| Y_prix | X1_surface | |
|---|---|---|
| logement1 | 1000 | 50 |
| logement2 | 800 | 30 |
| logement3 | 600 | 25 |
| logement4 | 1000 | 60 |
| logement5 | 800 | 35 |
L’apprentissage supervisé
L’apprentissage non supervisé
L’apprentissage par essai/erreur
\[ Y = f(X_1, X_2, ...,X_n) \]
Le but premier n’est pas d’expliquer mais de prédire.
Deux types d’apprentissage supervisé :
Régression
Classification
Régression linéaire / Régression logistique
Arbre de régression / Arbre de classification
Méthodes à base d’arbres :
Forêt aléatoire
Boosting
KNN (plus proches voisins)
SVM
Réseaux de neurones/deep learning
| Y_prix | X1_surface | |
|---|---|---|
| logement1 | 1000 | 50 |
| logement2 | 800 | 30 |
| logement3 | 600 | 25 |
| logement4 | 1000 | 60 |
| logement5 | 800 | 35 |
\[ Y = 416,5 + 10,6 X_1 \]
| Y_prix | X1_surface | prix_estime | |
|---|---|---|---|
| logement1 | 1000 | 50 | 945.9 |
| logement2 | 800 | 30 | 734.1 |
| logement3 | 600 | 25 | 681.2 |
| logement4 | 1000 | 60 | 1051.8 |
| logement5 | 800 | 35 | 787.1 |
| surface | prix_prevu | |
|---|---|---|
| logement6 | 45 | 892.9 |
| logement7 | 30 | 734.1 |
| logement8 | 110 | 1581.2 |
Le modèle apprend (s’ajuste) sur une base d’entraînement.
Un modèle entraîné sur une base s’appelle une instance.
On évalue la performance de cette instance sur une base de validation.
| Y_prix | X1_surface | |
|---|---|---|
| logement1 | 1000 | 50 |
| logement2 | 800 | 30 |
| logement3 | 600 | 25 |
| logement4 | 1000 | 60 |
| logement5 | 800 | 35 |
| logement6 | 900 | 45 |
| logement7 | 300 | 30 |
| logement8 | 1500 | 110 |
| Y_prix | X1_surface | |
|---|---|---|
| logement1 | 1000 | 50 |
| logement2 | 800 | 30 |
| logement3 | 600 | 25 |
| logement4 | 1000 | 60 |
| logement5 | 800 | 35 |
Call:
lm(formula = locations_train$Y_prix ~ locations_train$X1_surface)
Residuals:
1 2 3 4 5
54.12 65.88 -81.18 -51.76 12.94
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 416.47 107.68 3.868 0.0306 *
locations_train$X1_surface 10.59 2.56 4.137 0.0256 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 74.62 on 3 degrees of freedom
Multiple R-squared: 0.8508, Adjusted R-squared: 0.8011
F-statistic: 17.11 on 1 and 3 DF, p-value: 0.02564
| .pred | .resid | Y_prix | X1_surface |
|---|---|---|---|
| 892.9 | 7.1 | 900 | 45 |
| 734.1 | -434.1 | 300 | 30 |
| 1581.2 | -81.2 | 1500 | 110 |
\[ RSS = \sum_{i=1}^{N}{(y_i - \hat{y}_i)^2} \]
\[ MSE = \frac{RSS}{N} \]
\[ RMSE = \sqrt{MSE} \]
\[ R² = \frac{SCE}{SCT} \]
| Y_femelle | X1_poids | |
|---|---|---|
| canard1 | 1 | 841 |
| canard2 | 1 | 600 |
| canard3 | 0 | 1200 |
| canard4 | 1 | 500 |
| canard5 | 1 | 700 |
| canard6 | 0 | 1150 |
| canard7 | 0 | 750 |
| canard8 | 0 | 800 |
| canard9 | 1 | 680 |
| canards10 | 0 | 910 |
| Y_femelle | X1_poids | |
|---|---|---|
| canard1 | 1 | 841 |
| canard2 | 1 | 600 |
| canard3 | 0 | 1200 |
| canard4 | 1 | 500 |
| canard5 | 1 | 700 |
| canards6 | 0 | 1150 |
| canards7 | 0 | 750 |
══ Workflow [trained] ══════════════════════════════════════════════════════════
Preprocessor: Recipe
Model: logistic_reg()
── Preprocessor ────────────────────────────────────────────────────────────────
0 Recipe Steps
── Model ───────────────────────────────────────────────────────────────────────
Call: stats::glm(formula = ..y ~ ., family = stats::binomial, data = data)
Coefficients:
(Intercept) X1_poids
9.21213 -0.01098
Degrees of Freedom: 6 Total (i.e. Null); 5 Residual
Null Deviance: 9.561
Residual Deviance: 4.685 AIC: 8.685
| .pred_class | .pred_0 | .pred_1 | Y_femelle | X1_poids |
|---|---|---|---|---|
| 1 | 0.40 | 0.60 | 0 | 800 |
| 1 | 0.15 | 0.85 | 1 | 680 |
| 0 | 0.69 | 0.31 | 0 | 910 |
Exactitude : (TN + TP) / (TN + TP + FP + FN)
Sensibilité (Rappel, ou taux de vrais positifs) : TP / (TP + FN)
Spécificité : TN / (TN + FP)
Précision : TP / (TP + FP)
Le sous-apprentissage : le modèle n’est pas adapté ou trop simple.
Le sur-apprentissage : le modèle colle trop aux données d’apprentissage.
L’algorithme CART permet d’ajuster le modèle sur les données d’entraînement.
L’utilisateur paramètre la profondeur de l’arbre.
A chaque noeud, l’algorithme (CART) choisit la variable la plus discriminante.
Il teste toutes les valeurs de cette variable et choisit celle qui discrimine le mieux.
Le noeud est divisé en deux parties qui deviennent soit des feuilles soit des noeuds.
L’estimation est soit la moyenne (pour la régression) soit la modalité majoritaire (pour la classification).
L’arbre de décision est un apprenant faible (faibles performances)…
La forêt aléatoire entraîne un grand nombre instances d’arbres :
sur des données légèrement différentes (bootstrap)
sur une partie des variables explicatives
Les estimations de tous les arbres sont ensuite combinées :
pour la régression : on prend la moyenne
pour la classification : on prend la valeur majoritaire
.
Définir le sujet (classification ou régression ?)
Explorer et nettoyer la base de données
Réserver une partie de la base pour l’apprentissage/validation/test
Apprendre des données avec des modèles/algorithmes
Comparer les performances prédictives de ces algorithmes
Choisir le meilleur modèle et le mettre en production
| Y_REVENU | X1_NBPIECES | X2_AGE |
|---|---|---|
| 42476 | 4 | 59 |
| 14155 | 3 | 96 |
| 24696 | 1 | 41 |
| 21418 | 2 | 74 |
| 64255 | 5 | 38 |
| 42047 | 3 | 43 |
| 38543 | 4 | 67 |
| 32735 | 4 | 34 |
| 39086 | 5 | 53 |
| 42880 | 5 | 29 |
| 47687 | 3 | 33 |
| 16973 | 2 | 86 |
| 13602 | 2 | 69 |
| 12832 | 1 | 91 |
| 73697 | 2 | 59 |
| 82289 | 8 | 58 |
| 12586 | 3 | 96 |
| 45611 | 8 | 41 |
| 45493 | 5 | 36 |
| 41852 | 5 | 30 |
| 46765 | 5 | 43 |
| 50602 | 5 | 32 |
| 25092 | 1 | 41 |
| 12736 | 1 | 75 |
| 28304 | 3 | 24 |
| 55220 | 4 | 41 |
| 40119 | 3 | 42 |
| 52525 | 5 | 45 |
| 13374 | 3 | 79 |
| 24052 | 4 | 65 |
| 22482 | 2 | 59 |
| 12862 | 3 | 91 |
| 72041 | 5 | 44 |
| 24495 | 2 | 33 |
| 24110 | 3 | 37 |
| 101718 | 5 | 61 |
| 50568 | 8 | 25 |
| 32690 | 2 | 33 |
| 12957 | 3 | 81 |
| 58191 | 2 | 45 |
| 22915 | 1 | 39 |
| 39196 | 4 | 42 |
| 25286 | 3 | 42 |
| 13101 | 1 | 76 |
| 22659 | 5 | 64 |
| 40002 | 1 | 54 |
| 22486 | 4 | 60 |
| 20515 | 6 | 59 |
| 22701 | 6 | 71 |
| 69430 | 3 | 30 |
| 12917 | 4 | 56 |
| 12616 | 2 | 89 |
| 84281 | 6 | 58 |
| 16691 | 5 | 26 |
| 33589 | 1 | 44 |
| 13154 | 2 | 65 |
| 28233 | 1 | 55 |
| 25639 | 1 | 42 |
| 53782 | 6 | 56 |
| 42123 | 5 | 54 |
| 17489 | 5 | 49 |
| 46696 | 5 | 37 |
| 27170 | 4 | 41 |
| 52403 | 5 | 48 |
| 22220 | 4 | 68 |
| 36737 | 5 | 45 |
| 60434 | 8 | 37 |
| 44056 | 5 | 38 |
| 11636 | 1 | 22 |
| 11318 | 1 | 21 |
| 24990 | 4 | 35 |
| 38147 | 2 | 44 |
| 40863 | 7 | 42 |
| 13372 | 2 | 86 |
| 12905 | 1 | 91 |
| 19587 | 6 | 69 |
| 15608 | 6 | 53 |
| 22710 | 5 | 64 |
| 77087 | 2 | 45 |
| 53205 | 4 | 57 |
| 21424 | 1 | 54 |
| 99668 | 3 | 45 |
| 12742 | 3 | 79 |
| 56474 | 5 | 30 |
| 55198 | 5 | 34 |
| 22700 | 2 | 73 |
| 62475 | 4 | 47 |
| 12604 | 1 | 76 |
| 46606 | 7 | 51 |
| 55174 | 6 | 40 |
| 21130 | 5 | 18 |
| 13292 | 3 | 66 |
| 47790 | 2 | 52 |
| 39500 | 8 | 46 |
| 37925 | 8 | 43 |
| 20490 | 6 | 72 |
| 20870 | 7 | 74 |
| 12723 | 1 | 79 |
| 14682 | 6 | 25 |
| 25313 | 3 | 52 |
| Name | grandile |
| Number of rows | 5418 |
| Number of columns | 3 |
| _______________________ | |
| Column type frequency: | |
| numeric | 3 |
| ________________________ | |
| Group variables | None |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| Y_REVENU | 0 | 1 | 33889.09 | 19431.26 | 9823 | 19771.5 | 27169.5 | 44531 | 116674 | ▇▅▁▁▁ |
| X1_NBPIECES | 0 | 1 | 3.61 | 1.94 | 1 | 2.0 | 3.0 | 5 | 10 | ▇▇▆▂▁ |
| X2_AGE | 0 | 1 | 51.82 | 18.74 | 16 | 37.0 | 50.0 | 66 | 99 | ▅▇▇▅▂ |
Traitement des données manquantes
Traitement des “outliers”
Encodage de variables
Transformation de variables (log, centrage-réduction)
Création de nouvelles variables
Base d’entraînement : 60 %
Base de validation : 20 %
Base de test : 20 %
| Name | train_grandile |
| Number of rows | 3250 |
| Number of columns | 3 |
| _______________________ | |
| Column type frequency: | |
| numeric | 3 |
| ________________________ | |
| Group variables | None |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| Y_REVENU | 0 | 1 | 33478.94 | 19253.68 | 9823 | 19689.75 | 26673.5 | 44496.5 | 109241 | ▇▅▂▁▁ |
| X1_NBPIECES | 0 | 1 | 3.59 | 1.92 | 1 | 2.00 | 3.0 | 5.0 | 10 | ▇▇▆▂▁ |
| X2_AGE | 0 | 1 | 51.92 | 18.80 | 16 | 37.00 | 50.0 | 66.0 | 99 | ▅▇▆▅▂ |
══ Workflow [trained] ══════════════════════════════════════════════════════════
Preprocessor: Recipe
Model: linear_reg()
── Preprocessor ────────────────────────────────────────────────────────────────
0 Recipe Steps
── Model ───────────────────────────────────────────────────────────────────────
Call:
stats::lm(formula = ..y ~ ., data = data)
Coefficients:
(Intercept) X1_NBPIECES X2_AGE
40356.8 3611.0 -381.8
══ Workflow [trained] ══════════════════════════════════════════════════════════
Preprocessor: Recipe
Model: decision_tree()
── Preprocessor ────────────────────────────────────────────────────────────────
0 Recipe Steps
── Model ───────────────────────────────────────────────────────────────────────
n= 3250
node), split, n, deviance, yval
* denotes terminal node
1) root 3250 1.204418e+12 33478.94
2) X2_AGE>=59.5 1093 7.009491e+10 18209.92 *
3) X2_AGE< 59.5 2157 7.503724e+11 41216.09
6) X1_NBPIECES< 4.5 1328 3.958018e+11 35487.69
12) X2_AGE< 24.5 117 6.771606e+09 15298.85 *
13) X2_AGE>=24.5 1211 3.367348e+11 37438.23
26) X1_NBPIECES< 1.5 225 1.676386e+10 27253.01 *
27) X1_NBPIECES>=1.5 986 2.913035e+11 39762.44 *
7) X1_NBPIECES>=4.5 829 2.411843e+11 50392.59 *
| Y_REVENU | X1_NBPIECES | X2_AGE | Y_REG | Y_ARBRE |
|---|---|---|---|---|
| 14155 | 3 | 96 | 14535 | 18210 |
| 32735 | 4 | 34 | 41819 | 39762 |
| 52525 | 5 | 45 | 41230 | 50393 |
| 72041 | 5 | 44 | 41612 | 50393 |
| 13101 | 1 | 76 | 14950 | 18210 |
| 20515 | 6 | 59 | 39496 | 50393 |
| 84281 | 6 | 58 | 39877 | 50393 |
| 13154 | 2 | 65 | 22761 | 18210 |
| 42123 | 5 | 54 | 37794 | 50393 |
| 15608 | 6 | 53 | 41786 | 50393 |
| 12742 | 3 | 79 | 21026 | 18210 |
| 55198 | 5 | 34 | 45430 | 50393 |
| 12604 | 1 | 76 | 14950 | 18210 |
| 46606 | 7 | 51 | 46161 | 50393 |
| 55174 | 6 | 40 | 46750 | 50393 |
| 58180 | 2 | 47 | 29633 | 39762 |
| 34891 | 4 | 42 | 38764 | 39762 |
| 77105 | 3 | 38 | 36681 | 39762 |
| 19681 | 5 | 83 | 26721 | 18210 |
| 13257 | 3 | 86 | 18354 | 18210 |
| 12921 | 1 | 69 | 17622 | 18210 |
| 12985 | 2 | 82 | 16270 | 18210 |
| 77572 | 7 | 48 | 47307 | 50393 |
| 13024 | 1 | 88 | 10368 | 18210 |
| 52346 | 5 | 43 | 41994 | 50393 |
| 31245 | 1 | 48 | 25641 | 27253 |
| 24155 | 3 | 71 | 24081 | 18210 |
| 13234 | 2 | 87 | 14361 | 18210 |
| 40270 | 2 | 44 | 30779 | 39762 |
| 55187 | 6 | 51 | 42550 | 50393 |
| 12710 | 2 | 69 | 21233 | 18210 |
| 12804 | 2 | 62 | 23906 | 18210 |
| 97998 | 5 | 51 | 38939 | 50393 |
| 25746 | 2 | 41 | 31924 | 39762 |
| 26207 | 4 | 51 | 35328 | 39762 |
| 18256 | 2 | 24 | 38415 | 15299 |
| 43156 | 7 | 38 | 51125 | 50393 |
| 27620 | 2 | 35 | 34215 | 39762 |
| 12898 | 3 | 82 | 19881 | 18210 |
| 24142 | 2 | 82 | 16270 | 18210 |
| 44487 | 4 | 32 | 42583 | 39762 |
| 13645 | 1 | 66 | 18768 | 18210 |
| 12740 | 2 | 63 | 23524 | 18210 |
| 73386 | 6 | 51 | 42550 | 50393 |
| 21560 | 4 | 72 | 27310 | 18210 |
| 23442 | 1 | 52 | 24113 | 27253 |
| 23435 | 1 | 49 | 25259 | 27253 |
| 11098 | 2 | 21 | 39561 | 15299 |
| 43392 | 3 | 53 | 30953 | 39762 |
| 19791 | 7 | 79 | 35470 | 18210 |
| 24789 | 7 | 80 | 35088 | 18210 |
| 43097 | 5 | 62 | 34739 | 18210 |
| 46447 | 3 | 44 | 34390 | 39762 |
| 12980 | 1 | 94 | 8077 | 18210 |
| 56516 | 8 | 34 | 56263 | 50393 |
| 21850 | 3 | 48 | 32863 | 39762 |
| 13827 | 1 | 81 | 13041 | 18210 |
| 55281 | 5 | 47 | 40466 | 50393 |
| 21507 | 2 | 72 | 20088 | 18210 |
| 77017 | 4 | 29 | 43728 | 39762 |
| 20348 | 6 | 63 | 37968 | 18210 |
| 21006 | 6 | 72 | 34532 | 18210 |
| 76099 | 6 | 42 | 45986 | 50393 |
| 40709 | 5 | 27 | 48103 | 50393 |
| 14108 | 1 | 95 | 7695 | 18210 |
| 21386 | 3 | 30 | 39735 | 39762 |
| 44497 | 4 | 18 | 47928 | 15299 |
| 82294 | 7 | 32 | 53416 | 50393 |
| 12685 | 2 | 72 | 20088 | 18210 |
| 42564 | 4 | 53 | 34564 | 39762 |
| 10926 | 2 | 18 | 40706 | 15299 |
| 47812 | 7 | 53 | 45397 | 50393 |
| 52455 | 7 | 47 | 47688 | 50393 |
| 82213 | 6 | 46 | 44459 | 50393 |
| 10658 | 2 | 30 | 36124 | 39762 |
| 28077 | 3 | 56 | 29808 | 39762 |
| 27421 | 1 | 42 | 27931 | 27253 |
| 77053 | 2 | 41 | 31924 | 39762 |
| 44397 | 5 | 44 | 41612 | 50393 |
| 77067 | 2 | 25 | 38033 | 39762 |
| 41947 | 6 | 31 | 50186 | 50393 |
| 26984 | 1 | 33 | 31368 | 27253 |
| 23975 | 5 | 51 | 38939 | 50393 |
| 22174 | 7 | 71 | 38525 | 18210 |
| 22090 | 5 | 61 | 35121 | 18210 |
| 13053 | 1 | 60 | 21059 | 18210 |
| 44521 | 2 | 48 | 29252 | 39762 |
| 44635 | 5 | 36 | 44666 | 50393 |
| 45627 | 6 | 50 | 42932 | 50393 |
| 22457 | 3 | 82 | 19881 | 18210 |
| 27632 | 5 | 49 | 39703 | 50393 |
| 27332 | 4 | 50 | 35710 | 39762 |
| 26515 | 4 | 38 | 40292 | 39762 |
| 24767 | 4 | 72 | 27310 | 18210 |
| 37686 | 6 | 37 | 47896 | 50393 |
| 43424 | 4 | 47 | 36855 | 39762 |
| 43272 | 2 | 56 | 26197 | 39762 |
| 55204 | 8 | 51 | 49772 | 50393 |
| 23551 | 3 | 38 | 36681 | 39762 |
| 29392 | 1 | 43 | 27550 | 27253 |
| 55182 | 4 | 28 | 44110 | 39762 |
| 34141 | 5 | 36 | 44666 | 50393 |
| 53123 | 2 | 43 | 31161 | 39762 |
| 24787 | 4 | 60 | 31892 | 18210 |
| 12905 | 3 | 64 | 26754 | 18210 |
| 12987 | 1 | 86 | 11132 | 18210 |
| 25915 | 3 | 45 | 34008 | 39762 |
| 42333 | 3 | 33 | 38590 | 39762 |
| 43233 | 4 | 51 | 35328 | 39762 |
| 21468 | 4 | 73 | 26928 | 18210 |
| 23502 | 1 | 52 | 24113 | 27253 |
| 45732 | 7 | 41 | 49979 | 50393 |
| 21987 | 4 | 88 | 21201 | 18210 |
| 46582 | 5 | 40 | 43139 | 50393 |
| 21564 | 5 | 82 | 27103 | 18210 |
| 42429 | 4 | 48 | 36474 | 39762 |
| 44327 | 7 | 49 | 46925 | 50393 |
| 22569 | 4 | 67 | 29219 | 18210 |
| 77036 | 2 | 27 | 37270 | 39762 |
| 43470 | 2 | 29 | 36506 | 39762 |
| 23919 | 3 | 54 | 30572 | 39762 |
| 39576 | 5 | 49 | 39703 | 50393 |
| 12912 | 2 | 82 | 16270 | 18210 |
| 23879 | 5 | 45 | 41230 | 50393 |
| 53918 | 5 | 54 | 37794 | 50393 |
| 38150 | 2 | 34 | 34597 | 39762 |
| 22638 | 1 | 37 | 29841 | 27253 |
| 43321 | 4 | 41 | 39146 | 39762 |
| 20274 | 6 | 71 | 34914 | 18210 |
| 45499 | 5 | 39 | 43521 | 50393 |
| 23866 | 4 | 44 | 38001 | 39762 |
| 44379 | 3 | 42 | 35153 | 39762 |
| 11650 | 1 | 23 | 35186 | 15299 |
| 68208 | 4 | 58 | 32655 | 39762 |
| 16026 | 8 | 72 | 41754 | 18210 |
| 51845 | 7 | 54 | 45016 | 50393 |
| 44373 | 6 | 37 | 47896 | 50393 |
| 41757 | 5 | 50 | 39321 | 50393 |
| 27613 | 2 | 32 | 35361 | 39762 |
| 43128 | 5 | 58 | 36266 | 50393 |
| 13163 | 1 | 68 | 18004 | 18210 |
| 26980 | 1 | 54 | 23350 | 27253 |
| 11226 | 4 | 23 | 46019 | 15299 |
| 82666 | 5 | 53 | 38175 | 50393 |
| 55160 | 6 | 59 | 39496 | 50393 |
| 21414 | 3 | 51 | 31717 | 39762 |
| 46742 | 5 | 32 | 46194 | 50393 |
| 44727 | 2 | 35 | 34215 | 39762 |
| 42322 | 2 | 27 | 37270 | 39762 |
| 77003 | 2 | 49 | 28870 | 39762 |
| 23382 | 4 | 28 | 44110 | 39762 |
| 21041 | 5 | 66 | 33212 | 18210 |
| 20501 | 7 | 74 | 37379 | 18210 |
| 25461 | 4 | 70 | 28074 | 18210 |
| 77003 | 3 | 59 | 28663 | 39762 |
| 19739 | 7 | 70 | 38907 | 18210 |
| 21540 | 2 | 82 | 16270 | 18210 |
| 21503 | 2 | 68 | 21615 | 18210 |
| 14011 | 3 | 61 | 27899 | 18210 |
| 29195 | 4 | 58 | 32655 | 39762 |
| 23061 | 1 | 64 | 19532 | 18210 |
| 40847 | 6 | 42 | 45986 | 50393 |
| 23611 | 1 | 53 | 23732 | 27253 |
| 43360 | 3 | 48 | 32863 | 39762 |
| 56769 | 5 | 58 | 36266 | 50393 |
| 51011 | 8 | 36 | 55499 | 50393 |
| 12894 | 2 | 74 | 19324 | 18210 |
| 42987 | 5 | 51 | 38939 | 50393 |
| 41186 | 3 | 52 | 31335 | 39762 |
| 61107 | 3 | 34 | 38208 | 39762 |
| 73756 | 5 | 46 | 40848 | 50393 |
| 17307 | 2 | 44 | 30779 | 39762 |
| 45489 | 4 | 42 | 38764 | 39762 |
| 10904 | 2 | 25 | 38033 | 39762 |
| 40595 | 5 | 44 | 41612 | 50393 |
| 54325 | 4 | 51 | 35328 | 39762 |
| 12749 | 6 | 85 | 29568 | 18210 |
| 40302 | 3 | 48 | 32863 | 39762 |
| 30597 | 1 | 49 | 25259 | 27253 |
| 80291 | 5 | 57 | 36648 | 50393 |
| 10749 | 2 | 71 | 20470 | 18210 |
| 62500 | 8 | 40 | 53972 | 50393 |
| 22536 | 5 | 62 | 34739 | 18210 |
| 21997 | 2 | 70 | 20852 | 18210 |
| 32147 | 3 | 24 | 42026 | 15299 |
| 24403 | 3 | 56 | 29808 | 39762 |
| 75530 | 2 | 31 | 35742 | 39762 |
| 21968 | 3 | 63 | 27135 | 18210 |
| 28164 | 1 | 32 | 31750 | 27253 |
| 13598 | 2 | 65 | 22761 | 18210 |
| 12911 | 1 | 66 | 18768 | 18210 |
| 10211 | 4 | 42 | 38764 | 39762 |
| 46939 | 7 | 51 | 46161 | 50393 |
| 40671 | 7 | 31 | 53797 | 50393 |
| 17844 | 2 | 54 | 26961 | 39762 |
| 22020 | 2 | 74 | 19324 | 18210 |
| 55183 | 5 | 58 | 36266 | 50393 |
| 102517 | 6 | 52 | 42168 | 50393 |
| 13416 | 1 | 61 | 20677 | 18210 |
| 12809 | 1 | 76 | 14950 | 18210 |
| 31085 | 3 | 56 | 29808 | 39762 |
| 21854 | 1 | 27 | 33659 | 27253 |
| 20366 | 5 | 61 | 35121 | 18210 |
| 57607 | 2 | 33 | 34979 | 39762 |
| 52938 | 4 | 55 | 33801 | 39762 |
| 46822 | 5 | 53 | 38175 | 50393 |
| 20867 | 2 | 41 | 31924 | 39762 |
| 40105 | 2 | 33 | 34979 | 39762 |
| 35801 | 2 | 42 | 31542 | 39762 |
| 55191 | 5 | 39 | 43521 | 50393 |
| 52024 | 3 | 40 | 35917 | 39762 |
| 43628 | 3 | 52 | 31335 | 39762 |
| 12952 | 3 | 92 | 16063 | 18210 |
| 82406 | 5 | 45 | 41230 | 50393 |
| 20859 | 4 | 25 | 45255 | 39762 |
| 23987 | 1 | 44 | 27168 | 27253 |
| 10893 | 3 | 20 | 43553 | 15299 |
| 55235 | 6 | 30 | 50568 | 50393 |
| 77653 | 4 | 41 | 39146 | 39762 |
| 44236 | 5 | 25 | 48866 | 50393 |
| 20935 | 6 | 17 | 55532 | 50393 |
| 12887 | 1 | 63 | 19913 | 18210 |
| 13098 | 2 | 82 | 16270 | 18210 |
| 39577 | 5 | 43 | 41994 | 50393 |
| 45378 | 3 | 26 | 41263 | 39762 |
| 39770 | 1 | 35 | 30604 | 27253 |
| 53076 | 3 | 52 | 31335 | 39762 |
| 12832 | 2 | 68 | 21615 | 18210 |
| 55198 | 6 | 30 | 50568 | 50393 |
| 29276 | 1 | 35 | 30604 | 27253 |
| 54294 | 3 | 21 | 43172 | 15299 |
| 80346 | 5 | 50 | 39321 | 50393 |
| 44479 | 7 | 39 | 50743 | 50393 |
| 77959 | 6 | 39 | 47132 | 50393 |
| 106373 | 4 | 50 | 35710 | 39762 |
| 29285 | 2 | 29 | 36506 | 39762 |
| 21848 | 4 | 52 | 34946 | 39762 |
| 30061 | 1 | 43 | 27550 | 27253 |
| 12840 | 1 | 84 | 11895 | 18210 |
| 21466 | 5 | 80 | 27866 | 18210 |
| 29361 | 1 | 59 | 21441 | 27253 |
| 13332 | 3 | 91 | 16444 | 18210 |
| 77088 | 4 | 41 | 39146 | 39762 |
| 44415 | 7 | 49 | 46925 | 50393 |
| 22977 | 3 | 28 | 40499 | 39762 |
| 11330 | 1 | 31 | 32131 | 27253 |
| 22101 | 4 | 61 | 31510 | 18210 |
| 47900 | 5 | 42 | 42375 | 50393 |
| 22495 | 1 | 53 | 23732 | 27253 |
| 50393 | 2 | 27 | 37270 | 39762 |
| 23547 | 4 | 46 | 37237 | 39762 |
| 46796 | 6 | 53 | 41786 | 50393 |
| 49941 | 5 | 34 | 45430 | 50393 |
| 12847 | 1 | 65 | 19150 | 18210 |
| 39113 | 3 | 63 | 27135 | 18210 |
| 21421 | 2 | 66 | 22379 | 18210 |
| 12802 | 1 | 75 | 15332 | 18210 |
| 22867 | 1 | 59 | 21441 | 27253 |
| 45504 | 7 | 47 | 47688 | 50393 |
| 12915 | 1 | 60 | 21059 | 18210 |
| 82252 | 5 | 33 | 45812 | 50393 |
| 11176 | 3 | 21 | 43172 | 15299 |
| 39218 | 3 | 56 | 29808 | 39762 |
| 35402 | 3 | 23 | 42408 | 15299 |
| 12771 | 1 | 93 | 8459 | 18210 |
| 77125 | 2 | 28 | 36888 | 39762 |
| 43219 | 3 | 58 | 29044 | 39762 |
| 82018 | 5 | 29 | 47339 | 50393 |
| 13683 | 3 | 80 | 20644 | 18210 |
| 12891 | 1 | 72 | 16477 | 18210 |
| 21639 | 2 | 73 | 19706 | 18210 |
| 12855 | 1 | 79 | 13804 | 18210 |
| 30156 | 4 | 27 | 44492 | 39762 |
| 43244 | 4 | 51 | 35328 | 39762 |
| 39665 | 1 | 39 | 29077 | 27253 |
| 22579 | 2 | 63 | 23524 | 18210 |
| 22685 | 6 | 61 | 38732 | 18210 |
| 13116 | 1 | 94 | 8077 | 18210 |
| 55112 | 8 | 48 | 50918 | 50393 |
| 13369 | 5 | 65 | 33594 | 18210 |
| 27934 | 2 | 54 | 26961 | 39762 |
| 25323 | 4 | 52 | 34946 | 39762 |
| 15040 | 5 | 70 | 31685 | 18210 |
| 44264 | 5 | 48 | 40085 | 50393 |
| 21951 | 3 | 63 | 27135 | 18210 |
| 43074 | 4 | 39 | 39910 | 39762 |
| 43461 | 2 | 28 | 36888 | 39762 |
| 12713 | 3 | 70 | 24463 | 18210 |
| 87812 | 4 | 43 | 38383 | 39762 |
| 15170 | 5 | 48 | 40085 | 50393 |
| 23785 | 4 | 62 | 31128 | 18210 |
| 21391 | 2 | 84 | 15506 | 18210 |
| 13352 | 3 | 89 | 17208 | 18210 |
| 58041 | 7 | 30 | 54179 | 50393 |
| 21561 | 2 | 74 | 19324 | 18210 |
| 99626 | 2 | 54 | 26961 | 39762 |
| 18816 | 2 | 51 | 28106 | 39762 |
| 53072 | 4 | 43 | 38383 | 39762 |
| 25065 | 1 | 50 | 24877 | 27253 |
| 22793 | 2 | 67 | 21997 | 18210 |
| 43174 | 5 | 40 | 43139 | 50393 |
| 12774 | 3 | 76 | 22172 | 18210 |
| 21428 | 4 | 87 | 21583 | 18210 |
| 26197 | 5 | 76 | 29394 | 18210 |
| 22772 | 7 | 64 | 41198 | 18210 |
| 39275 | 2 | 43 | 31161 | 39762 |
| 56328 | 6 | 43 | 45605 | 50393 |
| 12756 | 2 | 74 | 19324 | 18210 |
| 24445 | 1 | 35 | 30604 | 27253 |
| 86939 | 3 | 56 | 29808 | 39762 |
| 20339 | 5 | 74 | 30157 | 18210 |
| 40199 | 3 | 42 | 35153 | 39762 |
| 19565 | 8 | 77 | 39845 | 18210 |
| 82123 | 8 | 36 | 55499 | 50393 |
| 47576 | 5 | 42 | 42375 | 50393 |
| 12666 | 2 | 83 | 15888 | 18210 |
| 12957 | 2 | 68 | 21615 | 18210 |
| 24007 | 1 | 51 | 24495 | 27253 |
| 40002 | 1 | 36 | 30222 | 27253 |
| 62511 | 6 | 39 | 47132 | 50393 |
| 49505 | 7 | 29 | 54561 | 50393 |
| 13322 | 1 | 85 | 11513 | 18210 |
| 78440 | 7 | 43 | 49216 | 50393 |
| 12708 | 2 | 70 | 20852 | 18210 |
| 73846 | 7 | 29 | 54561 | 50393 |
| 30686 | 1 | 54 | 23350 | 27253 |
| 21917 | 4 | 37 | 40674 | 39762 |
| 21264 | 1 | 77 | 14568 | 18210 |
| 25234 | 3 | 39 | 36299 | 39762 |
| 47985 | 5 | 38 | 43903 | 50393 |
| 74449 | 6 | 63 | 37968 | 18210 |
| 29343 | 1 | 57 | 22204 | 27253 |
| 49612 | 7 | 40 | 50361 | 50393 |
| 13422 | 3 | 86 | 18354 | 18210 |
| 24931 | 2 | 26 | 37652 | 39762 |
| 53192 | 2 | 50 | 28488 | 39762 |
| 53011 | 5 | 56 | 37030 | 50393 |
| 24096 | 1 | 53 | 23732 | 27253 |
| 44349 | 7 | 49 | 46925 | 50393 |
| 81200 | 4 | 37 | 40674 | 39762 |
| 55330 | 2 | 50 | 28488 | 39762 |
| 60683 | 5 | 31 | 46575 | 50393 |
| 32073 | 1 | 55 | 22968 | 27253 |
| 20245 | 7 | 65 | 40816 | 18210 |
| 45560 | 6 | 58 | 39877 | 50393 |
| 51693 | 3 | 29 | 40117 | 39762 |
| 44480 | 4 | 27 | 44492 | 39762 |
| 56691 | 5 | 57 | 36648 | 50393 |
| 12829 | 2 | 72 | 20088 | 18210 |
| 17122 | 2 | 43 | 31161 | 39762 |
| 18336 | 3 | 44 | 34390 | 39762 |
| 39696 | 6 | 35 | 48659 | 50393 |
| 58039 | 2 | 31 | 35742 | 39762 |
| 11396 | 1 | 20 | 36331 | 15299 |
| 21687 | 3 | 86 | 18354 | 18210 |
| 13767 | 1 | 88 | 10368 | 18210 |
| 28275 | 1 | 55 | 22968 | 27253 |
| 19941 | 6 | 72 | 34532 | 18210 |
| 44467 | 4 | 36 | 41055 | 39762 |
| 101971 | 5 | 53 | 38175 | 50393 |
| 43235 | 4 | 42 | 38764 | 39762 |
| 28831 | 2 | 49 | 28870 | 39762 |
| 25122 | 2 | 45 | 30397 | 39762 |
| 75278 | 2 | 37 | 33452 | 39762 |
| 41940 | 7 | 49 | 46925 | 50393 |
| 49946 | 3 | 49 | 32481 | 39762 |
| 48110 | 7 | 54 | 45016 | 50393 |
| 13504 | 1 | 82 | 12659 | 18210 |
| 47630 | 3 | 40 | 35917 | 39762 |
| 38125 | 2 | 48 | 29252 | 39762 |
| 21717 | 3 | 77 | 21790 | 18210 |
| 13253 | 1 | 68 | 18004 | 18210 |
| 40377 | 3 | 37 | 37063 | 39762 |
| 50534 | 2 | 57 | 25815 | 39762 |
| 21929 | 2 | 35 | 34215 | 39762 |
| 38551 | 7 | 34 | 52652 | 50393 |
| 26078 | 3 | 22 | 42790 | 15299 |
| 24554 | 1 | 44 | 27168 | 27253 |
| 52276 | 6 | 58 | 39877 | 50393 |
| 43152 | 4 | 51 | 35328 | 39762 |
| 42267 | 2 | 37 | 33452 | 39762 |
| 48037 | 5 | 46 | 40848 | 50393 |
| 87597 | 6 | 41 | 46368 | 50393 |
| 40140 | 4 | 50 | 35710 | 39762 |
| 13110 | 1 | 78 | 14186 | 18210 |
| 17841 | 1 | 39 | 29077 | 27253 |
| 22583 | 4 | 62 | 31128 | 18210 |
| 41034 | 6 | 40 | 46750 | 50393 |
| 55150 | 6 | 26 | 52096 | 50393 |
| 51842 | 3 | 49 | 32481 | 39762 |
| 57949 | 5 | 58 | 36266 | 50393 |
| 46794 | 4 | 59 | 32274 | 39762 |
| 43183 | 6 | 31 | 50186 | 50393 |
| 12711 | 3 | 69 | 24844 | 18210 |
| 43183 | 5 | 49 | 39703 | 50393 |
| 44793 | 2 | 53 | 27342 | 39762 |
| 65974 | 5 | 39 | 43521 | 50393 |
| 21928 | 3 | 66 | 25990 | 18210 |
| 10701 | 1 | 94 | 8077 | 18210 |
| 40125 | 2 | 37 | 33452 | 39762 |
| 55140 | 5 | 31 | 46575 | 50393 |
| 40196 | 4 | 25 | 45255 | 39762 |
| 13650 | 2 | 76 | 18561 | 18210 |
| 44357 | 5 | 45 | 41230 | 50393 |
| 11355 | 2 | 19 | 40324 | 15299 |
| 23548 | 3 | 20 | 43553 | 15299 |
| 77593 | 5 | 56 | 37030 | 50393 |
| 25412 | 5 | 92 | 23285 | 18210 |
| 21606 | 2 | 66 | 22379 | 18210 |
| 11470 | 2 | 21 | 39561 | 15299 |
| 52882 | 3 | 41 | 35535 | 39762 |
| 73699 | 6 | 37 | 47896 | 50393 |
| 79467 | 6 | 32 | 49805 | 50393 |
| 35544 | 5 | 57 | 36648 | 50393 |
| 21907 | 2 | 96 | 10924 | 18210 |
| 28725 | 2 | 29 | 36506 | 39762 |
| 35495 | 2 | 58 | 25433 | 39762 |
| 19756 | 5 | 63 | 34357 | 18210 |
| 55289 | 5 | 25 | 48866 | 50393 |
| 69154 | 6 | 25 | 52477 | 50393 |
| 44851 | 5 | 32 | 46194 | 50393 |
| 26871 | 5 | 71 | 31303 | 18210 |
| 80255 | 5 | 46 | 40848 | 50393 |
| 21882 | 3 | 35 | 37826 | 39762 |
| 54237 | 2 | 57 | 25815 | 39762 |
| 38121 | 2 | 48 | 29252 | 39762 |
| 40298 | 3 | 52 | 31335 | 39762 |
| 25008 | 3 | 36 | 37444 | 39762 |
| 24489 | 1 | 47 | 26022 | 27253 |
| 22652 | 6 | 71 | 34914 | 18210 |
| 38172 | 1 | 57 | 22204 | 27253 |
| 13102 | 1 | 62 | 20295 | 18210 |
| 12750 | 1 | 74 | 15713 | 18210 |
| 16930 | 7 | 56 | 44252 | 50393 |
| 20381 | 5 | 75 | 29776 | 18210 |
| 21532 | 2 | 65 | 22761 | 18210 |
| 47572 | 2 | 45 | 30397 | 39762 |
| 11179 | 2 | 20 | 39942 | 15299 |
| 18940 | 1 | 58 | 21822 | 27253 |
| 46798 | 6 | 47 | 44077 | 50393 |
| 22004 | 4 | 66 | 29601 | 18210 |
| 25193 | 4 | 43 | 38383 | 39762 |
| 27527 | 1 | 58 | 21822 | 27253 |
| 82297 | 5 | 26 | 48485 | 50393 |
| 76271 | 5 | 55 | 37412 | 50393 |
| 77167 | 5 | 52 | 38557 | 50393 |
| 12892 | 3 | 76 | 22172 | 18210 |
| 41769 | 8 | 52 | 49390 | 50393 |
| 26540 | 3 | 54 | 30572 | 39762 |
| 22016 | 1 | 58 | 21822 | 27253 |
| 57975 | 8 | 29 | 58172 | 50393 |
| 24790 | 6 | 85 | 29568 | 18210 |
| 13298 | 1 | 64 | 19532 | 18210 |
| 43194 | 4 | 45 | 37619 | 39762 |
| 30994 | 6 | 48 | 43696 | 50393 |
| 98126 | 3 | 50 | 32099 | 39762 |
| 34015 | 3 | 54 | 30572 | 39762 |
| 45474 | 2 | 33 | 34979 | 39762 |
| 16850 | 5 | 25 | 48866 | 50393 |
| 12907 | 5 | 95 | 22139 | 18210 |
| 61025 | 2 | 42 | 31542 | 39762 |
| 14773 | 8 | 36 | 55499 | 50393 |
| 25287 | 3 | 39 | 36299 | 39762 |
| 53189 | 2 | 46 | 30015 | 39762 |
| 23565 | 2 | 65 | 22761 | 18210 |
| 20758 | 4 | 63 | 30746 | 18210 |
| 42024 | 7 | 41 | 49979 | 50393 |
| 16086 | 7 | 52 | 45779 | 50393 |
| 13054 | 2 | 74 | 19324 | 18210 |
| 43474 | 5 | 44 | 41612 | 50393 |
| 12932 | 2 | 76 | 18561 | 18210 |
| 55430 | 2 | 49 | 28870 | 39762 |
| 22628 | 3 | 83 | 19499 | 18210 |
| 42914 | 7 | 46 | 48070 | 50393 |
| 19733 | 5 | 74 | 30157 | 18210 |
| 57953 | 6 | 25 | 52477 | 50393 |
| 45639 | 8 | 26 | 59318 | 50393 |
| 22633 | 1 | 66 | 18768 | 18210 |
| 12835 | 4 | 74 | 26546 | 18210 |
| 70242 | 4 | 58 | 32655 | 39762 |
| 43421 | 3 | 41 | 35535 | 39762 |
| 13387 | 2 | 74 | 19324 | 18210 |
| 55203 | 7 | 40 | 50361 | 50393 |
| 82246 | 5 | 45 | 41230 | 50393 |
| 22402 | 2 | 27 | 37270 | 39762 |
| 13583 | 1 | 66 | 18768 | 18210 |
| 20509 | 3 | 47 | 33244 | 39762 |
| 28153 | 2 | 58 | 25433 | 39762 |
| 55513 | 3 | 30 | 39735 | 39762 |
| 32706 | 4 | 58 | 32655 | 39762 |
| 38422 | 4 | 47 | 36855 | 39762 |
| 45885 | 5 | 51 | 38939 | 50393 |
| 13231 | 2 | 67 | 21997 | 18210 |
| 13287 | 1 | 92 | 8841 | 18210 |
| 40570 | 7 | 38 | 51125 | 50393 |
| 29205 | 1 | 25 | 34422 | 27253 |
| 41656 | 7 | 53 | 45397 | 50393 |
| 39734 | 8 | 43 | 52827 | 50393 |
| 22213 | 1 | 43 | 27550 | 27253 |
| 21457 | 2 | 80 | 17033 | 18210 |
| 12763 | 1 | 90 | 9604 | 18210 |
| 41373 | 4 | 27 | 44492 | 39762 |
| 14024 | 2 | 83 | 15888 | 18210 |
| 36682 | 6 | 56 | 40641 | 50393 |
| 67512 | 6 | 22 | 53623 | 50393 |
| 43006 | 7 | 26 | 55707 | 50393 |
| 43056 | 6 | 47 | 44077 | 50393 |
| 20672 | 5 | 38 | 43903 | 50393 |
| 26383 | 3 | 53 | 30953 | 39762 |
| 12604 | 3 | 83 | 19499 | 18210 |
| 53193 | 3 | 27 | 40881 | 39762 |
| 21678 | 3 | 60 | 28281 | 18210 |
| 55293 | 6 | 52 | 42168 | 50393 |
| 21930 | 3 | 62 | 27517 | 18210 |
| 44002 | 7 | 44 | 48834 | 50393 |
| 55360 | 6 | 45 | 44841 | 50393 |
| 12751 | 2 | 77 | 18179 | 18210 |
| 39536 | 8 | 37 | 55118 | 50393 |
| 11219 | 3 | 22 | 42790 | 15299 |
| 13086 | 1 | 90 | 9604 | 18210 |
| 50536 | 4 | 30 | 43346 | 39762 |
| 44500 | 2 | 48 | 29252 | 39762 |
| 19465 | 5 | 70 | 31685 | 18210 |
| 47735 | 5 | 35 | 45048 | 50393 |
| 44356 | 2 | 36 | 33833 | 39762 |
| 23608 | 2 | 69 | 21233 | 18210 |
| 13211 | 2 | 81 | 16652 | 18210 |
| 44361 | 3 | 43 | 34772 | 39762 |
| 22870 | 2 | 35 | 34215 | 39762 |
| 44511 | 6 | 43 | 45605 | 50393 |
| 13501 | 4 | 70 | 28074 | 18210 |
| 53643 | 6 | 25 | 52477 | 50393 |
| 11182 | 1 | 61 | 20677 | 18210 |
| 35464 | 7 | 55 | 44634 | 50393 |
| 23588 | 3 | 44 | 34390 | 39762 |
| 24716 | 5 | 92 | 23285 | 18210 |
| 13182 | 1 | 93 | 8459 | 18210 |
| 50576 | 7 | 27 | 55325 | 50393 |
| 50380 | 3 | 37 | 37063 | 39762 |
| 30157 | 2 | 39 | 32688 | 39762 |
| 22907 | 3 | 43 | 34772 | 39762 |
| 21575 | 4 | 73 | 26928 | 18210 |
| 40715 | 6 | 42 | 45986 | 50393 |
| 13157 | 2 | 57 | 25815 | 39762 |
| 12792 | 2 | 73 | 19706 | 18210 |
| 67834 | 2 | 55 | 26579 | 39762 |
| 13111 | 1 | 61 | 20677 | 18210 |
| 78369 | 8 | 53 | 49008 | 50393 |
| 17295 | 3 | 27 | 40881 | 39762 |
| 116674 | 4 | 59 | 32274 | 39762 |
| 45562 | 6 | 36 | 48277 | 50393 |
| 21411 | 2 | 86 | 14743 | 18210 |
| 49143 | 2 | 47 | 29633 | 39762 |
| 16336 | 5 | 54 | 37794 | 50393 |
| 16605 | 8 | 90 | 34881 | 18210 |
| 50546 | 5 | 26 | 48485 | 50393 |
| 85385 | 3 | 40 | 35917 | 39762 |
| 13172 | 3 | 62 | 27517 | 18210 |
| 45533 | 5 | 56 | 37030 | 50393 |
| 44302 | 5 | 44 | 41612 | 50393 |
| 20463 | 6 | 65 | 37205 | 18210 |
| 43064 | 8 | 58 | 47099 | 50393 |
| 43379 | 1 | 30 | 32513 | 27253 |
| 56621 | 5 | 27 | 48103 | 50393 |
| 23500 | 2 | 82 | 16270 | 18210 |
| 22939 | 3 | 67 | 25608 | 18210 |
| 39623 | 6 | 48 | 43696 | 50393 |
| 38653 | 5 | 32 | 46194 | 50393 |
| 48022 | 4 | 27 | 44492 | 39762 |
| 22062 | 2 | 62 | 23906 | 18210 |
| 55205 | 6 | 26 | 52096 | 50393 |
| 12790 | 2 | 74 | 19324 | 18210 |
| 30522 | 4 | 52 | 34946 | 39762 |
| 39249 | 2 | 43 | 31161 | 39762 |
| 21527 | 2 | 78 | 17797 | 18210 |
| 44460 | 6 | 41 | 46368 | 50393 |
| 43527 | 3 | 40 | 35917 | 39762 |
| 18710 | 3 | 20 | 43553 | 15299 |
| 57678 | 5 | 43 | 41994 | 50393 |
| 40796 | 6 | 48 | 43696 | 50393 |
| 39952 | 2 | 44 | 30779 | 39762 |
| 55292 | 5 | 25 | 48866 | 50393 |
| 23762 | 2 | 87 | 14361 | 18210 |
| 21217 | 1 | 39 | 29077 | 27253 |
| 22864 | 3 | 49 | 32481 | 39762 |
| 22302 | 1 | 37 | 29841 | 27253 |
| 82089 | 5 | 36 | 44666 | 50393 |
| 39835 | 6 | 48 | 43696 | 50393 |
| 43285 | 3 | 36 | 37444 | 39762 |
| 13079 | 4 | 59 | 32274 | 39762 |
| 44475 | 3 | 57 | 29426 | 39762 |
| 24439 | 2 | 32 | 35361 | 39762 |
| 41422 | 2 | 50 | 28488 | 39762 |
| 23603 | 2 | 68 | 21615 | 18210 |
| 43329 | 2 | 54 | 26961 | 39762 |
| 21523 | 3 | 78 | 21408 | 18210 |
| 23106 | 1 | 45 | 26786 | 27253 |
| 76998 | 3 | 29 | 40117 | 39762 |
| 12872 | 1 | 70 | 17241 | 18210 |
| 19804 | 8 | 73 | 41372 | 18210 |
| 25887 | 4 | 26 | 44874 | 39762 |
| 48040 | 4 | 54 | 34183 | 39762 |
| 54411 | 5 | 39 | 43521 | 50393 |
| 20566 | 6 | 60 | 39114 | 18210 |
| 45623 | 7 | 32 | 53416 | 50393 |
| 25898 | 4 | 41 | 39146 | 39762 |
| 40977 | 5 | 43 | 41994 | 50393 |
| 82193 | 8 | 42 | 53208 | 50393 |
| 46803 | 7 | 56 | 44252 | 50393 |
| 54285 | 5 | 53 | 38175 | 50393 |
| 13650 | 1 | 71 | 16859 | 18210 |
| 40206 | 3 | 35 | 37826 | 39762 |
| 43189 | 5 | 37 | 44285 | 50393 |
| 22047 | 3 | 72 | 23699 | 18210 |
| 21962 | 2 | 77 | 18179 | 18210 |
| 44454 | 6 | 32 | 49805 | 50393 |
| 37549 | 3 | 54 | 30572 | 39762 |
| 21566 | 4 | 70 | 28074 | 18210 |
| 28054 | 3 | 22 | 42790 | 15299 |
| 50474 | 2 | 49 | 28870 | 39762 |
| 22682 | 4 | 67 | 29219 | 18210 |
| 40122 | 2 | 46 | 30015 | 39762 |
| 23674 | 2 | 76 | 18561 | 18210 |
| 77054 | 3 | 46 | 33626 | 39762 |
| 78241 | 7 | 40 | 50361 | 50393 |
| 11356 | 1 | 22 | 35568 | 15299 |
| 12860 | 3 | 65 | 26372 | 18210 |
| 42460 | 4 | 43 | 38383 | 39762 |
| 48137 | 7 | 43 | 49216 | 50393 |
| 34848 | 4 | 32 | 42583 | 39762 |
| 13334 | 1 | 65 | 19150 | 18210 |
| 25966 | 5 | 83 | 26721 | 18210 |
| 35061 | 2 | 60 | 24670 | 18210 |
| 24490 | 3 | 39 | 36299 | 39762 |
| 39702 | 5 | 43 | 41994 | 50393 |
| 21330 | 2 | 87 | 14361 | 18210 |
| 13618 | 1 | 70 | 17241 | 18210 |
| 39778 | 1 | 48 | 25641 | 27253 |
| 19727 | 5 | 70 | 31685 | 18210 |
| 53217 | 3 | 46 | 33626 | 39762 |
| 43393 | 3 | 52 | 31335 | 39762 |
| 80401 | 5 | 30 | 46957 | 50393 |
| 47746 | 4 | 32 | 42583 | 39762 |
| 99566 | 4 | 50 | 35710 | 39762 |
| 21440 | 4 | 83 | 23110 | 18210 |
| 77080 | 4 | 42 | 38764 | 39762 |
| 27857 | 3 | 46 | 33626 | 39762 |
| 22873 | 5 | 60 | 35503 | 18210 |
| 11418 | 1 | 22 | 35568 | 15299 |
| 44282 | 6 | 50 | 42932 | 50393 |
| 21901 | 1 | 52 | 24113 | 27253 |
| 46655 | 7 | 46 | 48070 | 50393 |
| 16471 | 6 | 78 | 32241 | 18210 |
| 41186 | 3 | 29 | 40117 | 39762 |
| 46866 | 7 | 53 | 45397 | 50393 |
| 14054 | 2 | 59 | 25052 | 39762 |
| 12889 | 3 | 59 | 28663 | 39762 |
| 55122 | 5 | 33 | 45812 | 50393 |
| 23113 | 2 | 79 | 17415 | 18210 |
| 12832 | 4 | 73 | 26928 | 18210 |
| 27276 | 4 | 35 | 41437 | 39762 |
| 74533 | 5 | 54 | 37794 | 50393 |
| 43356 | 2 | 50 | 28488 | 39762 |
| 20897 | 6 | 88 | 28423 | 18210 |
| 30690 | 1 | 58 | 21822 | 27253 |
| 19674 | 5 | 60 | 35503 | 18210 |
| 44549 | 5 | 54 | 37794 | 50393 |
| 82451 | 5 | 51 | 38939 | 50393 |
| 41265 | 2 | 26 | 37652 | 39762 |
| 47784 | 4 | 42 | 38764 | 39762 |
| 80401 | 5 | 47 | 40466 | 50393 |
| 42054 | 6 | 48 | 43696 | 50393 |
| 12948 | 1 | 64 | 19532 | 18210 |
| 44268 | 6 | 47 | 44077 | 50393 |
| 64301 | 6 | 36 | 48277 | 50393 |
| 70026 | 6 | 39 | 47132 | 50393 |
| 70111 | 3 | 55 | 30190 | 39762 |
| 22042 | 3 | 67 | 25608 | 18210 |
| 73674 | 7 | 28 | 54943 | 50393 |
| 40777 | 6 | 35 | 48659 | 50393 |
| 12708 | 3 | 87 | 17972 | 18210 |
| 40823 | 6 | 42 | 45986 | 50393 |
| 15908 | 5 | 25 | 48866 | 50393 |
| 12768 | 2 | 68 | 21615 | 18210 |
| 19760 | 5 | 74 | 30157 | 18210 |
| 13094 | 1 | 85 | 11513 | 18210 |
| 22902 | 1 | 71 | 16859 | 18210 |
| 45751 | 5 | 36 | 44666 | 50393 |
| 49144 | 5 | 38 | 43903 | 50393 |
| 12740 | 4 | 80 | 24255 | 18210 |
| 18436 | 3 | 56 | 29808 | 39762 |
| 37793 | 4 | 27 | 44492 | 39762 |
| 10766 | 3 | 38 | 36681 | 39762 |
| 23965 | 1 | 65 | 19150 | 18210 |
| 32731 | 5 | 50 | 39321 | 50393 |
| 73664 | 6 | 35 | 48659 | 50393 |
| 45404 | 7 | 42 | 49597 | 50393 |
| 55177 | 6 | 58 | 39877 | 50393 |
| 32854 | 3 | 54 | 30572 | 39762 |
| 76487 | 5 | 54 | 37794 | 50393 |
| 39679 | 6 | 46 | 44459 | 50393 |
| 21525 | 3 | 51 | 31717 | 39762 |
| 21547 | 6 | 65 | 37205 | 18210 |
| 36681 | 2 | 41 | 31924 | 39762 |
| 21302 | 4 | 65 | 29983 | 18210 |
| 12678 | 5 | 84 | 26339 | 18210 |
| 56859 | 4 | 28 | 44110 | 39762 |
| 46638 | 7 | 48 | 47307 | 50393 |
| 47836 | 3 | 33 | 38590 | 39762 |
| 43468 | 2 | 38 | 33070 | 39762 |
| 23431 | 1 | 44 | 27168 | 27253 |
| 10657 | 3 | 33 | 38590 | 39762 |
| 13910 | 3 | 93 | 15681 | 18210 |
| 12931 | 1 | 84 | 11895 | 18210 |
| 56622 | 4 | 42 | 38764 | 39762 |
| 39630 | 7 | 47 | 47688 | 50393 |
| 45582 | 5 | 44 | 41612 | 50393 |
| 45637 | 4 | 36 | 41055 | 39762 |
| 54255 | 5 | 56 | 37030 | 50393 |
| 78571 | 7 | 44 | 48834 | 50393 |
| 20798 | 5 | 64 | 33976 | 18210 |
| 42105 | 2 | 33 | 34979 | 39762 |
| 55391 | 7 | 54 | 45016 | 50393 |
| 27781 | 3 | 25 | 41644 | 39762 |
| 21881 | 1 | 65 | 19150 | 18210 |
| 21940 | 4 | 66 | 29601 | 18210 |
| 49449 | 5 | 31 | 46575 | 50393 |
| 56685 | 4 | 26 | 44874 | 39762 |
| 12842 | 1 | 75 | 15332 | 18210 |
| 11337 | 1 | 20 | 36331 | 15299 |
| 82369 | 5 | 26 | 48485 | 50393 |
| 22964 | 2 | 48 | 29252 | 39762 |
| 12869 | 1 | 74 | 15713 | 18210 |
| 37480 | 3 | 33 | 38590 | 39762 |
| 39306 | 4 | 42 | 38764 | 39762 |
| 13379 | 5 | 79 | 28248 | 18210 |
| 17836 | 2 | 19 | 40324 | 15299 |
| 25344 | 4 | 38 | 40292 | 39762 |
| 51726 | 3 | 36 | 37444 | 39762 |
| 11482 | 2 | 23 | 38797 | 15299 |
| 11244 | 1 | 21 | 35950 | 15299 |
| 27415 | 6 | 76 | 33005 | 18210 |
| 23032 | 1 | 29 | 32895 | 27253 |
| 23425 | 2 | 27 | 37270 | 39762 |
| 22582 | 5 | 92 | 23285 | 18210 |
| 39045 | 3 | 35 | 37826 | 39762 |
| 39258 | 7 | 26 | 55707 | 50393 |
| 32715 | 3 | 57 | 29426 | 39762 |
| 13871 | 2 | 85 | 15124 | 18210 |
| 21595 | 2 | 68 | 21615 | 18210 |
| 56567 | 5 | 35 | 45048 | 50393 |
| 71833 | 3 | 51 | 31717 | 39762 |
| 13139 | 1 | 62 | 20295 | 18210 |
| 23483 | 1 | 48 | 25641 | 27253 |
| 28823 | 2 | 58 | 25433 | 39762 |
| 21776 | 3 | 78 | 21408 | 18210 |
| 19721 | 5 | 72 | 30921 | 18210 |
| 13123 | 1 | 64 | 19532 | 18210 |
| 47942 | 3 | 31 | 39353 | 39762 |
| 24602 | 7 | 79 | 35470 | 18210 |
| 21742 | 3 | 36 | 37444 | 39762 |
| 48005 | 2 | 39 | 32688 | 39762 |
| 14274 | 5 | 61 | 35121 | 18210 |
| 24520 | 1 | 27 | 33659 | 27253 |
| 10414 | 5 | 19 | 51157 | 50393 |
| 35473 | 5 | 52 | 38557 | 50393 |
| 77661 | 7 | 40 | 50361 | 50393 |
| 10777 | 1 | 62 | 20295 | 18210 |
| 11482 | 2 | 22 | 39179 | 15299 |
| 18010 | 1 | 23 | 35186 | 15299 |
| 12796 | 2 | 92 | 12452 | 18210 |
| 43237 | 7 | 45 | 48452 | 50393 |
| 13087 | 2 | 94 | 11688 | 18210 |
| 22930 | 2 | 54 | 26961 | 39762 |
| 59304 | 6 | 45 | 44841 | 50393 |
| 13202 | 1 | 63 | 19913 | 18210 |
| 13169 | 1 | 67 | 18386 | 18210 |
| 41787 | 7 | 52 | 45779 | 50393 |
| 27214 | 3 | 29 | 40117 | 39762 |
| 47969 | 5 | 49 | 39703 | 50393 |
| 43143 | 7 | 57 | 43870 | 50393 |
| 10804 | 1 | 78 | 14186 | 18210 |
| 21407 | 5 | 60 | 35503 | 18210 |
| 22229 | 4 | 66 | 29601 | 18210 |
| 38244 | 2 | 53 | 27342 | 39762 |
| 10969 | 1 | 19 | 36713 | 15299 |
| 25726 | 5 | 63 | 34357 | 18210 |
| 52160 | 7 | 52 | 45779 | 50393 |
| 21440 | 3 | 83 | 19499 | 18210 |
| 22407 | 2 | 58 | 25433 | 39762 |
| 39893 | 1 | 45 | 26786 | 27253 |
| 42307 | 3 | 56 | 29808 | 39762 |
| 11049 | 2 | 71 | 20470 | 18210 |
| 21487 | 2 | 61 | 24288 | 18210 |
| 39840 | 4 | 58 | 32655 | 39762 |
| 20363 | 8 | 66 | 44045 | 18210 |
| 32638 | 4 | 49 | 36092 | 39762 |
| 14137 | 3 | 67 | 25608 | 18210 |
| 52979 | 4 | 49 | 36092 | 39762 |
| 10774 | 1 | 19 | 36713 | 15299 |
| 19643 | 5 | 70 | 31685 | 18210 |
| 34249 | 4 | 32 | 42583 | 39762 |
| 33627 | 4 | 43 | 38383 | 39762 |
| 44279 | 6 | 50 | 42932 | 50393 |
| 40945 | 4 | 38 | 40292 | 39762 |
| 77027 | 3 | 48 | 32863 | 39762 |
| 52774 | 5 | 28 | 47721 | 50393 |
| 39205 | 4 | 51 | 35328 | 39762 |
| 39271 | 3 | 52 | 31335 | 39762 |
| 23623 | 3 | 74 | 22935 | 18210 |
| 22886 | 1 | 27 | 33659 | 27253 |
| 41370 | 5 | 54 | 37794 | 50393 |
| 22143 | 3 | 80 | 20644 | 18210 |
| 41835 | 6 | 35 | 48659 | 50393 |
| 41769 | 5 | 42 | 42375 | 50393 |
| 52417 | 6 | 31 | 50186 | 50393 |
| 40993 | 5 | 56 | 37030 | 50393 |
| 12921 | 3 | 81 | 20263 | 18210 |
| 39818 | 1 | 38 | 29459 | 27253 |
| 20240 | 5 | 71 | 31303 | 18210 |
| 13661 | 1 | 62 | 20295 | 18210 |
| 24770 | 4 | 67 | 29219 | 18210 |
| 24734 | 4 | 83 | 23110 | 18210 |
| 82541 | 5 | 51 | 38939 | 50393 |
| 43120 | 5 | 35 | 45048 | 50393 |
| 60628 | 5 | 37 | 44285 | 50393 |
| 19771 | 7 | 65 | 40816 | 18210 |
| 57886 | 5 | 40 | 43139 | 50393 |
| 39933 | 1 | 40 | 28695 | 27253 |
| 26356 | 1 | 55 | 22968 | 27253 |
| 51577 | 5 | 49 | 39703 | 50393 |
| 40741 | 4 | 40 | 39528 | 39762 |
| 52154 | 5 | 44 | 41612 | 50393 |
| 70068 | 3 | 60 | 28281 | 18210 |
| 55246 | 6 | 51 | 42550 | 50393 |
| 43421 | 2 | 48 | 29252 | 39762 |
| 32685 | 3 | 40 | 35917 | 39762 |
| 45385 | 5 | 42 | 42375 | 50393 |
| 73759 | 6 | 50 | 42932 | 50393 |
| 12789 | 2 | 90 | 13215 | 18210 |
| 55136 | 7 | 41 | 49979 | 50393 |
| 55287 | 5 | 28 | 47721 | 50393 |
| 44379 | 7 | 50 | 46543 | 50393 |
| 13085 | 2 | 60 | 24670 | 18210 |
| 17744 | 2 | 37 | 33452 | 39762 |
| 31511 | 1 | 53 | 23732 | 27253 |
| 14421 | 5 | 49 | 39703 | 50393 |
| 11122 | 4 | 61 | 31510 | 18210 |
| 45676 | 5 | 49 | 39703 | 50393 |
| 46691 | 3 | 39 | 36299 | 39762 |
| 12831 | 2 | 81 | 16652 | 18210 |
| 20590 | 4 | 63 | 30746 | 18210 |
| 54451 | 1 | 61 | 20677 | 18210 |
| 14420 | 3 | 65 | 26372 | 18210 |
| 11142 | 4 | 34 | 41819 | 39762 |
| 31735 | 1 | 59 | 21441 | 27253 |
| 12995 | 3 | 76 | 22172 | 18210 |
| 23274 | 2 | 37 | 33452 | 39762 |
| 50588 | 7 | 44 | 48834 | 50393 |
| 38604 | 4 | 47 | 36855 | 39762 |
| 24100 | 1 | 25 | 34422 | 27253 |
| 24568 | 1 | 37 | 29841 | 27253 |
| 42358 | 2 | 59 | 25052 | 39762 |
| 41301 | 3 | 55 | 30190 | 39762 |
| 49033 | 6 | 57 | 40259 | 50393 |
| 12979 | 1 | 96 | 7313 | 18210 |
| 24873 | 1 | 48 | 25641 | 27253 |
| 25260 | 4 | 42 | 38764 | 39762 |
| 28249 | 3 | 19 | 43935 | 15299 |
| 13252 | 2 | 63 | 23524 | 18210 |
| 45656 | 8 | 44 | 52445 | 50393 |
| 45362 | 4 | 28 | 44110 | 39762 |
| 23397 | 1 | 39 | 29077 | 27253 |
| 17967 | 4 | 52 | 34946 | 39762 |
| 13112 | 1 | 78 | 14186 | 18210 |
| 97642 | 8 | 53 | 49008 | 50393 |
| 50950 | 7 | 42 | 49597 | 50393 |
| 44465 | 6 | 43 | 45605 | 50393 |
| 12812 | 2 | 89 | 13597 | 18210 |
| 12703 | 1 | 85 | 11513 | 18210 |
| 19765 | 8 | 68 | 43281 | 18210 |
| 20438 | 6 | 70 | 35296 | 18210 |
| 12767 | 2 | 85 | 15124 | 18210 |
| 11364 | 2 | 31 | 35742 | 39762 |
| 40761 | 5 | 32 | 46194 | 50393 |
| 41030 | 5 | 45 | 41230 | 50393 |
| 13664 | 4 | 60 | 31892 | 18210 |
| 12760 | 1 | 71 | 16859 | 18210 |
| 42433 | 4 | 54 | 34183 | 39762 |
| 22131 | 3 | 75 | 22554 | 18210 |
| 23625 | 1 | 26 | 34041 | 27253 |
| 11214 | 2 | 82 | 16270 | 18210 |
| 30623 | 1 | 55 | 22968 | 27253 |
| 39367 | 3 | 50 | 32099 | 39762 |
| 22449 | 3 | 26 | 41263 | 39762 |
| 21544 | 2 | 57 | 25815 | 39762 |
| 32673 | 5 | 30 | 46957 | 50393 |
| 34833 | 3 | 31 | 39353 | 39762 |
| 10876 | 1 | 21 | 35950 | 15299 |
| 38284 | 2 | 26 | 37652 | 39762 |
| 20986 | 2 | 31 | 35742 | 39762 |
| 44143 | 5 | 28 | 47721 | 50393 |
| 44525 | 2 | 57 | 25815 | 39762 |
| 17840 | 1 | 62 | 20295 | 18210 |
| 57808 | 6 | 36 | 48277 | 50393 |
| 12961 | 1 | 64 | 19532 | 18210 |
| 41141 | 3 | 37 | 37063 | 39762 |
| 24689 | 4 | 48 | 36474 | 39762 |
| 23834 | 2 | 62 | 23906 | 18210 |
| 17042 | 3 | 78 | 21408 | 18210 |
| 13072 | 1 | 62 | 20295 | 18210 |
| 22514 | 1 | 70 | 17241 | 18210 |
| 22196 | 2 | 72 | 20088 | 18210 |
| 39789 | 7 | 44 | 48834 | 50393 |
| 22380 | 1 | 40 | 28695 | 27253 |
| 41230 | 2 | 53 | 27342 | 39762 |
| 44261 | 3 | 37 | 37063 | 39762 |
| 11499 | 3 | 22 | 42790 | 15299 |
| 42029 | 7 | 52 | 45779 | 50393 |
| 12959 | 1 | 81 | 13041 | 18210 |
| 53044 | 2 | 35 | 34215 | 39762 |
| 36612 | 7 | 46 | 48070 | 50393 |
| 21462 | 1 | 61 | 20677 | 18210 |
| 44229 | 6 | 58 | 39877 | 50393 |
| 25083 | 4 | 44 | 38001 | 39762 |
| 21597 | 4 | 68 | 28837 | 18210 |
| 44518 | 5 | 49 | 39703 | 50393 |
| 46787 | 5 | 37 | 44285 | 50393 |
| 12979 | 4 | 66 | 29601 | 18210 |
| 10929 | 6 | 50 | 42932 | 50393 |
| 82127 | 5 | 44 | 41612 | 50393 |
| 19777 | 6 | 82 | 30714 | 18210 |
| 22198 | 3 | 74 | 22935 | 18210 |
| 20301 | 4 | 76 | 25783 | 18210 |
| 13304 | 3 | 61 | 27899 | 18210 |
| 28236 | 2 | 55 | 26579 | 39762 |
| 53095 | 3 | 50 | 32099 | 39762 |
| 12682 | 2 | 94 | 11688 | 18210 |
| 40459 | 3 | 41 | 35535 | 39762 |
| 45419 | 5 | 52 | 38557 | 50393 |
| 82194 | 7 | 40 | 50361 | 50393 |
| 32146 | 1 | 20 | 36331 | 15299 |
| 39961 | 1 | 63 | 19913 | 18210 |
| 35458 | 6 | 56 | 40641 | 50393 |
| 13842 | 3 | 95 | 14917 | 18210 |
| 40160 | 2 | 27 | 37270 | 39762 |
| 95933 | 5 | 50 | 39321 | 50393 |
| 47737 | 5 | 45 | 41230 | 50393 |
| 80402 | 6 | 34 | 49041 | 50393 |
| 56691 | 7 | 40 | 50361 | 50393 |
| 38440 | 2 | 50 | 28488 | 39762 |
| 12942 | 2 | 79 | 17415 | 18210 |
| 18369 | 5 | 89 | 24430 | 18210 |
| 23530 | 1 | 48 | 25641 | 27253 |
| 20987 | 6 | 60 | 39114 | 18210 |
| 26692 | 1 | 37 | 29841 | 27253 |
| 22085 | 3 | 71 | 24081 | 18210 |
| 45569 | 6 | 35 | 48659 | 50393 |
| 12911 | 1 | 97 | 6932 | 18210 |
| 20882 | 5 | 67 | 32830 | 18210 |
| 12676 | 5 | 73 | 30539 | 18210 |
| 47922 | 2 | 38 | 33070 | 39762 |
| 17009 | 4 | 27 | 44492 | 39762 |
| 12966 | 2 | 96 | 10924 | 18210 |
| 22789 | 2 | 31 | 35742 | 39762 |
| 26947 | 5 | 87 | 25194 | 18210 |
| 13309 | 1 | 64 | 19532 | 18210 |
| 20503 | 5 | 66 | 33212 | 18210 |
| 23204 | 2 | 61 | 24288 | 18210 |
| 77110 | 4 | 43 | 38383 | 39762 |
| 20449 | 6 | 69 | 35677 | 18210 |
| 13869 | 5 | 64 | 33976 | 18210 |
| 82254 | 8 | 33 | 56645 | 50393 |
| 11199 | 2 | 19 | 40324 | 15299 |
| 41136 | 3 | 32 | 38972 | 39762 |
| 49309 | 7 | 37 | 51507 | 50393 |
| 10988 | 1 | 18 | 37095 | 15299 |
| 23069 | 2 | 87 | 14361 | 18210 |
| 26914 | 2 | 57 | 25815 | 39762 |
| 12936 | 1 | 92 | 8841 | 18210 |
| 36284 | 2 | 38 | 33070 | 39762 |
| 29318 | 1 | 43 | 27550 | 27253 |
| 23726 | 2 | 67 | 21997 | 18210 |
| 21570 | 1 | 44 | 27168 | 27253 |
| 51840 | 3 | 27 | 40881 | 39762 |
| 41309 | 2 | 52 | 27724 | 39762 |
| 22180 | 5 | 65 | 33594 | 18210 |
| 27562 | 3 | 37 | 37063 | 39762 |
| 12757 | 1 | 73 | 16095 | 18210 |
| 21582 | 4 | 68 | 28837 | 18210 |
| 38538 | 6 | 36 | 48277 | 50393 |
| 53178 | 2 | 42 | 31542 | 39762 |
| 51952 | 3 | 43 | 34772 | 39762 |
| 52997 | 3 | 47 | 33244 | 39762 |
| 13433 | 1 | 97 | 6932 | 18210 |
| 44306 | 5 | 27 | 48103 | 50393 |
| 21493 | 4 | 81 | 23874 | 18210 |
| 81939 | 8 | 28 | 58554 | 50393 |
| 32273 | 2 | 57 | 25815 | 39762 |
| 42218 | 4 | 50 | 35710 | 39762 |
| 21020 | 5 | 66 | 33212 | 18210 |
| 11246 | 1 | 19 | 36713 | 15299 |
| 19756 | 5 | 72 | 30921 | 18210 |
| 21660 | 3 | 67 | 25608 | 18210 |
| 29463 | 4 | 34 | 41819 | 39762 |
| 13012 | 2 | 60 | 24670 | 18210 |
| 11557 | 3 | 24 | 42026 | 15299 |
| 80360 | 7 | 59 | 43107 | 50393 |
| 23107 | 1 | 68 | 18004 | 18210 |
| 48997 | 2 | 33 | 34979 | 39762 |
| 52429 | 5 | 59 | 35885 | 50393 |
| 12863 | 1 | 80 | 13422 | 18210 |
| 13407 | 1 | 72 | 16477 | 18210 |
| 46561 | 5 | 41 | 42757 | 50393 |
| 20384 | 5 | 94 | 22521 | 18210 |
| 79453 | 4 | 31 | 42964 | 39762 |
| 43457 | 2 | 27 | 37270 | 39762 |
| 39961 | 3 | 34 | 38208 | 39762 |
| 21023 | 4 | 25 | 45255 | 39762 |
| 71964 | 4 | 52 | 34946 | 39762 |
| 43367 | 3 | 41 | 35535 | 39762 |
| 24727 | 7 | 69 | 39288 | 18210 |
| 39395 | 2 | 43 | 31161 | 39762 |
| 19902 | 7 | 74 | 37379 | 18210 |
| 12945 | 2 | 66 | 22379 | 18210 |
| 28176 | 1 | 59 | 21441 | 27253 |
| 11262 | 1 | 48 | 25641 | 27253 |
| 36105 | 2 | 30 | 36124 | 39762 |
| 39685 | 1 | 43 | 27550 | 27253 |
| 50563 | 4 | 45 | 37619 | 39762 |
| 53693 | 6 | 44 | 45223 | 50393 |
| 12460 | 6 | 77 | 32623 | 18210 |
| 12673 | 2 | 82 | 16270 | 18210 |
| 38569 | 6 | 39 | 47132 | 50393 |
| 52345 | 8 | 50 | 50154 | 50393 |
| 78936 | 7 | 49 | 46925 | 50393 |
| 42970 | 6 | 54 | 41405 | 50393 |
| 12985 | 1 | 62 | 20295 | 18210 |
| 24905 | 6 | 62 | 38350 | 18210 |
| 22610 | 2 | 67 | 21997 | 18210 |
| 41267 | 4 | 49 | 36092 | 39762 |
| 24392 | 4 | 36 | 41055 | 39762 |
| 23567 | 2 | 40 | 32306 | 39762 |
| 45481 | 6 | 37 | 47896 | 50393 |
| 27095 | 2 | 55 | 26579 | 39762 |
| 44303 | 7 | 48 | 47307 | 50393 |
| 17832 | 1 | 28 | 33277 | 27253 |
| 51750 | 1 | 54 | 23350 | 27253 |
| 40900 | 8 | 46 | 51681 | 50393 |
| 41449 | 2 | 29 | 36506 | 39762 |
| 13360 | 2 | 67 | 21997 | 18210 |
| 45375 | 5 | 51 | 38939 | 50393 |
| 13403 | 1 | 85 | 11513 | 18210 |
| 24774 | 5 | 42 | 42375 | 50393 |
| 50462 | 3 | 56 | 29808 | 39762 |
| 46681 | 7 | 41 | 49979 | 50393 |
| 13360 | 2 | 91 | 12833 | 18210 |
| 52931 | 4 | 32 | 42583 | 39762 |
| 22242 | 2 | 67 | 21997 | 18210 |
| 43345 | 1 | 49 | 25259 | 27253 |
| 54292 | 2 | 51 | 28106 | 39762 |
| 41963 | 5 | 34 | 45430 | 50393 |
| 42626 | 5 | 48 | 40085 | 50393 |
| 82190 | 6 | 36 | 48277 | 50393 |
| 46864 | 6 | 38 | 47514 | 50393 |
| 12769 | 3 | 67 | 25608 | 18210 |
| 63270 | 4 | 46 | 37237 | 39762 |
| 19647 | 5 | 65 | 33594 | 18210 |
| 13058 | 2 | 61 | 24288 | 18210 |
| 73608 | 7 | 33 | 53034 | 50393 |
| 13466 | 2 | 71 | 20470 | 18210 |
| 17436 | 3 | 56 | 29808 | 39762 |
| 22052 | 2 | 83 | 15888 | 18210 |
| 19788 | 7 | 67 | 40052 | 18210 |
| 39638 | 5 | 38 | 43903 | 50393 |
| 23079 | 3 | 66 | 25990 | 18210 |
| 40147 | 2 | 42 | 31542 | 39762 |
| 11023 | 3 | 20 | 43553 | 15299 |
| 11602 | 1 | 26 | 34041 | 27253 |
| 25398 | 4 | 75 | 26165 | 18210 |
| 13183 | 1 | 66 | 18768 | 18210 |
| 40705 | 8 | 48 | 50918 | 50393 |
| 18659 | 1 | 59 | 21441 | 27253 |
| 20824 | 6 | 76 | 33005 | 18210 |
| Modèle | MSE | RMSE | R² |
|---|---|---|---|
| Modèle 1 : Régression linéaire | 2.6929032^{8} | 1.64101^{4} | 0.33 |
| Modèle 2 : Arbre | 2.0045389^{8} | 1.41582^{4} | 0.5 |
Et si on retirait une variable ? ajoutait une variable ?
Et si on essayait avec un arbre plus profond ? (hyper-paramètres)
Et si on construisait des variables à partir des variables existantes ? (X², Log(X) etc…)
══ Workflow [trained] ══════════════════════════════════════════════════════════
Preprocessor: Recipe
Model: decision_tree()
── Preprocessor ────────────────────────────────────────────────────────────────
0 Recipe Steps
── Model ───────────────────────────────────────────────────────────────────────
n= 4334
node), split, n, deviance, yval
* denotes terminal node
1) root 4334 1.636048e+12 33858.69
2) X2_AGE>=59.5 1440 8.654326e+10 18210.93 *
3) X2_AGE< 59.5 2894 1.021477e+12 41644.72
6) X1_NBPIECES< 4.5 1763 5.362400e+11 35767.18
12) X2_AGE< 24.5 156 1.106295e+10 15764.29 *
13) X2_AGE>=24.5 1607 4.566998e+11 37708.96
26) X1_NBPIECES< 1.5 302 2.106195e+10 27248.05 *
27) X1_NBPIECES>=1.5 1305 3.949419e+11 40129.80 *
7) X1_NBPIECES>=4.5 1131 3.293963e+11 50806.63 *
| Y_PREVU | X1_NBPIECES | X2_AGE |
|---|---|---|
| 40130 | 4 | 59 |
| 40130 | 3 | 43 |
| 18211 | 2 | 86 |
| 50807 | 8 | 41 |
| 50807 | 5 | 30 |
| 18211 | 3 | 79 |
| 40130 | 2 | 33 |
| 40130 | 3 | 42 |
| 40130 | 3 | 30 |
| 18211 | 2 | 89 |
| 50807 | 5 | 45 |
| 15764 | 1 | 21 |
| 40130 | 4 | 35 |
| 50807 | 7 | 42 |
| 18211 | 2 | 86 |
| 18211 | 6 | 69 |
| 27248 | 1 | 54 |
| 40130 | 3 | 45 |
| 18211 | 7 | 74 |
| 50807 | 6 | 25 |
| 27248 | 1 | 29 |
| 40130 | 4 | 31 |
| 40130 | 3 | 41 |
| 18211 | 2 | 66 |
| 18211 | 3 | 87 |
| 40130 | 2 | 28 |
| 50807 | 6 | 51 |
| 50807 | 6 | 37 |
| 50807 | 5 | 50 |
| 40130 | 2 | 59 |
| 50807 | 5 | 26 |
| 18211 | 2 | 67 |
| 18211 | 8 | 71 |
| 15764 | 3 | 23 |
| 18211 | 4 | 85 |
| 18211 | 3 | 66 |
| 40130 | 2 | 42 |
| 18211 | 3 | 67 |
| 18211 | 2 | 95 |
| 18211 | 3 | 62 |
| 50807 | 6 | 40 |
| 50807 | 5 | 30 |
| 50807 | 6 | 45 |
| 18211 | 1 | 70 |
| 50807 | 7 | 51 |
| 27248 | 1 | 26 |
| 40130 | 2 | 38 |
| 18211 | 5 | 84 |
| 27248 | 1 | 39 |
| 18211 | 5 | 69 |
| 40130 | 2 | 30 |
| 50807 | 7 | 35 |
| 50807 | 5 | 37 |
| 18211 | 2 | 80 |
| 40130 | 3 | 31 |
| 40130 | 3 | 40 |
| 50807 | 5 | 53 |
| 40130 | 3 | 31 |
| 40130 | 2 | 28 |
| 40130 | 3 | 39 |
| 18211 | 5 | 65 |
| 40130 | 4 | 54 |
| 15764 | 2 | 22 |
| 40130 | 4 | 35 |
| 27248 | 1 | 58 |
| 18211 | 2 | 87 |
| 18211 | 3 | 72 |
| 50807 | 5 | 26 |
| 40130 | 4 | 47 |
| 40130 | 2 | 50 |
| 50807 | 6 | 46 |
| 18211 | 5 | 60 |
| 40130 | 3 | 50 |
| 18211 | 1 | 62 |
| 40130 | 2 | 25 |
| 18211 | 3 | 63 |
| 40130 | 4 | 56 |
| 18211 | 1 | 62 |
| 40130 | 2 | 46 |
| 40130 | 3 | 42 |
| 18211 | 3 | 72 |
| 40130 | 2 | 49 |
| 50807 | 5 | 30 |
| 15764 | 1 | 21 |
| 50807 | 5 | 47 |
| 18211 | 7 | 65 |
| 40130 | 4 | 32 |
| 27248 | 1 | 38 |
| 40130 | 3 | 58 |
| 50807 | 5 | 39 |
| 50807 | 5 | 28 |
| 15764 | 3 | 20 |
| 50807 | 6 | 42 |
| 50807 | 5 | 37 |
| 18211 | 4 | 63 |
| 50807 | 6 | 34 |
| 18211 | 3 | 62 |
| 18211 | 4 | 63 |
| 50807 | 5 | 42 |
| 40130 | 3 | 47 |
| Y_PAUVRE | X1_REVENU | X2_DIPL |
|---|---|---|
| 0 | 42476 | 2 |
| 0 | 14155 | 6 |
| 0 | 24696 | 2 |
| 0 | 21418 | 0 |
| 0 | 64255 | 3 |
| 0 | 42047 | 5 |
| 1 | 38543 | 0 |
| 0 | 32735 | 4 |
| 0 | 39086 | 2 |
| 0 | 42880 | 2 |
| 0 | 47687 | 6 |
| 1 | 16973 | 0 |
| 0 | 13602 | 4 |
| 0 | 12832 | 0 |
| 0 | 73697 | 4 |
| 0 | 82289 | 6 |
| 0 | 12586 | 0 |
| 0 | 45611 | 3 |
| 0 | 45493 | 5 |
| 0 | 41852 | 4 |
| 0 | 46765 | 4 |
| 0 | 50602 | 2 |
| 0 | 25092 | 5 |
| 0 | 12736 | 0 |
| 0 | 28304 | 4 |
| 0 | 55220 | 4 |
| 0 | 40119 | 3 |
| 0 | 52525 | 2 |
| 0 | 13374 | 3 |
| 0 | 24052 | 6 |
| 0 | 22482 | 0 |
| 0 | 12862 | 0 |
| 0 | 72041 | 5 |
| 0 | 24495 | 5 |
| 0 | 24110 | 3 |
| 0 | 101718 | 0 |
| 0 | 50568 | 5 |
| 0 | 32690 | 4 |
| 0 | 12957 | 0 |
| 0 | 58191 | 4 |
| 0 | 22915 | 0 |
| 0 | 39196 | 2 |
| 0 | 25286 | 5 |
| 0 | 13101 | 1 |
| 0 | 22659 | 3 |
| 0 | 40002 | 6 |
| 0 | 22486 | 3 |
| 1 | 20515 | 2 |
| 1 | 22701 | 6 |
| 0 | 69430 | 6 |
| 0 | 12917 | 2 |
| 1 | 12616 | 0 |
| 0 | 84281 | 3 |
| 1 | 16691 | 5 |
| 0 | 33589 | 5 |
| 0 | 13154 | 2 |
| 0 | 28233 | 4 |
| 0 | 25639 | 6 |
| 0 | 53782 | 3 |
| 0 | 42123 | 3 |
| 1 | 17489 | 1 |
| 0 | 46696 | 4 |
| 0 | 27170 | 4 |
| 0 | 52403 | 2 |
| 0 | 22220 | 1 |
| 0 | 36737 | 1 |
| 0 | 60434 | 5 |
| 0 | 44056 | 6 |
| 1 | 11636 | 6 |
| 1 | 11318 | 5 |
| 1 | 24990 | 4 |
| 0 | 38147 | 0 |
| 0 | 40863 | 1 |
| 0 | 13372 | 3 |
| 0 | 12905 | 0 |
| 1 | 19587 | 0 |
| 1 | 15608 | 3 |
| 1 | 22710 | 6 |
| 0 | 77087 | 6 |
| 0 | 53205 | 4 |
| 0 | 21424 | 1 |
| 0 | 99668 | 1 |
| 1 | 12742 | 0 |
| 0 | 56474 | 5 |
| 0 | 55198 | 4 |
| 0 | 22700 | 3 |
| 0 | 62475 | 1 |
| 0 | 12604 | 0 |
| 0 | 46606 | 5 |
| 0 | 55174 | 4 |
| 0 | 21130 | 3 |
| 1 | 13292 | 3 |
| 0 | 47790 | 6 |
| 0 | 39500 | 2 |
| 0 | 37925 | 3 |
| 1 | 20490 | 1 |
| 1 | 20870 | 3 |
| 0 | 12723 | 0 |
| 1 | 14682 | 0 |
| 0 | 25313 | 3 |
| Name | grandile |
| Number of rows | 5418 |
| Number of columns | 3 |
| _______________________ | |
| Column type frequency: | |
| factor | 2 |
| numeric | 1 |
| ________________________ | |
| Group variables | None |
Variable type: factor
| skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
|---|---|---|---|---|---|
| Y_PAUVRE | 0 | 1 | FALSE | 2 | 0: 4517, 1: 901 |
| X2_DIPL | 0 | 1 | FALSE | 7 | 3: 1207, 0: 1072, 4: 855, 6: 606 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| X1_REVENU | 0 | 1 | 33889.09 | 19431.26 | 9823 | 19771.5 | 27169.5 | 44531 | 116674 | ▇▅▁▁▁ |
Base d’entraînement : 60 %
Base de validation : 20 %
Base de test : 20 %
| Name | train_grandile |
| Number of rows | 3250 |
| Number of columns | 3 |
| _______________________ | |
| Column type frequency: | |
| factor | 2 |
| numeric | 1 |
| ________________________ | |
| Group variables | None |
Variable type: factor
| skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
|---|---|---|---|---|---|
| Y_PAUVRE | 0 | 1 | FALSE | 2 | 0: 2710, 1: 540 |
| X2_DIPL | 0 | 1 | FALSE | 7 | 3: 731, 0: 634, 4: 528, 6: 368 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| X1_REVENU | 0 | 1 | 33814.45 | 19368.38 | 9823 | 19772.25 | 27025 | 44534.75 | 116674 | ▇▅▂▁▁ |
Régression logistique
Arbre de classification
Forêt aléatoire
══ Workflow [trained] ══════════════════════════════════════════════════════════
Preprocessor: Recipe
Model: logistic_reg()
── Preprocessor ────────────────────────────────────────────────────────────────
0 Recipe Steps
── Model ───────────────────────────────────────────────────────────────────────
Call: stats::glm(formula = ..y ~ ., family = stats::binomial, data = data)
Coefficients:
(Intercept) X1_REVENU X2_DIPL1 X2_DIPL2 X2_DIPL3 X2_DIPL4
1.6731620 -0.0001539 0.2287291 0.3249587 0.3519125 0.5408592
X2_DIPL5 X2_DIPL6
0.4859229 0.4291867
Degrees of Freedom: 3249 Total (i.e. Null); 3242 Residual
Null Deviance: 2923
Residual Deviance: 2060 AIC: 2076
| Y_PAUVRE | Y_REG | .pred_0 | .pred_1 |
|---|---|---|---|
| 0 | 0 | 0.98 | 0.02 |
| 0 | 0 | 0.57 | 0.43 |
| 0 | 0 | 0.84 | 0.16 |
| 0 | 0 | 0.98 | 0.02 |
| 1 | 0 | 0.60 | 0.40 |
| 0 | 0 | 0.51 | 0.49 |
| 0 | 0 | 0.86 | 0.14 |
| 0 | 0 | 1.00 | 0.00 |
| 0 | 0 | 0.88 | 0.12 |
| 0 | 0 | 1.00 | 0.00 |
| 0 | 0 | 0.81 | 0.19 |
| 0 | 0 | 1.00 | 0.00 |
| 0 | 0 | 0.57 | 0.43 |
| 0 | 0 | 1.00 | 0.00 |
| 0 | 0 | 0.83 | 0.17 |
| 0 | 0 | 0.58 | 0.42 |
| 0 | 0 | 0.99 | 0.01 |
| 0 | 0 | 1.00 | 0.00 |
| 0 | 0 | 0.58 | 0.42 |
| 0 | 0 | 1.00 | 0.00 |
| 1 | 0 | 0.61 | 0.39 |
| 0 | 0 | 0.88 | 0.12 |
| 0 | 0 | 0.97 | 0.03 |
| 0 | 0 | 1.00 | 0.00 |
| 1 | 0 | 0.77 | 0.23 |
| 1 | 0 | 0.72 | 0.28 |
| 0 | 0 | 0.96 | 0.04 |
| 0 | 0 | 0.99 | 0.01 |
| 1 | 0 | 0.68 | 0.32 |
| 0 | 0 | 0.53 | 0.47 |
| 1 | 0 | 0.78 | 0.22 |
| 1 | 1 | 0.40 | 0.60 |
| 0 | 0 | 1.00 | 0.00 |
| 0 | 0 | 0.98 | 0.02 |
| 0 | 0 | 0.57 | 0.43 |
| 0 | 0 | 1.00 | 0.00 |
| 0 | 0 | 0.53 | 0.47 |
| 0 | 0 | 0.94 | 0.06 |
| 0 | 0 | 1.00 | 0.00 |
| 0 | 0 | 1.00 | 0.00 |
| 0 | 0 | 0.99 | 0.01 |
| 0 | 0 | 0.91 | 0.09 |
| 0 | 0 | 0.85 | 0.15 |
| 0 | 0 | 1.00 | 0.00 |
| 0 | 0 | 0.98 | 0.02 |
| 0 | 0 | 0.82 | 0.18 |
| 0 | 0 | 1.00 | 0.00 |
| 0 | 0 | 0.83 | 0.17 |
| 0 | 0 | 0.82 | 0.18 |
| 0 | 0 | 0.84 | 0.16 |
| 1 | 1 | 0.38 | 0.62 |
| 0 | 0 | 0.99 | 0.01 |
| 0 | 0 | 1.00 | 0.00 |
| 0 | 0 | 0.99 | 0.01 |
| 0 | 0 | 0.99 | 0.01 |
| 0 | 0 | 0.90 | 0.10 |
| 0 | 0 | 0.52 | 0.48 |
| 0 | 0 | 1.00 | 0.00 |
| 0 | 0 | 1.00 | 0.00 |
| 0 | 0 | 0.79 | 0.21 |
| 0 | 0 | 0.84 | 0.16 |
| 0 | 0 | 0.80 | 0.20 |
| 0 | 0 | 0.99 | 0.01 |
| 0 | 0 | 1.00 | 0.00 |
| 0 | 0 | 1.00 | 0.00 |
| 0 | 0 | 0.58 | 0.42 |
| 0 | 0 | 1.00 | 0.00 |
| 0 | 0 | 0.85 | 0.15 |
| 0 | 0 | 0.52 | 0.48 |
| 0 | 0 | 1.00 | 0.00 |
| 0 | 0 | 1.00 | 0.00 |
| 0 | 0 | 0.99 | 0.01 |
| 1 | 0 | 0.79 | 0.21 |
| 0 | 0 | 0.57 | 0.43 |
| 0 | 0 | 1.00 | 0.00 |
| 0 | 0 | 0.80 | 0.20 |
| 1 | 1 | 0.49 | 0.51 |
| 0 | 0 | 0.89 | 0.11 |
| 1 | 0 | 0.77 | 0.23 |
| 0 | 0 | 0.98 | 0.02 |
| 1 | 1 | 0.42 | 0.58 |
| 0 | 0 | 0.88 | 0.12 |
| 1 | 0 | 0.80 | 0.20 |
| 0 | 0 | 0.99 | 0.01 |
| 0 | 0 | 0.98 | 0.02 |
| 1 | 1 | 0.38 | 0.62 |
| 0 | 0 | 0.95 | 0.05 |
| 1 | 0 | 0.77 | 0.23 |
| 1 | 1 | 0.40 | 0.60 |
| 0 | 0 | 0.96 | 0.04 |
| 0 | 0 | 0.90 | 0.10 |
| 0 | 0 | 0.84 | 0.16 |
| 0 | 0 | 0.98 | 0.02 |
| 0 | 0 | 0.84 | 0.16 |
| 0 | 0 | 0.51 | 0.49 |
| 0 | 0 | 0.98 | 0.02 |
| 0 | 0 | 1.00 | 0.00 |
| 0 | 0 | 0.51 | 0.49 |
| 0 | 0 | 0.92 | 0.08 |
| 0 | 0 | 0.89 | 0.11 |
| Exactitude | Sensibilité | Spécificité | |
|---|---|---|---|
| Modèle 1 : régression logistique | 0.88 | 0.4 | 0.98 |
══ Workflow [trained] ══════════════════════════════════════════════════════════
Preprocessor: Recipe
Model: decision_tree()
── Preprocessor ────────────────────────────────────────────────────────────────
0 Recipe Steps
── Model ───────────────────────────────────────────────────────────────────────
n= 3250
node), split, n, loss, yval, (yprob)
* denotes terminal node
1) root 3250 540 0 (0.83384615 0.16615385)
2) X1_REVENU>=21187.5 2311 72 0 (0.96884466 0.03115534) *
3) X1_REVENU< 21187.5 939 468 0 (0.50159744 0.49840256)
6) X1_REVENU>=12624.5 763 295 0 (0.61336828 0.38663172)
12) X1_REVENU< 14208 462 46 0 (0.90043290 0.09956710) *
13) X1_REVENU>=14208 301 52 1 (0.17275748 0.82724252) *
7) X1_REVENU< 12624.5 176 3 1 (0.01704545 0.98295455) *
══ Workflow [trained] ══════════════════════════════════════════════════════════
Preprocessor: Recipe
Model: rand_forest()
── Preprocessor ────────────────────────────────────────────────────────────────
0 Recipe Steps
── Model ───────────────────────────────────────────────────────────────────────
Ranger result
Call:
ranger::ranger(x = maybe_data_frame(x), y = y, mtry = min_cols(~3, x), num.trees = ~1000, num.threads = 1, verbose = FALSE, seed = sample.int(10^5, 1), probability = TRUE)
Type: Probability estimation
Number of trees: 1000
Sample size: 3250
Number of independent variables: 2
Mtry: 2
Target node size: 10
Variable importance mode: none
Splitrule: gini
OOB prediction error (Brier s.): 0.03482798
| Exactitude | Spécificité | Sensibilité | |
|---|---|---|---|
| Modèle 1 : régression logistique | 0.88 | 0.4 | 0.98 |
| Modèle 2 : arbre de classification | 0.95 | 0.79 | 0.98 |
| Modèle 3 : forêt aléatoire | 0.96 | 0.83 | 0.98 |
Et si on ajoutait/retirait des variables explicatives ?
Et si on regroupait des modalités sur DIPL ?
Et si on modifiait la profondeur de l’arbre (modèle 2) ?
Et si modifiait le nombre d’arbres tirés aléatoirement ? Le nombre de variables ? (modèle 3)
══ Workflow [trained] ══════════════════════════════════════════════════════════
Preprocessor: Recipe
Model: rand_forest()
── Preprocessor ────────────────────────────────────────────────────────────────
0 Recipe Steps
── Model ───────────────────────────────────────────────────────────────────────
Ranger result
Call:
ranger::ranger(x = maybe_data_frame(x), y = y, mtry = min_cols(~3, x), num.trees = ~1000, num.threads = 1, verbose = FALSE, seed = sample.int(10^5, 1), probability = TRUE)
Type: Probability estimation
Number of trees: 1000
Sample size: 4334
Number of independent variables: 2
Mtry: 2
Target node size: 10
Variable importance mode: none
Splitrule: gini
OOB prediction error (Brier s.): 0.03567222
| Y_PAUVRE | Y_PREDICT | .pred_0 | .pred_1 | X1_REVENU | X2_DIPL |
|---|---|---|---|---|---|
| 0 | 0 | 1.00 | 0.00 | 42476 | 2 |
| 0 | 0 | 1.00 | 0.00 | 42880 | 2 |
| 0 | 0 | 1.00 | 0.00 | 82289 | 6 |
| 0 | 0 | 1.00 | 0.00 | 41852 | 4 |
| 0 | 0 | 1.00 | 0.00 | 50602 | 2 |
| 0 | 0 | 1.00 | 0.00 | 25092 | 5 |
| 0 | 0 | 1.00 | 0.00 | 22482 | 0 |
| 0 | 0 | 1.00 | 0.00 | 32690 | 4 |
| 0 | 0 | 1.00 | 0.00 | 22659 | 3 |
| 0 | 0 | 1.00 | 0.00 | 33589 | 5 |
| 0 | 0 | 1.00 | 0.00 | 60434 | 5 |
| 1 | 0 | 1.00 | 0.00 | 24990 | 4 |
| 0 | 0 | 0.88 | 0.12 | 12905 | 0 |
| 1 | 1 | 0.00 | 1.00 | 15608 | 3 |
| 1 | 1 | 0.05 | 0.95 | 22710 | 6 |
| 0 | 0 | 1.00 | 0.00 | 77087 | 6 |
| 1 | 0 | 1.00 | 0.00 | 12742 | 0 |
| 0 | 0 | 1.00 | 0.00 | 56474 | 5 |
| 0 | 1 | 0.12 | 0.88 | 21130 | 3 |
| 1 | 1 | 0.00 | 1.00 | 20870 | 3 |
| 0 | 0 | 1.00 | 0.00 | 12723 | 0 |
| 1 | 1 | 0.01 | 0.99 | 14682 | 0 |
| 0 | 0 | 0.97 | 0.03 | 25313 | 3 |
| 0 | 0 | 1.00 | 0.00 | 22977 | 0 |
| 1 | 1 | 0.00 | 1.00 | 20445 | 1 |
| 0 | 0 | 1.00 | 0.00 | 28030 | 4 |
| 0 | 0 | 1.00 | 0.00 | 22117 | 2 |
| 0 | 0 | 1.00 | 0.00 | 22705 | 3 |
| 1 | 1 | 0.00 | 1.00 | 11371 | 5 |
| 0 | 0 | 1.00 | 0.00 | 39219 | 2 |
| 0 | 0 | 1.00 | 0.00 | 50828 | 0 |
| 0 | 0 | 1.00 | 0.00 | 24090 | 3 |
| 0 | 0 | 1.00 | 0.00 | 21412 | 0 |
| 0 | 0 | 1.00 | 0.00 | 61949 | 6 |
| 0 | 0 | 1.00 | 0.00 | 75421 | 5 |
| 0 | 0 | 1.00 | 0.00 | 22262 | 1 |
| 0 | 0 | 1.00 | 0.00 | 30934 | 1 |
| 0 | 0 | 1.00 | 0.00 | 31245 | 2 |
| 0 | 1 | 0.45 | 0.55 | 21908 | 5 |
| 1 | 0 | 0.89 | 0.11 | 13288 | 3 |
| 0 | 0 | 1.00 | 0.00 | 44248 | 3 |
| 0 | 0 | 0.91 | 0.09 | 13792 | 5 |
| 0 | 0 | 1.00 | 0.00 | 24155 | 6 |
| 0 | 0 | 1.00 | 0.00 | 43220 | 2 |
| 0 | 0 | 1.00 | 0.00 | 23390 | 2 |
| 0 | 0 | 0.96 | 0.04 | 12777 | 0 |
| 0 | 0 | 1.00 | 0.00 | 41216 | 4 |
| 0 | 0 | 1.00 | 0.00 | 26207 | 5 |
| 0 | 0 | 1.00 | 0.00 | 46467 | 5 |
| 0 | 0 | 1.00 | 0.00 | 53043 | 4 |
| 0 | 0 | 0.99 | 0.01 | 27620 | 3 |
| 1 | 1 | 0.00 | 1.00 | 19796 | 0 |
| 0 | 0 | 1.00 | 0.00 | 75360 | 5 |
| 0 | 0 | 1.00 | 0.00 | 58054 | 2 |
| 1 | 1 | 0.00 | 1.00 | 19648 | 0 |
| 0 | 0 | 0.95 | 0.05 | 13047 | 2 |
| 1 | 1 | 0.00 | 1.00 | 15769 | 3 |
| 0 | 0 | 1.00 | 0.00 | 28308 | 4 |
| 0 | 0 | 0.97 | 0.03 | 12751 | 0 |
| 0 | 0 | 1.00 | 0.00 | 49138 | 4 |
| 0 | 0 | 1.00 | 0.00 | 48886 | 5 |
| 0 | 0 | 1.00 | 0.00 | 37689 | 3 |
| 0 | 0 | 1.00 | 0.00 | 12740 | 0 |
| 0 | 0 | 1.00 | 0.00 | 45381 | 4 |
| 0 | 0 | 1.00 | 0.00 | 82204 | 6 |
| 0 | 0 | 1.00 | 0.00 | 53226 | 4 |
| 1 | 0 | 0.70 | 0.30 | 25556 | 2 |
| 0 | 0 | 1.00 | 0.00 | 27278 | 4 |
| 0 | 0 | 1.00 | 0.00 | 22071 | 1 |
| 0 | 0 | 1.00 | 0.00 | 20965 | 0 |
| 0 | 0 | 1.00 | 0.00 | 21517 | 0 |
| 0 | 0 | 1.00 | 0.00 | 77107 | 6 |
| 0 | 0 | 1.00 | 0.00 | 44224 | 3 |
| 0 | 0 | 1.00 | 0.00 | 45360 | 5 |
| 0 | 0 | 0.99 | 0.01 | 23771 | 2 |
| 0 | 0 | 1.00 | 0.00 | 27030 | 3 |
| 0 | 0 | 1.00 | 0.00 | 43392 | 1 |
| 0 | 0 | 1.00 | 0.00 | 14146 | 6 |
| 0 | 0 | 1.00 | 0.00 | 51826 | 3 |
| 0 | 0 | 1.00 | 0.00 | 22053 | 1 |
| 0 | 0 | 0.98 | 0.02 | 24789 | 0 |
| 1 | 1 | 0.00 | 1.00 | 16458 | 5 |
| 0 | 0 | 1.00 | 0.00 | 26462 | 5 |
| 0 | 0 | 1.00 | 0.00 | 22050 | 1 |
| 0 | 0 | 1.00 | 0.00 | 42465 | 2 |
| 0 | 0 | 1.00 | 0.00 | 23624 | 5 |
| 0 | 0 | 1.00 | 0.00 | 44398 | 3 |
| 0 | 0 | 0.98 | 0.02 | 25511 | 4 |
| 0 | 0 | 1.00 | 0.00 | 21507 | 0 |
| 1 | 1 | 0.00 | 1.00 | 15037 | 1 |
| 0 | 0 | 1.00 | 0.00 | 77017 | 6 |
| 0 | 0 | 1.00 | 0.00 | 45694 | 3 |
| 0 | 0 | 1.00 | 0.00 | 42037 | 5 |
| 0 | 0 | 1.00 | 0.00 | 22497 | 3 |
| 0 | 0 | 1.00 | 0.00 | 21305 | 0 |
| 0 | 0 | 1.00 | 0.00 | 44308 | 3 |
| 0 | 0 | 1.00 | 0.00 | 61252 | 3 |
| 0 | 0 | 1.00 | 0.00 | 27898 | 4 |
| 0 | 0 | 1.00 | 0.00 | 49065 | 4 |
| 0 | 0 | 1.00 | 0.00 | 41090 | 4 |
Comment la machine apprend ?
Le statisticien fixe un cadre d’apprentissage : le modèle
Des algorithmes permettent d’entraîner ces modèles sur des données étiquetées. Leur but est de minimiser l’erreur d’estimation.
Les algorithmes sont des répétitions de calculs simples permettant d’approcher de façon itérative le résultat attendu.