knitr::opts_chunk$set(echo = TRUE, message = FALSE, warning = FALSE)
library(readxl)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
library(knitr)
# Load the data
Upper626 <- read_excel("C:/Users/Franco Castagliuolo/OneDrive - Bentley University/Neers 24/Pitchers/Upper 626/Upper 626.xlsx")
# Filter the data for the pitcher Joshua Sibley
Joshua_Sibley_data <- Upper626 %>%
filter(Pitcher == "Sibley, Joshua")
# Create a detailed table for each pitch
detailed_pitch_table <- Joshua_Sibley_data %>%
select(AutoPitchType, RelSpeed, SpinRate, SpinAxis, HorzBreak, InducedVertBreak, PitchCall, RelHeight, RelSide, Extension) %>%
rename(
ReleaseSpeed = RelSpeed,
Tilt = SpinAxis,
HorizontalBreak = HorzBreak,
InducedVerticalBreak = InducedVertBreak,
ReleaseHeight = RelHeight,
ReleaseSide = RelSide
) %>%
mutate(
ReleaseSpeed = round(ReleaseSpeed, 2),
SpinRate = round(SpinRate, 2),
Tilt = round(Tilt, 2),
HorizontalBreak = round(HorizontalBreak, 2),
InducedVerticalBreak = round(InducedVerticalBreak, 2),
ReleaseHeight = round(ReleaseHeight, 2),
ReleaseSide = round(ReleaseSide, 2),
Extension = round(Extension, 2),
ClockTilt = round((Tilt / 30) %% 12, 1) # Interpret Tilt as clock face
)
# Display the detailed table
knitr::kable(detailed_pitch_table, caption = "Detailed Pitch Table for Joshua Sibley")
Detailed Pitch Table for Joshua Sibley
Four-Seam |
86.21 |
2298.44 |
156.33 |
-7.60 |
18.62 |
StrikeCalled |
5.52 |
-0.71 |
5.38 |
5.2 |
Four-Seam |
84.43 |
2260.64 |
134.14 |
-11.73 |
12.78 |
StrikeCalled |
5.51 |
-0.83 |
5.40 |
4.5 |
Curveball |
76.85 |
2777.93 |
32.27 |
-13.57 |
-20.14 |
BallCalled |
5.76 |
-0.73 |
5.06 |
1.1 |
Four-Seam |
85.40 |
2325.63 |
144.04 |
-10.50 |
15.74 |
FoulBallNotFieldable |
5.43 |
-0.88 |
5.51 |
4.8 |
Changeup |
85.73 |
2358.14 |
112.99 |
-11.56 |
6.10 |
BallCalled |
5.47 |
-0.75 |
5.47 |
3.8 |
Curveball |
77.55 |
2806.63 |
305.56 |
8.68 |
-4.68 |
StrikeSwinging |
5.85 |
-0.43 |
4.62 |
10.2 |
Changeup |
83.04 |
2236.49 |
139.02 |
-6.98 |
9.31 |
BallCalled |
5.44 |
-0.80 |
5.50 |
4.6 |
Changeup |
84.88 |
2391.88 |
129.95 |
-13.83 |
12.83 |
BallCalled |
5.49 |
-0.79 |
5.51 |
4.3 |
Cutter |
84.34 |
2338.10 |
175.66 |
-0.61 |
9.28 |
BallCalled |
5.47 |
-0.81 |
5.48 |
5.9 |
Changeup |
85.65 |
2410.94 |
134.66 |
-12.81 |
13.90 |
StrikeCalled |
5.55 |
-0.66 |
5.42 |
4.5 |
Changeup |
83.26 |
2304.40 |
133.91 |
-12.68 |
13.45 |
InPlay |
5.52 |
-0.62 |
5.46 |
4.5 |
Changeup |
85.03 |
2350.60 |
117.35 |
-13.70 |
8.22 |
BallCalled |
5.54 |
-0.86 |
5.44 |
3.9 |
Four-Seam |
85.12 |
2365.10 |
143.74 |
-12.73 |
18.63 |
FoulBallNotFieldable |
5.57 |
-0.48 |
5.57 |
4.8 |
Curveball |
76.46 |
2633.39 |
292.15 |
13.98 |
-4.03 |
BallCalled |
5.82 |
-0.51 |
4.70 |
9.7 |
Four-Seam |
85.75 |
2264.35 |
173.73 |
-1.54 |
15.37 |
BallCalled |
5.63 |
-0.61 |
5.49 |
5.8 |
Cutter |
84.20 |
2262.47 |
167.96 |
-2.57 |
13.45 |
InPlay |
5.44 |
-0.62 |
5.34 |
5.6 |
Curveball |
77.44 |
2716.60 |
304.75 |
7.43 |
-3.62 |
StrikeCalled |
5.82 |
-0.65 |
4.79 |
10.2 |
Curveball |
77.17 |
2797.30 |
317.11 |
10.39 |
-9.55 |
BallCalled |
5.89 |
-0.33 |
5.07 |
10.6 |
Cutter |
84.18 |
2321.83 |
163.48 |
-4.01 |
14.84 |
BallCalled |
5.62 |
-0.42 |
5.33 |
5.4 |
Four-Seam |
86.55 |
2357.09 |
160.52 |
-5.08 |
15.65 |
InPlay |
5.55 |
-0.51 |
5.38 |
5.4 |
# Calculate the total number of pitches
total_pitches <- nrow(detailed_pitch_table)
# Create a summary table
pitch_summary <- detailed_pitch_table %>%
group_by(AutoPitchType) %>%
summarise(
TotalPitches = n(),
Usage = sprintf("%.2f%%", n() / total_pitches * 100),
Balls = sum(PitchCall == "BallCalled"),
Strikes = sum(PitchCall != "BallCalled"), # Count everything not a ball as a strike
BallPercentage = sprintf('%.2f%%', Balls / TotalPitches * 100),
StrikePercentage = sprintf('%.2f%%', Strikes / TotalPitches * 100),
AvgVelocity = round(mean(ReleaseSpeed, na.rm = TRUE), 2),
AvgSpinRate = round(mean(SpinRate, na.rm = TRUE), 2),
AvgInducedVertBreak = round(mean(InducedVerticalBreak, na.rm = TRUE), 2),
AvgHorzBreak = round(mean(HorizontalBreak, na.rm = TRUE), 2),
AvgTilt = round(mean(Tilt, na.rm = TRUE), 2),
AvgClockTilt = round(mean(ClockTilt, na.rm = TRUE), 1), # Clock face interpretation
AvgReleaseHeight = round(mean(ReleaseHeight, na.rm = TRUE), 2),
AvgReleaseSide = round(mean(ReleaseSide, na.rm = TRUE), 2),
AvgExtension = round(mean(Extension, na.rm = TRUE), 2)
) %>%
select(AutoPitchType, Usage, everything())
# Display the total number of pitches
cat("Total number of pitches thrown: ", total_pitches, "\n")
## Total number of pitches thrown: 20
# Display the summary table
knitr::kable(pitch_summary, caption = "Summary Pitch Table for Joshua Sibley")
Summary Pitch Table for Joshua Sibley
Changeup |
30.00% |
6 |
4 |
2 |
66.67% |
33.33% |
84.60 |
2342.07 |
10.63 |
-11.93 |
127.98 |
4.3 |
5.50 |
-0.75 |
5.47 |
Curveball |
25.00% |
5 |
3 |
2 |
60.00% |
40.00% |
77.09 |
2746.37 |
-8.40 |
5.38 |
250.37 |
8.4 |
5.83 |
-0.53 |
4.85 |
Cutter |
15.00% |
3 |
2 |
1 |
66.67% |
33.33% |
84.24 |
2307.47 |
12.52 |
-2.40 |
169.03 |
5.6 |
5.51 |
-0.62 |
5.38 |
Four-Seam |
30.00% |
6 |
1 |
5 |
16.67% |
83.33% |
85.58 |
2311.88 |
16.13 |
-8.20 |
152.08 |
5.1 |
5.54 |
-0.67 |
5.46 |
# Calculate maximum fastball velocity
max_fb_velocity <- detailed_pitch_table %>%
filter(AutoPitchType %in% c("Four-Seam", "Two-Seam", "Sinker", "Cutter")) %>%
summarise(MaxFBVelocity = max(ReleaseSpeed, na.rm = TRUE)) %>%
pull(MaxFBVelocity)
# Display the maximum fastball velocity
cat("Joshua Sibley maximum FB velocity: ", max_fb_velocity, "mph\n")
## Joshua Sibley maximum FB velocity: 86.55 mph
# Prepare data for plotting pitch locations
pitch_location_data <- Joshua_Sibley_data %>%
select(AutoPitchType, PlateLocHeight, PlateLocSide, PitchCall) %>%
rename(
PitchHeight = PlateLocHeight,
PitchSide = PlateLocSide
) %>%
mutate(
SwingTake = ifelse(PitchCall %in% c("StrikeSwinging", "FoulBallNonSwinging", "FoulBallFieldable", "FoulBallNotFieldable", "InPlay"), "Swing", "Take"),
Chase = ifelse(SwingTake == "Swing" & (PitchSide < -0.75 | PitchSide > 0.75 | PitchHeight < 1.5 | PitchHeight > 3.5), "Chase", "Non-Chase")
)
# Create the scatter plot with specified strike zone boxes
ggplot(pitch_location_data, aes(x = PitchSide, y = PitchHeight, color = SwingTake, shape = Chase)) +
geom_point(size = 3) + # Increase point size
geom_rect(aes(xmin = -0.5, xmax = 0.5, ymin = 1.75, ymax = 3.25), fill = NA, color = "red", linetype = "solid", size = 1) + # Red box
geom_rect(aes(xmin = -0.75, xmax = 0.75, ymin = 1.5, ymax = 3.5), fill = NA, color = "black", linetype = "solid", size = 1) + # Black box
geom_rect(aes(xmin = -1.25, xmax = 1.25, ymin = 1.25, ymax = 3.75), fill = NA, color = "gray", linetype = "solid", size = 1) + # Gray box
scale_x_continuous(limits = c(-2, 2)) +
scale_y_continuous(limits = c(0, 5)) +
coord_fixed(ratio = 1) + # Adjust ratio to shrink vertical distance
labs(title = "Pitch Locations for Joshua Sibley",
x = "Horizontal Location (feet)",
y = "Vertical Location (feet)",
color = "Swing/Take",
shape = "Chase") +
facet_wrap(~ AutoPitchType) + # Create individual graphs for each pitch type
theme_minimal() +
theme(
legend.position = "right",
panel.grid.major = element_line(color = "grey80"),
panel.grid.minor = element_line(color = "grey90"),
axis.text = element_text(color = "black"),
axis.title = element_text(color = "black"),
plot.title = element_text(color = "black"),
legend.background = element_rect(fill = "white", color = NA),
legend.key = element_rect(fill = "white", color = NA),
legend.text = element_text(color = "black"),
legend.title = element_text(color = "black")
)

# Create the scatter plot for horizontal and vertical breaks
ggplot(detailed_pitch_table, aes(x = HorizontalBreak, y = InducedVerticalBreak, color = AutoPitchType)) +
geom_point(size = 3) + # Increase point size
labs(title = "Pitch Movement for Joshua Sibley",
x = "Horizontal Break (inches)",
y = "Induced Vertical Break (inches)",
color = "Pitch Type") +
theme_minimal() +
theme(
legend.position = "right",
panel.grid.major = element_line(color = "grey80"),
panel.grid.minor = element_line(color = "grey90"),
axis.text = element_text(color = "black"),
axis.title = element_text(color = "black"),
plot.title = element_text(color = "black"),
legend.background = element_rect(fill = "white", color = NA),
legend.key = element_rect(fill = "white", color = NA),
legend.text = element_text(color = "black"),
legend.title = element_text(color = "black")
)
