)   
## deivscontroltextDEI                               -0.009        -0.021    
##                                                   (0.092)       (0.074)   
## gendertarget:deivscontroltextDEI                   0.500 ***              
##                                                   (0.099)                 
## vq                                                               0.802 ***
##                                                                 (0.015)   
## ──────────────────────────────────────────────────────────────────────────
## Marginal R^2                         0.043         0.056         0.544    
## Conditional R^2                      0.454         0.414         0.749    
## AIC                               8711.579      8271.631      6854.989    
## BIC                               8734.712      8306.330      6889.689    
## Num. obs.                         2400          2400          2400        
## Num. groups: pid                   600           600           600        
## Var: pid (Intercept)                 1.168         0.819         0.572    
## Var: Residual                        1.551         1.336         0.701    
## ──────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0), ‘interactions’ (v1.1.5)
## Effect Type : Moderated Mediation (Model 7)
## Sample Size : 2400
## Random Seed : set.seed(1)
## Simulations : 5000 (Bootstrap)
## 
## Direct Effect: "gendertarget" (X) ==> "vs" (Y)
## Computing profile confidence intervals ...
## ──────────────────────────────────────────────────────────
##              Effect    S.E.     t     p           [95% CI]
## ──────────────────────────────────────────────────────────
## Direct (c')   0.159 (0.036) 4.464 <.001 *** [0.089, 0.229]
## ──────────────────────────────────────────────────────────
## 
## Interaction Effect on "vq" (M)
## ─────────────────────────────────────────────────────────
##                                      F df1  df2     p    
## ─────────────────────────────────────────────────────────
## gendertarget * deivscontroltext  25.72   1 1798 <.001 ***
## ─────────────────────────────────────────────────────────
## 
## Simple Slopes: "gendertarget" (X) ==> "vq" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────────
##  "deivscontroltext" Effect    S.E.      t     p           [95% CI]
## ──────────────────────────────────────────────────────────────────
##  control             0.347 (0.079)  4.387 <.001 *** [0.192, 0.503]
##  DEI                 0.848 (0.059) 14.426 <.001 *** [0.732, 0.963]
## ──────────────────────────────────────────────────────────────────
## 
## Running 5000 * 2 simulations...
## Indirect Path: "gendertarget" (X) ==> "vq" (M) ==> "vs" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ──────────────────────────────────────────────────────────────────
##  "deivscontroltext" Effect    S.E.      z     p      [MCMC 95% CI]
## ──────────────────────────────────────────────────────────────────
##  control             0.280 (0.063)  4.441 <.001 *** [0.154, 0.404]
##  DEI                 0.681 (0.049) 13.947 <.001 *** [0.587, 0.778]
## ──────────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 5000 Monte Carlo samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)
bruceR::PROCESS(data = v1cleanmed,
                x = "gendertarget",
                meds = c("interest"),
                y = "vs",
                mods = "deivscontroltext",
                clusters = "pid",
                med.type = "parallel",
                mod.type = "2-way",
                mod.path = "x-m",
                mod1.val = c("control", "DEI"), nsim = 5000, seed = 1)
## 
## NOTE: 
## ci has been reset to "mcmc" because bootstrap method is not applicable to multilevel models.
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 7 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Moderated Mediation
## -    Outcome (Y) : vs
## -  Predictor (X) : gendertarget (recoded: Man trgt=0, Woman trgt=1)
## -  Mediators (M) : interest
## - Moderators (W) : deivscontroltext
## - Covariates (C) : -
## -   HLM Clusters : pid
## 
## All numeric predictors have been grand-mean centered.
## (For details, please see the help page of PROCESS.)
## 
## Formula of Mediator:
## -    interest ~ gendertarget*deivscontroltext + (1 | pid)
## Formula of Outcome:
## -    vs ~ gendertarget + deivscontroltext + interest + (1 | pid)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────
##                                   (1) vs        (2) interest  (3) vs      
## ──────────────────────────────────────────────────────────────────────────
## (Intercept)                          4.658 ***     4.695 ***     4.630 ***
##                                     (0.051)       (0.075)       (0.071)   
## gendertarget                         0.697 ***     0.235 **      0.266 ***
##                                     (0.051)       (0.078)       (0.045)   
## deivscontroltextDEI                               -0.119         0.044    
##                                                   (0.093)       (0.089)   
## gendertarget:deivscontroltextDEI                   0.754 ***              
##                                                   (0.097)                 
## interest                                                         0.598 ***
##                                                                 (0.019)   
## ──────────────────────────────────────────────────────────────────────────
## Marginal R^2                         0.043         0.071         0.323    
## Conditional R^2                      0.454         0.444         0.611    
## AIC                               8711.579      8242.133      7869.263    
## BIC                               8734.712      8276.832      7903.962    
## Num. obs.                         2400          2400          2400        
## Num. groups: pid                   600           600           600        
## Var: pid (Intercept)                 1.168         0.872         0.806    
## Var: Residual                        1.551         1.298         1.090    
## ──────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0), ‘interactions’ (v1.1.5)
## Effect Type : Moderated Mediation (Model 7)
## Sample Size : 2400
## Random Seed : set.seed(1)
## Simulations : 5000 (Bootstrap)
## 
## Direct Effect: "gendertarget" (X) ==> "vs" (Y)
## Computing profile confidence intervals ...
## ──────────────────────────────────────────────────────────
##              Effect    S.E.     t     p           [95% CI]
## ──────────────────────────────────────────────────────────
## Direct (c')   0.266 (0.045) 5.950 <.001 *** [0.178, 0.353]
## ──────────────────────────────────────────────────────────
## 
## Interaction Effect on "interest" (M)
## ─────────────────────────────────────────────────────────
##                                      F df1  df2     p    
## ─────────────────────────────────────────────────────────
## gendertarget * deivscontroltext  60.11   1 1798 <.001 ***
## ─────────────────────────────────────────────────────────
## 
## Simple Slopes: "gendertarget" (X) ==> "interest" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────────
##  "deivscontroltext" Effect    S.E.      t     p           [95% CI]
## ──────────────────────────────────────────────────────────────────
##  control             0.235 (0.078)  3.007  .003 **  [0.082, 0.388]
##  DEI                 0.988 (0.058) 17.066 <.001 *** [0.875, 1.102]
## ──────────────────────────────────────────────────────────────────
## 
## Running 5000 * 2 simulations...
## Indirect Path: "gendertarget" (X) ==> "interest" (M) ==> "vs" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ──────────────────────────────────────────────────────────────────
##  "deivscontroltext" Effect    S.E.      z     p      [MCMC 95% CI]
## ──────────────────────────────────────────────────────────────────
##  control             0.141 (0.046)  3.044  .002 **  [0.049, 0.233]
##  DEI                 0.591 (0.039) 15.114 <.001 *** [0.517, 0.671]
## ──────────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 5000 Monte Carlo samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)
bruceR::PROCESS(data = v1cleanmed,
                x = "gendertarget",
                meds = c("interest"),
                y = "rank_r",
                mods = "deivscontroltext",
                clusters = "pid",
                med.type = "parallel",
                mod.type = "2-way",
                mod.path = "x-m",
                mod1.val = c("control", "DEI"), nsim = 5000, seed = 1)
## 
## NOTE: 
## ci has been reset to "mcmc" because bootstrap method is not applicable to multilevel models.
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 7 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Moderated Mediation
## -    Outcome (Y) : rank_r
## -  Predictor (X) : gendertarget (recoded: Man trgt=0, Woman trgt=1)
## -  Mediators (M) : interest
## - Moderators (W) : deivscontroltext
## - Covariates (C) : -
## -   HLM Clusters : pid
## 
## All numeric predictors have been grand-mean centered.
## (For details, please see the help page of PROCESS.)
## 
## Formula of Mediator:
## -    interest ~ gendertarget*deivscontroltext + (1 | pid)
## Formula of Outcome:
## -    rank_r ~ gendertarget + deivscontroltext + interest + (1 | pid)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
## 
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────
##                                   (1) rank_r    (2) interest  (3) rank_r  
## ──────────────────────────────────────────────────────────────────────────
## (Intercept)                          2.500 ***     4.695 ***     2.485 ***
##                                     (0.022)       (0.075)       (0.035)   
## gendertarget                         0.672 ***     0.235 **      0.529 ***
##                                     (0.044)       (0.078)       (0.043)   
## deivscontroltextDEI                               -0.119         0.024    
##                                                   (0.093)       (0.044)   
## gendertarget:deivscontroltextDEI                   0.754 ***              
##                                                   (0.097)                 
## interest                                                         0.197 ***
##                                                                 (0.014)   
## ──────────────────────────────────────────────────────────────────────────
## Marginal R^2                         0.090         0.071         0.159    
## Conditional R^2                      0.090         0.444         0.159    
## AIC                               7137.751      8242.133      6965.125    
## BIC                               7160.884      8276.832      6999.824    
## Num. obs.                         2400          2400          2400        
## Num. groups: pid                   600           600           600        
## Var: pid (Intercept)                 0.000         0.872         0.000    
## Var: Residual                        1.138         1.298         1.053    
## ──────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0), ‘interactions’ (v1.1.5)
## Effect Type : Moderated Mediation (Model 7)
## Sample Size : 2400
## Random Seed : set.seed(1)
## Simulations : 5000 (Bootstrap)
## 
## Direct Effect: "gendertarget" (X) ==> "rank_r" (Y)
## Computing profile confidence intervals ...
## ───────────────────────────────────────────────────────────
##              Effect    S.E.      t     p           [95% CI]
## ───────────────────────────────────────────────────────────
## Direct (c')   0.529 (0.043) 12.276 <.001 *** [0.445, 0.614]
## ───────────────────────────────────────────────────────────
## 
## Interaction Effect on "interest" (M)
## ─────────────────────────────────────────────────────────
##                                      F df1  df2     p    
## ─────────────────────────────────────────────────────────
## gendertarget * deivscontroltext  60.11   1 1798 <.001 ***
## ─────────────────────────────────────────────────────────
## 
## Simple Slopes: "gendertarget" (X) ==> "interest" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────────
##  "deivscontroltext" Effect    S.E.      t     p           [95% CI]
## ──────────────────────────────────────────────────────────────────
##  control             0.235 (0.078)  3.007  .003 **  [0.082, 0.388]
##  DEI                 0.988 (0.058) 17.066 <.001 *** [0.875, 1.102]
## ──────────────────────────────────────────────────────────────────
## 
## Running 5000 * 2 simulations...
## Indirect Path: "gendertarget" (X) ==> "interest" (M) ==> "rank_r" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ──────────────────────────────────────────────────────────────────
##  "deivscontroltext" Effect    S.E.      z     p      [MCMC 95% CI]
## ──────────────────────────────────────────────────────────────────
##  control             0.047 (0.016)  2.977  .003 **  [0.016, 0.078]
##  DEI                 0.195 (0.018) 10.856 <.001 *** [0.161, 0.232]
## ──────────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 5000 Monte Carlo samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)
bruceR::PROCESS(data = v1cleanmed,
                x = "gendertarget",
                meds = c("vq"),
                y = "rank_r",
                mods = "deivscontroltext",
                clusters = "pid",
                med.type = "parallel",
                mod.type = "2-way",
                mod.path = "x-m",
                mod1.val = c("control", "DEI"), nsim = 5000, seed = 1)
## 
## NOTE: 
## ci has been reset to "mcmc" because bootstrap method is not applicable to multilevel models.
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 7 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Moderated Mediation
## -    Outcome (Y) : rank_r
## -  Predictor (X) : gendertarget (recoded: Man trgt=0, Woman trgt=1)
## -  Mediators (M) : vq
## - Moderators (W) : deivscontroltext
## - Covariates (C) : -
## -   HLM Clusters : pid
## 
## All numeric predictors have been grand-mean centered.
## (For details, please see the help page of PROCESS.)
## 
## Formula of Mediator:
## -    vq ~ gendertarget*deivscontroltext + (1 | pid)
## Formula of Outcome:
## -    rank_r ~ gendertarget + deivscontroltext + vq + (1 | pid)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
## 
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────
##                                   (1) rank_r    (2) vq        (3) rank_r  
## ──────────────────────────────────────────────────────────────────────────
## (Intercept)                          2.500 ***     4.683 ***     2.498 ***
##                                     (0.022)       (0.074)       (0.034)   
## gendertarget                         0.672 ***     0.347 ***     0.478 ***
##                                     (0.044)       (0.079)       (0.041)   
## deivscontroltextDEI                               -0.009         0.003    
##                                                   (0.092)       (0.042)   
## gendertarget:deivscontroltextDEI                   0.500 ***              
##                                                   (0.099)                 
## vq                                                               0.289 ***
##                                                                 (0.014)   
## ──────────────────────────────────────────────────────────────────────────
## Marginal R^2                         0.090         0.056         0.235    
## Conditional R^2                      0.090         0.414         0.235    
## AIC                               7137.751      8271.631      6737.037    
## BIC                               7160.884      8306.330      6771.736    
## Num. obs.                         2400          2400          2400        
## Num. groups: pid                   600           600           600        
## Var: pid (Intercept)                 0.000         0.819         0.000    
## Var: Residual                        1.138         1.336         0.958    
## ──────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0), ‘interactions’ (v1.1.5)
## Effect Type : Moderated Mediation (Model 7)
## Sample Size : 2400
## Random Seed : set.seed(1)
## Simulations : 5000 (Bootstrap)
## 
## Direct Effect: "gendertarget" (X) ==> "rank_r" (Y)
## Computing profile confidence intervals ...
## ───────────────────────────────────────────────────────────
##              Effect    S.E.      t     p           [95% CI]
## ───────────────────────────────────────────────────────────
## Direct (c')   0.478 (0.041) 11.662 <.001 *** [0.398, 0.558]
## ───────────────────────────────────────────────────────────
## 
## Interaction Effect on "vq" (M)
## ─────────────────────────────────────────────────────────
##                                      F df1  df2     p    
## ─────────────────────────────────────────────────────────
## gendertarget * deivscontroltext  25.72   1 1798 <.001 ***
## ─────────────────────────────────────────────────────────
## 
## Simple Slopes: "gendertarget" (X) ==> "vq" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────────
##  "deivscontroltext" Effect    S.E.      t     p           [95% CI]
## ──────────────────────────────────────────────────────────────────
##  control             0.347 (0.079)  4.387 <.001 *** [0.192, 0.503]
##  DEI                 0.848 (0.059) 14.426 <.001 *** [0.732, 0.963]
## ──────────────────────────────────────────────────────────────────
## 
## Running 5000 * 2 simulations...
## Indirect Path: "gendertarget" (X) ==> "vq" (M) ==> "rank_r" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ──────────────────────────────────────────────────────────────────
##  "deivscontroltext" Effect    S.E.      z     p      [MCMC 95% CI]
## ──────────────────────────────────────────────────────────────────
##  control             0.101 (0.023)  4.352 <.001 *** [0.055, 0.147]
##  DEI                 0.246 (0.020) 11.990 <.001 *** [0.207, 0.288]
## ──────────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 5000 Monte Carlo samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)

Parallel Mediation and moderated mediation

DEVIS Control

DV: Rank

bruceR::PROCESS(data = v1cleanmed,
                x = "gendertarget",
                meds = c("vq", "interest"),
                y = "rank_r",
                mods = "deivscontroltext",
                clusters = "pid",
                med.type = "parallel",
                mod.type = "2-way",
                mod.path = "x-m",
                mod1.val = c("control", "DEI"), nsim = 5000, seed = 1)
## 
## NOTE: 
## ci has been reset to "mcmc" because bootstrap method is not applicable to multilevel models.
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 7 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Parallel Multiple Moderated Mediation (2 meds)
## -    Outcome (Y) : rank_r
## -  Predictor (X) : gendertarget (recoded: Man trgt=0, Woman trgt=1)
## -  Mediators (M) : vq, interest
## - Moderators (W) : deivscontroltext
## - Covariates (C) : -
## -   HLM Clusters : pid
## 
## All numeric predictors have been grand-mean centered.
## (For details, please see the help page of PROCESS.)
## 
## Formula of Mediator:
## -    vq ~ gendertarget*deivscontroltext + (1 | pid)
## -    interest ~ gendertarget*deivscontroltext + (1 | pid)
## Formula of Outcome:
## -    rank_r ~ gendertarget + deivscontroltext + vq + interest + (1 | pid)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
## 
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## 
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────
##                                   (1) rank_r    (2) vq        (3) interest  (4) rank_r  
## ────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                          2.500 ***     4.683 ***     4.695 ***     2.495 ***
##                                     (0.022)       (0.074)       (0.075)       (0.034)   
## gendertarget                         0.672 ***     0.347 ***     0.235 **      0.464 ***
##                                     (0.044)       (0.079)       (0.078)       (0.041)   
## deivscontroltextDEI                               -0.009        -0.119         0.007    
##                                                   (0.092)       (0.093)       (0.042)   
## gendertarget:deivscontroltextDEI                   0.500 ***     0.754 ***              
##                                                   (0.099)       (0.097)                 
## vq                                                                             0.264 ***
##                                                                               (0.017)   
## interest                                                                       0.043 ** 
##                                                                               (0.017)   
## ────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                         0.090         0.056         0.071         0.237    
## Conditional R^2                      0.090         0.414         0.444         0.237    
## AIC                               7137.751      8271.631      8242.133      6738.589    
## BIC                               7160.884      8306.330      8276.832      6779.072    
## Num. obs.                         2400          2400          2400          2400        
## Num. groups: pid                   600           600           600           600        
## Var: pid (Intercept)                 0.000         0.819         0.872         0.000    
## Var: Residual                        1.138         1.336         1.298         0.955    
## ────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0), ‘interactions’ (v1.1.5)
## Effect Type : Parallel Multiple Moderated Mediation (2 meds) (Model 7)
## Sample Size : 2400
## Random Seed : set.seed(1)
## Simulations : 5000 (Bootstrap)
## 
## Direct Effect: "gendertarget" (X) ==> "rank_r" (Y)
## Computing profile confidence intervals ...
## ───────────────────────────────────────────────────────────
##              Effect    S.E.      t     p           [95% CI]
## ───────────────────────────────────────────────────────────
## Direct (c')   0.464 (0.041) 11.236 <.001 *** [0.383, 0.545]
## ───────────────────────────────────────────────────────────
## 
## Interaction Effect on "vq" (M)
## ─────────────────────────────────────────────────────────
##                                      F df1  df2     p    
## ─────────────────────────────────────────────────────────
## gendertarget * deivscontroltext  25.72   1 1798 <.001 ***
## ─────────────────────────────────────────────────────────
## 
## Simple Slopes: "gendertarget" (X) ==> "vq" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────────
##  "deivscontroltext" Effect    S.E.      t     p           [95% CI]
## ──────────────────────────────────────────────────────────────────
##  control             0.347 (0.079)  4.387 <.001 *** [0.192, 0.503]
##  DEI                 0.848 (0.059) 14.426 <.001 *** [0.732, 0.963]
## ──────────────────────────────────────────────────────────────────
## 
## Running 5000 * 2 simulations...
## Indirect Path: "gendertarget" (X) ==> "vq" (M) ==> "rank_r" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ──────────────────────────────────────────────────────────────────
##  "deivscontroltext" Effect    S.E.      z     p      [MCMC 95% CI]
## ──────────────────────────────────────────────────────────────────
##  control             0.092 (0.021)  4.305 <.001 *** [0.051, 0.134]
##  DEI                 0.224 (0.021) 10.677 <.001 *** [0.184, 0.266]
## ──────────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 5000 Monte Carlo samples.)
## 
## Interaction Effect on "interest" (M)
## ─────────────────────────────────────────────────────────
##                                      F df1  df2     p    
## ─────────────────────────────────────────────────────────
## gendertarget * deivscontroltext  60.11   1 1798 <.001 ***
## ─────────────────────────────────────────────────────────
## 
## Simple Slopes: "gendertarget" (X) ==> "interest" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────────
##  "deivscontroltext" Effect    S.E.      t     p           [95% CI]
## ──────────────────────────────────────────────────────────────────
##  control             0.235 (0.078)  3.007  .003 **  [0.082, 0.388]
##  DEI                 0.988 (0.058) 17.066 <.001 *** [0.875, 1.102]
## ──────────────────────────────────────────────────────────────────
## 
## Running 5000 * 2 simulations...
## Indirect Path: "gendertarget" (X) ==> "interest" (M) ==> "rank_r" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ─────────────────────────────────────────────────────────────────
##  "deivscontroltext" Effect    S.E.     z     p      [MCMC 95% CI]
## ─────────────────────────────────────────────────────────────────
##  control             0.010 (0.005) 1.946  .052 .   [0.001, 0.022]
##  DEI                 0.043 (0.017) 2.592  .010 **  [0.011, 0.077]
## ─────────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 5000 Monte Carlo samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)

DV: VS

bruceR::PROCESS(data = v1cleanmed,
                x = "gendertarget",
                meds = c("vq", "interest"),
                y = "vs",
                mods = "deivscontroltext",
                clusters = "pid",
                med.type = "parallel",
                mod.type = "2-way",
                mod.path = "x-m",
                mod1.val = c("control", "DEI"), nsim = 5000, seed = 1)
## 
## NOTE: 
## ci has been reset to "mcmc" because bootstrap method is not applicable to multilevel models.
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 7 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Parallel Multiple Moderated Mediation (2 meds)
## -    Outcome (Y) : vs
## -  Predictor (X) : gendertarget (recoded: Man trgt=0, Woman trgt=1)
## -  Mediators (M) : vq, interest
## - Moderators (W) : deivscontroltext
## - Covariates (C) : -
## -   HLM Clusters : pid
## 
## All numeric predictors have been grand-mean centered.
## (For details, please see the help page of PROCESS.)
## 
## Formula of Mediator:
## -    vq ~ gendertarget*deivscontroltext + (1 | pid)
## -    interest ~ gendertarget*deivscontroltext + (1 | pid)
## Formula of Outcome:
## -    vs ~ gendertarget + deivscontroltext + vq + interest + (1 | pid)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────
##                                   (1) vs        (2) vq        (3) interest  (4) vs      
## ────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                          4.658 ***     4.683 ***     4.695 ***     4.656 ***
##                                     (0.051)       (0.074)       (0.075)       (0.058)   
## gendertarget                         0.697 ***     0.347 ***     0.235 **      0.087 *  
##                                     (0.051)       (0.079)       (0.078)       (0.035)   
## deivscontroltextDEI                               -0.009        -0.119         0.004    
##                                                   (0.092)       (0.093)       (0.072)   
## gendertarget:deivscontroltextDEI                   0.500 ***     0.754 ***              
##                                                   (0.099)       (0.097)                 
## vq                                                                             0.683 ***
##                                                                               (0.018)   
## interest                                                                       0.210 ***
##                                                                               (0.018)   
## ────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                         0.043         0.056         0.071         0.569    
## Conditional R^2                      0.454         0.414         0.444         0.766    
## AIC                               8711.579      8271.631      8242.133      6727.287    
## BIC                               8734.712      8306.330      8276.832      6767.770    
## Num. obs.                         2400          2400          2400          2400        
## Num. groups: pid                   600           600           600           600        
## Var: pid (Intercept)                 1.168         0.819         0.872         0.552    
## Var: Residual                        1.551         1.336         1.298         0.659    
## ────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0), ‘interactions’ (v1.1.5)
## Effect Type : Parallel Multiple Moderated Mediation (2 meds) (Model 7)
## Sample Size : 2400
## Random Seed : set.seed(1)
## Simulations : 5000 (Bootstrap)
## 
## Direct Effect: "gendertarget" (X) ==> "vs" (Y)
## Computing profile confidence intervals ...
## ──────────────────────────────────────────────────────────
##              Effect    S.E.     t     p           [95% CI]
## ──────────────────────────────────────────────────────────
## Direct (c')   0.087 (0.035) 2.490  .013 *   [0.019, 0.156]
## ──────────────────────────────────────────────────────────
## 
## Interaction Effect on "vq" (M)
## ─────────────────────────────────────────────────────────
##                                      F df1  df2     p    
## ─────────────────────────────────────────────────────────
## gendertarget * deivscontroltext  25.72   1 1798 <.001 ***
## ─────────────────────────────────────────────────────────
## 
## Simple Slopes: "gendertarget" (X) ==> "vq" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────────
##  "deivscontroltext" Effect    S.E.      t     p           [95% CI]
## ──────────────────────────────────────────────────────────────────
##  control             0.347 (0.079)  4.387 <.001 *** [0.192, 0.503]
##  DEI                 0.848 (0.059) 14.426 <.001 *** [0.732, 0.963]
## ──────────────────────────────────────────────────────────────────
## 
## Running 5000 * 2 simulations...
## Indirect Path: "gendertarget" (X) ==> "vq" (M) ==> "vs" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ──────────────────────────────────────────────────────────────────
##  "deivscontroltext" Effect    S.E.      z     p      [MCMC 95% CI]
## ──────────────────────────────────────────────────────────────────
##  control             0.238 (0.054)  4.438 <.001 *** [0.131, 0.345]
##  DEI                 0.580 (0.043) 13.507 <.001 *** [0.496, 0.665]
## ──────────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 5000 Monte Carlo samples.)
## 
## Interaction Effect on "interest" (M)
## ─────────────────────────────────────────────────────────
##                                      F df1  df2     p    
## ─────────────────────────────────────────────────────────
## gendertarget * deivscontroltext  60.11   1 1798 <.001 ***
## ─────────────────────────────────────────────────────────
## 
## Simple Slopes: "gendertarget" (X) ==> "interest" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────────
##  "deivscontroltext" Effect    S.E.      t     p           [95% CI]
## ──────────────────────────────────────────────────────────────────
##  control             0.235 (0.078)  3.007  .003 **  [0.082, 0.388]
##  DEI                 0.988 (0.058) 17.066 <.001 *** [0.875, 1.102]
## ──────────────────────────────────────────────────────────────────
## 
## Running 5000 * 2 simulations...
## Indirect Path: "gendertarget" (X) ==> "interest" (M) ==> "vs" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ─────────────────────────────────────────────────────────────────
##  "deivscontroltext" Effect    S.E.     z     p      [MCMC 95% CI]
## ─────────────────────────────────────────────────────────────────
##  control             0.050 (0.017) 2.948  .003 **  [0.017, 0.084]
##  DEI                 0.208 (0.021) 9.712 <.001 *** [0.168, 0.252]
## ─────────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 5000 Monte Carlo samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)

DEVIS Control

DV: Rank

bruceR::PROCESS(data = v1cleanmed,
                x = "gendertarget_f",
                meds = c("vq", "interest"),
                y = "rank_r",
                mods = "deivscontroltext",
                clusters = "pid",
                med.type = "parallel",
                mod.type = "2-way",
                mod.path = "x-m",
                mod1.val = c("control", "DEI"), nsim = 5000, seed = 1)
## 
## NOTE: 
## ci has been reset to "mcmc" because bootstrap method is not applicable to multilevel models.
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 7 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Parallel Multiple Moderated Mediation (2 meds)
## -    Outcome (Y) : rank_r
## -  Predictor (X) : gendertarget_f (recoded: Man trgt=0, Woman trgt=1)
## -  Mediators (M) : vq, interest
## - Moderators (W) : deivscontroltext
## - Covariates (C) : -
## -   HLM Clusters : pid
## 
## All numeric predictors have been grand-mean centered.
## (For details, please see the help page of PROCESS.)
## 
## Formula of Mediator:
## -    vq ~ gendertarget_f*deivscontroltext + (1 | pid)
## -    interest ~ gendertarget_f*deivscontroltext + (1 | pid)
## Formula of Outcome:
## -    rank_r ~ gendertarget_f + deivscontroltext + vq + interest + (1 | pid)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
## 
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────
##                                     (1) rank_r    (2) vq        (3) interest  (4) rank_r  
## ──────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                            2.500 ***     4.683 ***     4.695 ***     2.495 ***
##                                       (0.022)       (0.074)       (0.075)       (0.034)   
## gendertarget_f                         0.672 ***     0.347 ***     0.235 **      0.464 ***
##                                       (0.044)       (0.079)       (0.078)       (0.041)   
## deivscontroltextDEI                                 -0.009        -0.119         0.007    
##                                                     (0.092)       (0.093)       (0.042)   
## gendertarget_f:deivscontroltextDEI                   0.500 ***     0.754 ***              
##                                                     (0.099)       (0.097)                 
## vq                                                                               0.264 ***
##                                                                                 (0.017)   
## interest                                                                         0.043 ** 
##                                                                                 (0.017)   
## ──────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                           0.090         0.056         0.071         0.237    
## Conditional R^2                        0.090         0.414         0.444         0.237    
## AIC                                 7137.751      8271.631      8242.133      6738.589    
## BIC                                 7160.884      8306.330      8276.832      6779.072    
## Num. obs.                           2400          2400          2400          2400        
## Num. groups: pid                     600           600           600           600        
## Var: pid (Intercept)                   0.000         0.819         0.872         0.000    
## Var: Residual                          1.138         1.336         1.298         0.955    
## ──────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0), ‘interactions’ (v1.1.5)
## Effect Type : Parallel Multiple Moderated Mediation (2 meds) (Model 7)
## Sample Size : 2400
## Random Seed : set.seed(1)
## Simulations : 5000 (Bootstrap)
## 
## Direct Effect: "gendertarget_f" (X) ==> "rank_r" (Y)
## Computing profile confidence intervals ...
## ───────────────────────────────────────────────────────────
##              Effect    S.E.      t     p           [95% CI]
## ───────────────────────────────────────────────────────────
## Direct (c')   0.464 (0.041) 11.236 <.001 *** [0.383, 0.545]
## ───────────────────────────────────────────────────────────
## 
## Interaction Effect on "vq" (M)
## ───────────────────────────────────────────────────────────
##                                        F df1  df2     p    
## ───────────────────────────────────────────────────────────
## gendertarget_f * deivscontroltext  25.72   1 1798 <.001 ***
## ───────────────────────────────────────────────────────────
## 
## Simple Slopes: "gendertarget_f" (X) ==> "vq" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────────
##  "deivscontroltext" Effect    S.E.      t     p           [95% CI]
## ──────────────────────────────────────────────────────────────────
##  control             0.347 (0.079)  4.387 <.001 *** [0.192, 0.503]
##  DEI                 0.848 (0.059) 14.426 <.001 *** [0.732, 0.963]
## ──────────────────────────────────────────────────────────────────
## 
## Running 5000 * 2 simulations...
## Indirect Path: "gendertarget_f" (X) ==> "vq" (M) ==> "rank_r" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ──────────────────────────────────────────────────────────────────
##  "deivscontroltext" Effect    S.E.      z     p      [MCMC 95% CI]
## ──────────────────────────────────────────────────────────────────
##  control             0.092 (0.021)  4.305 <.001 *** [0.051, 0.134]
##  DEI                 0.224 (0.021) 10.677 <.001 *** [0.184, 0.266]
## ──────────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 5000 Monte Carlo samples.)
## 
## Interaction Effect on "interest" (M)
## ───────────────────────────────────────────────────────────
##                                        F df1  df2     p    
## ───────────────────────────────────────────────────────────
## gendertarget_f * deivscontroltext  60.11   1 1798 <.001 ***
## ───────────────────────────────────────────────────────────
## 
## Simple Slopes: "gendertarget_f" (X) ==> "interest" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────────
##  "deivscontroltext" Effect    S.E.      t     p           [95% CI]
## ──────────────────────────────────────────────────────────────────
##  control             0.235 (0.078)  3.007  .003 **  [0.082, 0.388]
##  DEI                 0.988 (0.058) 17.066 <.001 *** [0.875, 1.102]
## ──────────────────────────────────────────────────────────────────
## 
## Running 5000 * 2 simulations...
## Indirect Path: "gendertarget_f" (X) ==> "interest" (M) ==> "rank_r" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ─────────────────────────────────────────────────────────────────
##  "deivscontroltext" Effect    S.E.     z     p      [MCMC 95% CI]
## ─────────────────────────────────────────────────────────────────
##  control             0.010 (0.005) 1.946  .052 .   [0.001, 0.022]
##  DEI                 0.043 (0.017) 2.592  .010 **  [0.011, 0.077]
## ─────────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 5000 Monte Carlo samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)

DV: VS

bruceR::PROCESS(data = v1cleanmed,
                x = "gendertarget",
                meds = c("vq", "interest"),
                y = "vs",
                mods = "deivscontroltext",
                clusters = "pid",
                med.type = "parallel",
                mod.type = "2-way",
                mod.path = "x-m",
                mod1.val = c("control", "DEI"), nsim = 5000, seed = 1)
## 
## NOTE: 
## ci has been reset to "mcmc" because bootstrap method is not applicable to multilevel models.
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 7 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Parallel Multiple Moderated Mediation (2 meds)
## -    Outcome (Y) : vs
## -  Predictor (X) : gendertarget (recoded: Man trgt=0, Woman trgt=1)
## -  Mediators (M) : vq, interest
## - Moderators (W) : deivscontroltext
## - Covariates (C) : -
## -   HLM Clusters : pid
## 
## All numeric predictors have been grand-mean centered.
## (For details, please see the help page of PROCESS.)
## 
## Formula of Mediator:
## -    vq ~ gendertarget*deivscontroltext + (1 | pid)
## -    interest ~ gendertarget*deivscontroltext + (1 | pid)
## Formula of Outcome:
## -    vs ~ gendertarget + deivscontroltext + vq + interest + (1 | pid)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────
##                                   (1) vs        (2) vq        (3) interest  (4) vs      
## ────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                          4.658 ***     4.683 ***     4.695 ***     4.656 ***
##                                     (0.051)       (0.074)       (0.075)       (0.058)   
## gendertarget                         0.697 ***     0.347 ***     0.235 **      0.087 *  
##                                     (0.051)       (0.079)       (0.078)       (0.035)   
## deivscontroltextDEI                               -0.009        -0.119         0.004    
##                                                   (0.092)       (0.093)       (0.072)   
## gendertarget:deivscontroltextDEI                   0.500 ***     0.754 ***              
##                                                   (0.099)       (0.097)                 
## vq                                                                             0.683 ***
##                                                                               (0.018)   
## interest                                                                       0.210 ***
##                                                                               (0.018)   
## ────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                         0.043         0.056         0.071         0.569    
## Conditional R^2                      0.454         0.414         0.444         0.766    
## AIC                               8711.579      8271.631      8242.133      6727.287    
## BIC                               8734.712      8306.330      8276.832      6767.770    
## Num. obs.                         2400          2400          2400          2400        
## Num. groups: pid                   600           600           600           600        
## Var: pid (Intercept)                 1.168         0.819         0.872         0.552    
## Var: Residual                        1.551         1.336         1.298         0.659    
## ────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0), ‘interactions’ (v1.1.5)
## Effect Type : Parallel Multiple Moderated Mediation (2 meds) (Model 7)
## Sample Size : 2400
## Random Seed : set.seed(1)
## Simulations : 5000 (Bootstrap)
## 
## Direct Effect: "gendertarget" (X) ==> "vs" (Y)
## Computing profile confidence intervals ...
## ──────────────────────────────────────────────────────────
##              Effect    S.E.     t     p           [95% CI]
## ──────────────────────────────────────────────────────────
## Direct (c')   0.087 (0.035) 2.490  .013 *   [0.019, 0.156]
## ──────────────────────────────────────────────────────────
## 
## Interaction Effect on "vq" (M)
## ─────────────────────────────────────────────────────────
##                                      F df1  df2     p    
## ─────────────────────────────────────────────────────────
## gendertarget * deivscontroltext  25.72   1 1798 <.001 ***
## ─────────────────────────────────────────────────────────
## 
## Simple Slopes: "gendertarget" (X) ==> "vq" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────────
##  "deivscontroltext" Effect    S.E.      t     p           [95% CI]
## ──────────────────────────────────────────────────────────────────
##  control             0.347 (0.079)  4.387 <.001 *** [0.192, 0.503]
##  DEI                 0.848 (0.059) 14.426 <.001 *** [0.732, 0.963]
## ──────────────────────────────────────────────────────────────────
## 
## Running 5000 * 2 simulations...
## Indirect Path: "gendertarget" (X) ==> "vq" (M) ==> "vs" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ──────────────────────────────────────────────────────────────────
##  "deivscontroltext" Effect    S.E.      z     p      [MCMC 95% CI]
## ──────────────────────────────────────────────────────────────────
##  control             0.238 (0.054)  4.438 <.001 *** [0.131, 0.345]
##  DEI                 0.580 (0.043) 13.507 <.001 *** [0.496, 0.665]
## ──────────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 5000 Monte Carlo samples.)
## 
## Interaction Effect on "interest" (M)
## ─────────────────────────────────────────────────────────
##                                      F df1  df2     p    
## ─────────────────────────────────────────────────────────
## gendertarget * deivscontroltext  60.11   1 1798 <.001 ***
## ─────────────────────────────────────────────────────────
## 
## Simple Slopes: "gendertarget" (X) ==> "interest" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────────
##  "deivscontroltext" Effect    S.E.      t     p           [95% CI]
## ──────────────────────────────────────────────────────────────────
##  control             0.235 (0.078)  3.007  .003 **  [0.082, 0.388]
##  DEI                 0.988 (0.058) 17.066 <.001 *** [0.875, 1.102]
## ──────────────────────────────────────────────────────────────────
## 
## Running 5000 * 2 simulations...
## Indirect Path: "gendertarget" (X) ==> "interest" (M) ==> "vs" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ─────────────────────────────────────────────────────────────────
##  "deivscontroltext" Effect    S.E.     z     p      [MCMC 95% CI]
## ─────────────────────────────────────────────────────────────────
##  control             0.050 (0.017) 2.948  .003 **  [0.017, 0.084]
##  DEI                 0.208 (0.021) 9.712 <.001 *** [0.168, 0.252]
## ─────────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 5000 Monte Carlo samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)

Calculate index of moderated mediation

library(tidyverse)
test <- data.frame(
  mod_on_med = dplyr::pull(parameters::bootstrap_model(lmer(interest~gendertarget_num*deivscontroltext +  (1 | pid), v1cleanmed))["gendertarget_num:deivscontroltextDEI"]),
  mod_on_y = dplyr::pull(parameters::bootstrap_model(lmer(vs~gendertarget_num*deivscontroltext +  interest + (1 | pid), v1cleanmed))["gendertarget_num:deivscontroltextDEI"]))

test %>%
  dplyr::rowwise() %>%
  dplyr::mutate(indexbstrp = mod_on_med * mod_on_y)