Scatterplot Saturation

Harold Nelson

2024-06-25

Setup

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

A Saturated Scatterplot

I’ll use the diamonds dataset to demonstrate the problem and the solutions.

First the Problem

diamonds %>% 
  ggplot(aes(x = carat, y = price)) +
  geom_point()

Very little detail is visible. With 53,940 rows, the scatterplot is totally saturated.

Solution

Use the transparency (alpha) and/or size parameters.

diamonds %>% 
  ggplot(aes(x = carat, y = price)) +
  geom_point(alpha = .1)

diamonds %>% 
  ggplot(aes(x = carat, y = price)) +
  geom_point(alpha = .01)

diamonds %>% 
  ggplot(aes(x = carat, y = price)) +
  geom_point(alpha = .005)

diamonds %>% 
  ggplot(aes(x = carat, y = price)) +
  geom_point(size = .1)

diamonds %>% 
  ggplot(aes(x = carat, y = price)) +
  geom_point(size = .001)

diamonds %>% 
  ggplot(aes(x = carat, y = price)) +
  geom_point(alpha = .1,size=.1)

Smoothing

You can use a smoother instead of a scatterplot.

diamonds %>% 
  ggplot(aes(x = carat, y = price)) +
  geom_smooth()
## `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'

diamonds %>% 
  ggplot(aes(x = carat, y = price)) +
  geom_point(alpha=.01) +
  geom_smooth(aes(color = cut))
## `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'

Density Plot

diamonds %>% 
  ggplot(aes(x = carat, y = price)) +
  geom_density_2d()

diamonds %>% 
  ggplot(aes(x = carat, y = price)) +
  geom_density_2d_filled()