knitr::opts_chunk$set(echo = TRUE, message = FALSE, warning = FALSE)
library(readxl)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
library(knitr)

# Load the data
Sanford625 <- read_excel("C:/Users/Franco Castagliuolo/OneDrive - Bentley University/Neers 24/Pitchers/Sanford 625/Sanford 625.xlsx")
# Filter the data for the pitcher Nate Isler
Nate_Isler_data <- Sanford625 %>%
  filter(Pitcher == "Isler, Nate")

# Create a detailed table for each pitch
detailed_pitch_table <- Nate_Isler_data %>%
  select(AutoPitchType, RelSpeed, SpinRate, SpinAxis, HorzBreak, InducedVertBreak, PitchCall, RelHeight, RelSide, Extension) %>%
  rename(
    ReleaseSpeed = RelSpeed,
    Tilt = SpinAxis,
    HorizontalBreak = HorzBreak,
    InducedVerticalBreak = InducedVertBreak,
    ReleaseHeight = RelHeight,
    ReleaseSide = RelSide
  ) %>%
  mutate(
    ReleaseSpeed = round(ReleaseSpeed, 2),
    SpinRate = round(SpinRate, 2),
    Tilt = round(Tilt, 2),
    HorizontalBreak = round(HorizontalBreak, 2),
    InducedVerticalBreak = round(InducedVerticalBreak, 2),
    ReleaseHeight = round(ReleaseHeight, 2),
    ReleaseSide = round(ReleaseSide, 2),
    Extension = round(Extension, 2),
    ClockTilt = round((Tilt / 30) %% 12, 1) # Interpret Tilt as clock face
  )

# Display the detailed table
knitr::kable(detailed_pitch_table, caption = "Detailed Pitch Table for Nate Isler")
Detailed Pitch Table for Nate Isler
AutoPitchType ReleaseSpeed SpinRate Tilt HorizontalBreak InducedVerticalBreak PitchCall ReleaseHeight ReleaseSide Extension ClockTilt
Four-Seam 86.78 2106.05 197.79 6.79 22.51 BallCalled 6.61 0.71 5.70 6.6
Four-Seam 87.11 2080.47 192.09 4.13 20.60 StrikeCalled 6.50 0.68 5.79 6.4
Four-Seam 85.69 2107.52 195.64 5.07 19.46 FoulBallNotFieldable 6.51 0.68 5.68 6.5
Four-Seam 88.96 2236.54 213.16 11.66 19.18 StrikeCalled 6.56 0.62 5.79 7.1
Curveball 72.85 2348.58 43.23 -12.52 -11.46 BallCalled 6.36 0.83 5.28 1.4
Four-Seam 87.29 2177.27 210.53 11.04 20.07 StrikeCalled 6.48 0.77 5.93 7.0
Four-Seam 87.22 2195.28 209.47 9.74 18.61 StrikeCalled 6.60 0.61 5.64 7.0
Curveball 76.75 2500.57 39.08 -11.83 -12.88 BallCalled 6.47 0.57 5.39 1.3
Curveball 72.92 2351.11 33.53 -12.64 -17.14 BallCalled 6.40 0.72 5.47 1.1
Four-Seam 86.69 2094.97 209.74 10.36 19.46 InPlay 6.52 0.75 5.81 7.0
Four-Seam 86.64 2069.45 212.62 11.68 19.64 BallCalled 6.48 0.77 5.91 7.1
Four-Seam 86.55 2208.47 197.93 5.92 19.65 InPlay 6.52 0.78 5.73 6.6
# Calculate the total number of pitches
total_pitches <- nrow(detailed_pitch_table)

# Create a summary table
pitch_summary <- detailed_pitch_table %>%
  group_by(AutoPitchType) %>%
  summarise(
    TotalPitches = n(),
    Usage = sprintf("%.2f%%", n() / total_pitches * 100),
    Balls = sum(PitchCall == "BallCalled"),
    Strikes = sum(PitchCall != "BallCalled"), # Count everything not a ball as a strike
    BallPercentage = sprintf('%.2f%%', Balls / TotalPitches * 100),
    StrikePercentage = sprintf('%.2f%%', Strikes / TotalPitches * 100),
    AvgVelocity = round(mean(ReleaseSpeed, na.rm = TRUE), 2),
    AvgSpinRate = round(mean(SpinRate, na.rm = TRUE), 2),
    AvgInducedVertBreak = round(mean(InducedVerticalBreak, na.rm = TRUE), 2),
    AvgHorzBreak = round(mean(HorizontalBreak, na.rm = TRUE), 2),
    AvgTilt = round(mean(Tilt, na.rm = TRUE), 2),
    AvgClockTilt = round(mean(ClockTilt, na.rm = TRUE), 1), # Clock face interpretation
    AvgReleaseHeight = round(mean(ReleaseHeight, na.rm = TRUE), 2),
    AvgReleaseSide = round(mean(ReleaseSide, na.rm = TRUE), 2),
    AvgExtension = round(mean(Extension, na.rm = TRUE), 2)
  ) %>%
  select(AutoPitchType, Usage, everything())

# Display the total number of pitches
cat("Total number of pitches thrown: ", total_pitches, "\n")
## Total number of pitches thrown:  12
# Display the summary table
knitr::kable(pitch_summary, caption = "Summary Pitch Table for Nate Isler")
Summary Pitch Table for Nate Isler
AutoPitchType Usage TotalPitches Balls Strikes BallPercentage StrikePercentage AvgVelocity AvgSpinRate AvgInducedVertBreak AvgHorzBreak AvgTilt AvgClockTilt AvgReleaseHeight AvgReleaseSide AvgExtension
Curveball 25.00% 3 3 0 100.00% 0.00% 74.17 2400.09 -13.83 -12.33 38.61 1.3 6.41 0.71 5.38
Four-Seam 75.00% 9 2 7 22.22% 77.78% 86.99 2141.78 19.91 8.49 204.33 6.8 6.53 0.71 5.78
# Calculate maximum fastball velocity
max_fb_velocity <- detailed_pitch_table %>%
  filter(AutoPitchType %in% c("Four-Seam", "Two-Seam", "Sinker", "Cutter")) %>%
  summarise(MaxFBVelocity = max(ReleaseSpeed, na.rm = TRUE)) %>%
  pull(MaxFBVelocity)

# Display the maximum fastball velocity
cat("Nate Isler maximum FB velocity: ", max_fb_velocity, "mph\n")
## Nate Isler maximum FB velocity:  88.96 mph
# Prepare data for plotting pitch locations
pitch_location_data <- Nate_Isler_data %>%
  select(AutoPitchType, PlateLocHeight, PlateLocSide, PitchCall) %>%
  rename(
    PitchHeight = PlateLocHeight,
    PitchSide = PlateLocSide
  ) %>%
  mutate(
    SwingTake = ifelse(PitchCall %in% c("StrikeSwinging", "FoulBallNonSwinging", "FoulBallFieldable", "FoulBallNotFieldable", "InPlay"), "Swing", "Take"),
    Chase = ifelse(SwingTake == "Swing" & (PitchSide < -0.75 | PitchSide > 0.75 | PitchHeight < 1.5 | PitchHeight > 3.5), "Chase", "Non-Chase")
  )

# Create the scatter plot with specified strike zone boxes
ggplot(pitch_location_data, aes(x = PitchSide, y = PitchHeight, color = SwingTake, shape = Chase)) +
  geom_point(size = 3) + # Increase point size
  geom_rect(aes(xmin = -0.5, xmax = 0.5, ymin = 1.75, ymax = 3.25), fill = NA, color = "red", linetype = "solid", size = 1) + # Red box
  geom_rect(aes(xmin = -0.75, xmax = 0.75, ymin = 1.5, ymax = 3.5), fill = NA, color = "black", linetype = "solid", size = 1) + # Black box
  geom_rect(aes(xmin = -1.25, xmax = 1.25, ymin = 1.25, ymax = 3.75), fill = NA, color = "gray", linetype = "solid", size = 1) + # Gray box
  scale_x_continuous(limits = c(-2, 2)) +
  scale_y_continuous(limits = c(0, 5)) +
  coord_fixed(ratio = 1) + # Adjust ratio to shrink vertical distance
  labs(title = "Pitch Locations for Nate Isler",
       x = "Horizontal Location (feet)",
       y = "Vertical Location (feet)",
       color = "Swing/Take",
       shape = "Chase") +
  facet_wrap(~ AutoPitchType) + # Create individual graphs for each pitch type
  theme_minimal() +
  theme(
    legend.position = "right",
    panel.grid.major = element_line(color = "grey80"),
    panel.grid.minor = element_line(color = "grey90"),
    axis.text = element_text(color = "black"),
    axis.title = element_text(color = "black"),
    plot.title = element_text(color = "black"),
    legend.background = element_rect(fill = "white", color = NA),
    legend.key = element_rect(fill = "white", color = NA),
    legend.text = element_text(color = "black"),
    legend.title = element_text(color = "black")
  )

# Create the scatter plot for horizontal and vertical breaks
ggplot(detailed_pitch_table, aes(x = HorizontalBreak, y = InducedVerticalBreak, color = AutoPitchType)) +
  geom_point(size = 3) + # Increase point size
  labs(title = "Pitch Movement for Nate Isler",
       x = "Horizontal Break (inches)",
       y = "Induced Vertical Break (inches)",
       color = "Pitch Type") +
  theme_minimal() +
  theme(
    legend.position = "right",
    panel.grid.major = element_line(color = "grey80"),
    panel.grid.minor = element_line(color = "grey90"),
    axis.text = element_text(color = "black"),
    axis.title = element_text(color = "black"),
    plot.title = element_text(color = "black"),
    legend.background = element_rect(fill = "white", color = NA),
    legend.key = element_rect(fill = "white", color = NA),
    legend.text = element_text(color = "black"),
    legend.title = element_text(color = "black")
  )