d <- read.csv('https://stats.dip.jp/01_ds/data/car_mileage.csv')
rownames(d) <- paste0('No.', 1:nrow(d))
colnames(d) <- c('km', 'ncy', 'cc', 'hp', 'kg', 'sec', 'yr', 'type', 'name')
library(DT)
datatable(d)
n <- nrow(d)
ii.tr <- sample(1:n, size = floor(0.8*n))
d.tr <- d[ ii.tr, ]
d.te <- d[-ii.tr, ]
fit <- lm(km ~ kg + cc, data = d.tr)
kmhat <- predict(fit, newdata = d.te)
RMSE <- sqrt(mean((d.te$km -kmhat)^2))
RMSE
## [1] 1.9033
get.accuracy <- function(yhat, y, digits = 2)
{
d <- data.frame(MBE = mean(yhat - y),
MAE = mean(abs(yhat - y)),
MAPE = mean(abs((yhat - y) / y)) * 100,
RMSE = sqrt(mean((yhat - y)^2)))
return(round(d, digits))
}
(a <- get.accuracy(d.te$km, kmhat))
## MBE MAE MAPE RMSE
## 1 0.03 1.44 14.4 1.9
fit <- lm(km ~ poly(kg, 2, raw = TRUE), data = d)
library(sjPlot)
## Learn more about sjPlot with 'browseVignettes("sjPlot")'.
tab_model(fit)
|
km
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
26.47
|
23.96 – 28.97
|
<0.001
|
kg [1st degree]
|
-0.02
|
-0.02 – -0.01
|
<0.001
|
kg [2nd degree]
|
0.00
|
0.00 – 0.00
|
<0.001
|
Observations
|
392
|
R2 / R2 adjusted
|
0.715 / 0.714
|
kg.p <- seq(0, 3000, 100)
conf <- predict(fit, newdata = data.frame(kg = kg.p),
interval = 'confidence')
# 予測区間
pred <- predict(fit, newdata = data.frame(kg = kg.p),
interval = 'prediction')
COL <- c(rgb(255, 0, 0, 105, max = 255), # 赤
rgb( 0, 0, 255, 105, max = 255), # 青
rgb( 0, 155, 0, 105, max = 255), # 緑
rgb(140, 140, 140, 105, max = 255), # 暗灰
rgb(180, 180, 180, 105, max = 255))
matplot (x = d$kg, y = d$km,
type = 'p', pch = 16, col = COL[1], ylim = c(0, 20),
main = '2次多項式回帰モデルを使った燃費予測',
xlab = '車体重量[kg]', ylab = '燃費[km]')
gray.area <- function(x, lwr, upr, col)
{
polygon(c(x, rev(x)), c(lwr, rev(upr)), col = col, border = NA)
}
gray.area(kg.p, conf[, 'lwr'], conf[, 'upr'], col = COL[4]) # 信頼区間
gray.area(kg.p, pred[, 'lwr'], pred[, 'upr'], col = COL[5]) # 予測区間
matlines(x = kg.p, y = conf[, 'fit'], col = COL[2], lwd = 3)
legend('topright',
pch = c(16, NA, NA, NA), col = COL[-3],
lty = c(NA, 1, NA, NA), lwd = c(NA, 3, NA, NA),
fill = c(NA, NA, COL[4], COL[5]), border = F,
legend = c('燃費', '予測値', '95%信頼区間', '95%予測区'))
