Hoja Numero 1: DATOS MUESTREO FINAL

df_g <- read_excel("C:/Users/JuanSebH2/Desktop/Muestreo Virulencia SS 1 7-06-24 (1).xlsx", 
    sheet = "DATOS MUESTREO FINAL")
df_g= data.frame(df_g); df_g
##             Trt N_p N_t P_f_r P_s_r  P_f_a P_s_a N_a
## 1        Samacá   6   9 13.68 2.170  83.08 10.08   0
## 2        Samacá   1   5 13.85 2.378  94.91 10.50   0
## 3        Samacá   9   6 19.10 3.290  99.72 11.24   0
## 4        Samacá  10   6 18.91 2.780  85.89  9.12   0
## 5        Samacá   4   6 12.34 2.000  83.98 10.19   0
## 6  Ventaquemada   1   6 16.00 2.600  50.00  6.12   4
## 7  Ventaquemada   3   2  8.00 0.990  35.00  4.71   1
## 8  Ventaquemada   5   9 16.00 2.360  69.00  8.97  34
## 9  Ventaquemada   6   5 12.00 2.120  61.00  7.84  17
## 10 Ventaquemada  10   4  8.00 1.070  36.00  5.11  16
## 11     Motavita   1   7 15.00 1.810  53.00  8.90   0
## 12     Motavita   2   7 23.00 3.490  91.00 10.46   0
## 13     Motavita   4  10 17.00 1.870  41.00  3.96   0
## 14     Motavita   7   7 13.00 1.820  66.00  9.19   0
## 15     Motavita  10   7 22.00 4.510  81.00 11.72   0
## 16         Toca   4   6 17.00 2.490  99.00 10.92   0
## 17         Toca   5   5 12.00 1.450  60.00  5.78   0
## 18         Toca   6   7 11.00 1.690  99.00 10.42   0
## 19         Toca   9   7 23.00 4.490  86.00  9.09   0
## 20         Toca  10   8 16.00 2.700  91.00  9.69   0
## 21       Soracá   1   9 18.00 3.010  78.00  8.95   0
## 22       Soracá   2   9 20.00 3.370 125.00 12.62   0
## 23       Soracá   4   3  8.00 1.340  72.00  7.79   0
## 24       Soracá   6   7 15.00 2.070  67.00  7.78   0
## 25       Soracá   7   4 14.00 1.750  86.00  8.85   0
## 26       Sibaté   3   8 12.00 1.420  34.00  4.91   0
## 27       Sibaté   4   5 14.00 1.520  39.00  5.01   0
## 28       Sibaté   5   8 18.00 2.930  91.00 10.34   0
## 29       Sibaté   8  10 18.00 2.420  78.00  8.16   0
## 30       Sibaté   9   7 19.00 2.960 105.00 11.94   0
## 31      Control   1  10 21.00 3.450 105.00 10.38   0
## 32      Control   5   9 17.00 2.500  82.00 11.24   0
## 33      Control   6  15 18.00 2.580 103.00 10.62   0
## 34      Control   7  11 13.00 2.120  81.00  9.30   0
## 35      Control   8   9 17.00 2.500  91.00  9.96   0
Estadisticos_N_t= df_g |> 
                  group_by(Trt) |> 
                  summarise(
                    Media= mean(N_t),
                    Min= min(N_t),
                    Max= max(N_t),
                    Var= sd(N_t)
                  ); Estadisticos_N_t
## # A tibble: 7 × 5
##   Trt          Media   Min   Max   Var
##   <chr>        <dbl> <dbl> <dbl> <dbl>
## 1 Control       10.8     9    15  2.49
## 2 Motavita       7.6     7    10  1.34
## 3 Samacá         6.4     5     9  1.52
## 4 Sibaté         7.6     5    10  1.82
## 5 Soracá         6.4     3     9  2.79
## 6 Toca           6.6     5     8  1.14
## 7 Ventaquemada   5.2     2     9  2.59
#Numero de tuberculo

ggplot(data= df_g, aes(x=Trt, y= N_t, color= Trt))+
  geom_boxplot()+
  ylab("Numero de tuberculos")+
  xlab("Tratamiento")+
  theme_bw()

#Analisis de varianza Numero de tuberculos

N_t= aov(N_t~Trt, data= df_g)
Anova_N_t=anova(N_t);Anova_N_t
## Analysis of Variance Table
## 
## Response: N_t
##           Df  Sum Sq Mean Sq F value   Pr(>F)   
## Trt        6  94.571  15.762  3.7528 0.007258 **
## Residuals 28 117.600   4.200                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(N_t)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = N_t ~ Trt, data = df_g)
## 
## $Trt
##                                diff       lwr         upr     p adj
## Motavita-Control      -3.200000e+00 -7.311551  0.91155051 0.2089451
## Samacá-Control        -4.400000e+00 -8.511551 -0.28844949 0.0299971
## Sibaté-Control        -3.200000e+00 -7.311551  0.91155051 0.2089451
## Soracá-Control        -4.400000e+00 -8.511551 -0.28844949 0.0299971
## Toca-Control          -4.200000e+00 -8.311551 -0.08844949 0.0428529
## Ventaquemada-Control  -5.600000e+00 -9.711551 -1.48844949 0.0029880
## Samacá-Motavita       -1.200000e+00 -5.311551  2.91155051 0.9650740
## Sibaté-Motavita       -8.881784e-16 -4.111551  4.11155051 1.0000000
## Soracá-Motavita       -1.200000e+00 -5.311551  2.91155051 0.9650740
## Toca-Motavita         -1.000000e+00 -5.111551  3.11155051 0.9859087
## Ventaquemada-Motavita -2.400000e+00 -6.511551  1.71155051 0.5266448
## Sibaté-Samacá          1.200000e+00 -2.911551  5.31155051 0.9650740
## Soracá-Samacá          4.440892e-15 -4.111551  4.11155051 1.0000000
## Toca-Samacá            2.000000e-01 -3.911551  4.31155051 0.9999986
## Ventaquemada-Samacá   -1.200000e+00 -5.311551  2.91155051 0.9650740
## Soracá-Sibaté         -1.200000e+00 -5.311551  2.91155051 0.9650740
## Toca-Sibaté           -1.000000e+00 -5.111551  3.11155051 0.9859087
## Ventaquemada-Sibaté   -2.400000e+00 -6.511551  1.71155051 0.5266448
## Toca-Soracá            2.000000e-01 -3.911551  4.31155051 0.9999986
## Ventaquemada-Soracá   -1.200000e+00 -5.311551  2.91155051 0.9650740
## Ventaquemada-Toca     -1.400000e+00 -5.511551  2.71155051 0.9287883
#Diferencias encontradas entre: Samacá-Control; Soracá-Control; Toca-Control; Ventaquemada-Control

#Grafico de las diferencias
plot(TukeyHSD(N_t))

T_N_t=TukeyC(N_t,'Trt')
plot(T_N_t)

Estadisticos_P_f_r= df_g |> 
                  group_by(Trt) |> 
                  summarise(
                    Media= mean(P_f_r),
                    Min= min(P_f_r),
                    Max= max(P_f_r),
                    Var= sd(P_f_r)
                  ); Estadisticos_P_f_r
## # A tibble: 7 × 5
##   Trt          Media   Min   Max   Var
##   <chr>        <dbl> <dbl> <dbl> <dbl>
## 1 Control       17.2  13    21    2.86
## 2 Motavita      18    13    23    4.36
## 3 Samacá        15.6  12.3  19.1  3.19
## 4 Sibaté        16.2  12    19    3.03
## 5 Soracá        15     8    20    4.58
## 6 Toca          15.8  11    23    4.76
## 7 Ventaquemada  12     8    16    4
#Peso fresco de la raiz

ggplot(data= df_g, aes(x=Trt, y= P_f_r, color= Trt))+
  geom_boxplot()+
  ylab("Peso fresco de la raiz")+
  xlab("Tratamiento")+
  theme_bw()

#Analisis de varianza peso fresco de la raiz

P_f_r= aov(P_f_r~Trt, data= df_g)
Anova_P_f_r=anova(P_f_r);Anova_P_f_r
## Analysis of Variance Table
## 
## Response: P_f_r
##           Df Sum Sq Mean Sq F value Pr(>F)
## Trt        6 109.97  18.328  1.2075 0.3316
## Residuals 28 424.98  15.178
TukeyHSD(P_f_r)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = P_f_r ~ Trt, data = df_g)
## 
## $Trt
##                         diff        lwr      upr     p adj
## Motavita-Control       0.800  -7.016027 8.616027 0.9998872
## Samacá-Control        -1.624  -9.440027 6.192027 0.9938399
## Sibaté-Control        -1.000  -8.816027 6.816027 0.9995888
## Soracá-Control        -2.200 -10.016027 5.616027 0.9706916
## Toca-Control          -1.400  -9.216027 6.416027 0.9972531
## Ventaquemada-Control  -5.200 -13.016027 2.616027 0.3742255
## Samacá-Motavita       -2.424 -10.240027 5.392027 0.9534440
## Sibaté-Motavita       -1.800  -9.616027 6.016027 0.9893805
## Soracá-Motavita       -3.000 -10.816027 4.816027 0.8814256
## Toca-Motavita         -2.200 -10.016027 5.616027 0.9706916
## Ventaquemada-Motavita -6.000 -13.816027 1.816027 0.2218150
## Sibaté-Samacá          0.624  -7.192027 8.440027 0.9999738
## Soracá-Samacá         -0.576  -8.392027 7.240027 0.9999837
## Toca-Samacá            0.224  -7.592027 8.040027 0.9999999
## Ventaquemada-Samacá   -3.576 -11.392027 4.240027 0.7697476
## Soracá-Sibaté         -1.200  -9.016027 6.616027 0.9988381
## Toca-Sibaté           -0.400  -8.216027 7.416027 0.9999981
## Ventaquemada-Sibaté   -4.200 -12.016027 3.616027 0.6187517
## Toca-Soracá            0.800  -7.016027 8.616027 0.9998872
## Ventaquemada-Soracá   -3.000 -10.816027 4.816027 0.8814256
## Ventaquemada-Toca     -3.800 -11.616027 4.016027 0.7179349
#Diferencias encontradas entre: No se encontraron diferencias

#Grafico de las diferencias
plot(TukeyHSD(P_f_r))

T_P_f_r=TukeyC(P_f_r,'Trt')
plot(T_P_f_r)

Estadisticos_P_s_r= df_g |> 
                  group_by(Trt) |> 
                  summarise(
                    Media= mean(P_s_r),
                    Min= min(P_s_r),
                    Max= max(P_s_r),
                    Var= sd(P_s_r)
                  ); Estadisticos_P_s_r
## # A tibble: 7 × 5
##   Trt          Media   Min   Max   Var
##   <chr>        <dbl> <dbl> <dbl> <dbl>
## 1 Control       2.63  2.12  3.45 0.492
## 2 Motavita      2.7   1.81  4.51 1.24 
## 3 Samacá        2.52  2     3.29 0.518
## 4 Sibaté        2.25  1.42  2.96 0.745
## 5 Soracá        2.31  1.34  3.37 0.855
## 6 Toca          2.56  1.45  4.49 1.20 
## 7 Ventaquemada  1.83  0.99  2.6  0.749
#Peso seco de la raiz

ggplot(data= df_g, aes(x=Trt, y= P_s_r, color= Trt))+
  geom_boxplot()+
  ylab("Peso seco de la raiz")+
  xlab("Tratamiento")+
  theme_bw()

#Analisis de varianza peso seco de la raiz

P_s_r= aov(P_s_r~Trt, data= df_g)
Anova_P_s_r=anova(P_s_r);Anova_P_s_r
## Analysis of Variance Table
## 
## Response: P_s_r
##           Df  Sum Sq Mean Sq F value Pr(>F)
## Trt        6  2.7161 0.45268  0.5945  0.732
## Residuals 28 21.3202 0.76143
TukeyHSD(P_s_r)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = P_s_r ~ Trt, data = df_g)
## 
## $Trt
##                          diff       lwr       upr     p adj
## Motavita-Control       0.0700 -1.680642 1.8206422 0.9999996
## Samacá-Control        -0.1064 -1.857042 1.6442422 0.9999948
## Sibaté-Control        -0.3800 -2.130642 1.3706422 0.9922228
## Soracá-Control        -0.3220 -2.072642 1.4286422 0.9968214
## Toca-Control          -0.0660 -1.816642 1.6846422 0.9999997
## Ventaquemada-Control  -0.8020 -2.552642 0.9486422 0.7687086
## Samacá-Motavita       -0.1764 -1.927042 1.5742422 0.9998971
## Sibaté-Motavita       -0.4500 -2.200642 1.3006422 0.9813228
## Soracá-Motavita       -0.3920 -2.142642 1.3586422 0.9908344
## Toca-Motavita         -0.1360 -1.886642 1.6146422 0.9999777
## Ventaquemada-Motavita -0.8720 -2.622642 0.8786422 0.6954216
## Sibaté-Samacá         -0.2736 -2.024242 1.4770422 0.9987157
## Soracá-Samacá         -0.2156 -1.966242 1.5350422 0.9996699
## Toca-Samacá            0.0404 -1.710242 1.7910422 1.0000000
## Ventaquemada-Samacá   -0.6956 -2.446242 1.0550422 0.8637229
## Soracá-Sibaté          0.0580 -1.692642 1.8086422 0.9999999
## Toca-Sibaté            0.3140 -1.436642 2.0646422 0.9972324
## Ventaquemada-Sibaté   -0.4220 -2.172642 1.3286422 0.9865419
## Toca-Soracá            0.2560 -1.494642 2.0066422 0.9991180
## Ventaquemada-Soracá   -0.4800 -2.230642 1.2706422 0.9742285
## Ventaquemada-Toca     -0.7360 -2.486642 1.0146422 0.8304486
#Diferencias encontradas entre: No se encontraron diferencias

#Grafico de las diferencias
plot(TukeyHSD(P_s_r))

T_P_s_r=TukeyC(P_s_r,'Trt')
plot(T_P_s_r)

Estadisticos_P_f_a= df_g |> 
                  group_by(Trt) |> 
                  summarise(
                    Media= mean(P_f_a),
                    Min= min(P_f_a),
                    Max= max(P_f_a),
                    Var= sd(P_f_a)
                  ); Estadisticos_P_f_a
## # A tibble: 7 × 5
##   Trt          Media   Min   Max   Var
##   <chr>        <dbl> <dbl> <dbl> <dbl>
## 1 Control       92.4  81   105   11.3 
## 2 Motavita      66.4  41    91   20.3 
## 3 Samacá        89.5  83.1  99.7  7.39
## 4 Sibaté        69.4  34   105   31.6 
## 5 Soracá        85.6  67   125   23.1 
## 6 Toca          87    60    99   16.1 
## 7 Ventaquemada  50.2  35    69   15.0
#Peso fresco de la parte aerea

ggplot(data= df_g, aes(x=Trt, y= P_f_a, color= Trt))+
  geom_boxplot()+
  ylab("Peso fresco de la parte aerea")+
  xlab("Tratamiento")+
  theme_bw()

#Analisis de varianza peso fresco de la parte aerea

P_f_a= aov(P_f_a~Trt, data= df_g)
Anova_P_f_a=anova(P_f_a);Anova_P_f_a
## Analysis of Variance Table
## 
## Response: P_f_a
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## Trt        6   7279 1213.17  3.2549 0.01484 *
## Residuals 28  10436  372.72                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(P_f_a)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = P_f_a ~ Trt, data = df_g)
## 
## $Trt
##                          diff       lwr        upr     p adj
## Motavita-Control      -26.000 -64.73198 12.7319813 0.3639643
## Samacá-Control         -2.884 -41.61598 35.8479813 0.9999826
## Sibaté-Control        -23.000 -61.73198 15.7319813 0.5068153
## Soracá-Control         -6.800 -45.53198 31.9319813 0.9975410
## Toca-Control           -5.400 -44.13198 33.3319813 0.9993276
## Ventaquemada-Control  -42.200 -80.93198 -3.4680187 0.0259498
## Samacá-Motavita        23.116 -15.61598 61.8479813 0.5009718
## Sibaté-Motavita         3.000 -35.73198 41.7319813 0.9999781
## Soracá-Motavita        19.200 -19.53198 57.9319813 0.6999694
## Toca-Motavita          20.600 -18.13198 59.3319813 0.6296463
## Ventaquemada-Motavita -16.200 -54.93198 22.5319813 0.8337162
## Sibaté-Samacá         -20.116 -58.84798 18.6159813 0.6542643
## Soracá-Samacá          -3.916 -42.64798 34.8159813 0.9998950
## Toca-Samacá            -2.516 -41.24798 36.2159813 0.9999923
## Ventaquemada-Samacá   -39.316 -78.04798 -0.5840187 0.0448867
## Soracá-Sibaté          16.200 -22.53198 54.9319813 0.8337162
## Toca-Sibaté            17.600 -21.13198 56.3319813 0.7751490
## Ventaquemada-Sibaté   -19.200 -57.93198 19.5319813 0.6999694
## Toca-Soracá             1.400 -37.33198 40.1319813 0.9999998
## Ventaquemada-Soracá   -35.400 -74.13198  3.3319813 0.0904166
## Ventaquemada-Toca     -36.800 -75.53198  1.9319813 0.0708499
#Diferencias encontradas entre: Control-Ventaquemada; Samaca-ventaquemada

#Grafico de las diferencias
plot(TukeyHSD(P_f_a))

T_P_f_a=TukeyC(P_f_a,'Trt')
plot(T_P_f_a)

Estadisticos_P_s_a= df_g |> 
                  group_by(Trt) |> 
                  summarise(
                    Media= mean(P_s_a),
                    Min= min(P_s_a),
                    Max= max(P_s_a),
                    Var= sd(P_s_a)
                  ); Estadisticos_P_s_a
## # A tibble: 7 × 5
##   Trt          Media   Min   Max   Var
##   <chr>        <dbl> <dbl> <dbl> <dbl>
## 1 Control      10.3   9.3  11.2  0.726
## 2 Motavita      8.85  3.96 11.7  2.95 
## 3 Samacá       10.2   9.12 11.2  0.766
## 4 Sibaté        8.07  4.91 11.9  3.14 
## 5 Soracá        9.20  7.78 12.6  1.99 
## 6 Toca          9.18  5.78 10.9  2.02 
## 7 Ventaquemada  6.55  4.71  8.97 1.81
#Peso seco de la parte aerea

ggplot(data= df_g, aes(x=Trt, y= P_s_a, color= Trt))+
  geom_boxplot()+
  ylab("Peso seco de la parte aerea")+
  xlab("Tratamiento")+
  theme_bw()

#Analisis de varianza peso seco de la parte aerea

P_s_a= aov(P_s_a~Trt, data= df_g)
Anova_P_s_a=anova(P_s_a);Anova_P_s_a
## Analysis of Variance Table
## 
## Response: P_s_a
##           Df  Sum Sq Mean Sq F value Pr(>F)
## Trt        6  50.479  8.4131   1.896 0.1167
## Residuals 28 124.247  4.4374
TukeyHSD(P_s_a)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = P_s_a ~ Trt, data = df_g)
## 
## $Trt
##                         diff       lwr       upr     p adj
## Motavita-Control      -1.454 -5.680154 2.7721536 0.9254580
## Samacá-Control        -0.074 -4.300154 4.1521536 1.0000000
## Sibaté-Control        -2.228 -6.454154 1.9981536 0.6388677
## Soracá-Control        -1.102 -5.328154 3.1241536 0.9799261
## Toca-Control          -1.120 -5.346154 3.1061536 0.9782296
## Ventaquemada-Control  -3.750 -7.976154 0.4761536 0.1076678
## Samacá-Motavita        1.380 -2.846154 5.6061536 0.9409800
## Sibaté-Motavita       -0.774 -5.000154 3.4521536 0.9968954
## Soracá-Motavita        0.352 -3.874154 4.5781536 0.9999663
## Toca-Motavita          0.334 -3.892154 4.5601536 0.9999753
## Ventaquemada-Motavita -2.296 -6.522154 1.9301536 0.6069767
## Sibaté-Samacá         -2.154 -6.380154 2.0721536 0.6731408
## Soracá-Samacá         -1.028 -5.254154 3.1981536 0.9858998
## Toca-Samacá           -1.046 -5.272154 3.1801536 0.9845879
## Ventaquemada-Samacá   -3.676 -7.902154 0.5501536 0.1204580
## Soracá-Sibaté          1.126 -3.100154 5.3521536 0.9776417
## Toca-Sibaté            1.108 -3.118154 5.3341536 0.9793717
## Ventaquemada-Sibaté   -1.522 -5.748154 2.7041536 0.9091185
## Toca-Soracá           -0.018 -4.244154 4.2081536 1.0000000
## Ventaquemada-Soracá   -2.648 -6.874154 1.5781536 0.4440624
## Ventaquemada-Toca     -2.630 -6.856154 1.5961536 0.4520611
#Diferencias encontradas entre: No se encontraron diferencias

#Grafico de las diferencias
plot(TukeyHSD(P_s_a))

T_P_s_a=TukeyC(P_s_a,'Trt')
plot(T_P_s_a)

Estadisticos_N_a= df_g |> 
                  group_by(Trt) |> 
                  summarise(
                    Media= mean(N_a),
                    Min= min(N_a),
                    Max= max(N_a),
                    Var= sd(N_a)
                  ); Estadisticos_N_a
## # A tibble: 7 × 5
##   Trt          Media   Min   Max   Var
##   <chr>        <dbl> <dbl> <dbl> <dbl>
## 1 Control        0       0     0   0  
## 2 Motavita       0       0     0   0  
## 3 Samacá         0       0     0   0  
## 4 Sibaté         0       0     0   0  
## 5 Soracá         0       0     0   0  
## 6 Toca           0       0     0   0  
## 7 Ventaquemada  14.4     1    34  13.0
#Numero de agallas

ggplot(data= df_g, aes(x=Trt, y= N_a, color= Trt))+
  geom_boxplot()+
  ylab("Numero de agallas")+
  xlab("Tratamiento")+
  theme_bw()

#Analisis de varianza Numero de agallas

N_a= aov(N_a~Trt, data= df_g)
Anova_N_a=anova(N_a);Anova_N_a
## Analysis of Variance Table
## 
## Response: N_a
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trt        6 888.69 148.114  6.0881 0.0003571 ***
## Residuals 28 681.20  24.329                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(N_a)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = N_a ~ Trt, data = df_g)
## 
## $Trt
##                                diff       lwr       upr     p adj
## Motavita-Control       2.220446e-15 -9.895535  9.895535 1.0000000
## Samacá-Control         1.509903e-14 -9.895535  9.895535 1.0000000
## Sibaté-Control         1.776357e-15 -9.895535  9.895535 1.0000000
## Soracá-Control         5.329071e-15 -9.895535  9.895535 1.0000000
## Toca-Control           1.776357e-15 -9.895535  9.895535 1.0000000
## Ventaquemada-Control   1.440000e+01  4.504465 24.295535 0.0013777
## Samacá-Motavita        1.287859e-14 -9.895535  9.895535 1.0000000
## Sibaté-Motavita       -4.440892e-16 -9.895535  9.895535 1.0000000
## Soracá-Motavita        3.108624e-15 -9.895535  9.895535 1.0000000
## Toca-Motavita         -4.440892e-16 -9.895535  9.895535 1.0000000
## Ventaquemada-Motavita  1.440000e+01  4.504465 24.295535 0.0013777
## Sibaté-Samacá         -1.332268e-14 -9.895535  9.895535 1.0000000
## Soracá-Samacá         -9.769963e-15 -9.895535  9.895535 1.0000000
## Toca-Samacá           -1.332268e-14 -9.895535  9.895535 1.0000000
## Ventaquemada-Samacá    1.440000e+01  4.504465 24.295535 0.0013777
## Soracá-Sibaté          3.552714e-15 -9.895535  9.895535 1.0000000
## Toca-Sibaté            0.000000e+00 -9.895535  9.895535 1.0000000
## Ventaquemada-Sibaté    1.440000e+01  4.504465 24.295535 0.0013777
## Toca-Soracá           -3.552714e-15 -9.895535  9.895535 1.0000000
## Ventaquemada-Soracá    1.440000e+01  4.504465 24.295535 0.0013777
## Ventaquemada-Toca      1.440000e+01  4.504465 24.295535 0.0013777
#Diferencias encontradas entre: Ventaquemada con todo los otros tratamientos

#Grafico de las diferencias
plot(TukeyHSD(N_a))

T_N_a=TukeyC(N_a,'Trt')
## Warning in qt(sig.level, aux_mt$coef[, 3]): NaNs produced

## Warning in qt(sig.level, aux_mt$coef[, 3]): NaNs produced

## Warning in qt(sig.level, aux_mt$coef[, 3]): NaNs produced

## Warning in qt(sig.level, aux_mt$coef[, 3]): NaNs produced
plot(T_N_a)

Hoja Numero 2: Diametro de los Quistosoros en mm

#Quistosoros
T_q<- read_excel("C:/Users/JuanSebH2/Desktop/Muestreo Virulencia SS 1 7-06-24 (1).xlsx", 
    sheet = "T_Q")
T_q= data.frame(T_q); T_q
##              Trt   D_1   D_2    P_d
## 1         Samaca 34.44 24.09 29.265
## 2         Samaca 12.94 17.37 15.155
## 3         Samaca 11.83 10.53 11.180
## 4         Samaca 19.88 13.39 16.635
## 5         Samaca 13.33  9.29 11.310
## 6         Samaca 29.82 26.88 28.350
## 7         Samaca 37.90 33.73 35.815
## 8         Samaca  9.23  9.32  9.275
## 9         Samaca 32.98 31.16 32.070
## 10        Samaca 25.17 26.20 25.685
## 11        Samaca 21.24 23.14 22.190
## 12        Samaca 31.97 30.02 30.995
## 13        Samaca 47.15 28.31 37.730
## 14        Samaca 21.86 42.27 32.065
## 15        Samaca 35.97 40.15 38.060
## 16        Samaca 32.93 28.58 30.755
## 17        Samaca 16.45 18.17 17.310
## 18        Samaca 24.03 21.55 22.790
## 19        Samaca 36.20 53.71 44.955
## 20        Samaca 32.15 28.45 30.300
## 21        Samaca 33.49 26.49 29.990
## 22        Samaca 24.80 24.65 24.725
## 23        Samaca 30.79 33.57 32.180
## 24        Samaca 39.13 38.06 38.595
## 25        Samaca 34.59 23.94 29.265
## 26        Samaca 28.58 32.80 30.690
## 27        Samaca 48.68 28.41 38.545
## 28        Samaca 19.53 48.27 33.900
## 29        Samaca 46.63 50.39 48.510
## 30        Samaca 27.46 27.78 27.620
## 31        Soraca 38.59 39.74 39.165
## 32        Soraca 31.35 37.42 34.385
## 33        Soraca 22.46 22.55 22.505
## 34        Soraca 18.21 11.99 15.100
## 35        Soraca 23.53 22.33 22.930
## 36        Soraca 12.23 24.83 18.530
## 37        Soraca 14.75 14.45 14.600
## 38        Soraca 10.94 21.02 15.980
## 39        Soraca 21.89  8.12 15.005
## 40        Soraca 12.48 14.53 13.505
## 41        Soraca 11.02 17.55 14.285
## 42        Soraca 13.23 17.31 15.270
## 43        Soraca 11.96 17.36 14.660
## 44        Soraca  9.71 11.40 10.555
## 45        Soraca  7.88 18.56 13.220
## 46        Soraca 12.24 13.10 12.670
## 47        Soraca  8.55 12.48 10.515
## 48        Soraca 26.87 31.47 29.170
## 49        Soraca 22.57 20.08 21.325
## 50        Soraca 12.53 19.27 15.900
## 51        Soraca 24.04 16.31 20.175
## 52        Soraca 16.93 28.25 22.590
## 53        Soraca 29.60 28.84 29.220
## 54        Soraca 26.10 19.16 22.630
## 55        Soraca 18.45 28.21 23.330
## 56        Soraca 14.94 25.74 20.340
## 57        Soraca 42.88 64.18 53.530
## 58        Soraca 31.61 68.41 50.010
## 59        Soraca 18.13 20.97 19.550
## 60        Soraca 14.41 13.71 14.060
## 61        Sibate 58.63 39.26 48.945
## 62        Sibate 38.81 37.66 38.235
## 63        Sibate 38.68 48.40 43.540
## 64        Sibate 40.29 51.77 46.030
## 65        Sibate 21.11 22.40 21.755
## 66        Sibate 18.57 16.94 17.755
## 67        Sibate 12.73 10.48 11.605
## 68        Sibate 15.30 10.67 12.985
## 69        Sibate  8.34 10.46  9.400
## 70        Sibate 18.32 23.17 20.745
## 71        Sibate 36.12 35.10 35.610
## 72        Sibate 24.10 29.54 26.820
## 73        Sibate 24.36 23.66 24.010
## 74        Sibate 24.57 15.51 20.040
## 75        Sibate 31.73 69.42 50.575
## 76        Sibate 48.56 30.39 39.475
## 77        Sibate 44.03 31.00 37.515
## 78        Sibate 50.98 27.53 39.255
## 79        Sibate 21.59 45.46 33.525
## 80        Sibate 19.23 23.08 21.155
## 81        Sibate 19.40 22.34 20.870
## 82        Sibate 21.39 25.08 23.235
## 83        Sibate 22.73 14.70 18.715
## 84        Sibate 35.10 18.41 26.755
## 85        Sibate 29.40 31.27 30.335
## 86        Sibate 36.37 19.37 27.870
## 87        Sibate 49.16 39.26 44.210
## 88        Sibate 47.56 39.59 43.575
## 89        Sibate 51.82 37.28 44.550
## 90        Sibate 25.30 41.85 33.575
## 91      Motavita 36.02 33.87 34.945
## 92      Motavita 22.28 19.40 20.840
## 93      Motavita 31.26 23.39 27.325
## 94      Motavita 19.73 23.74 21.735
## 95      Motavita 57.37 45.59 51.480
## 96      Motavita 28.64 40.02 34.330
## 97      Motavita 24.24 13.76 19.000
## 98      Motavita 28.37 23.05 25.710
## 99      Motavita 17.59 16.44 17.015
## 100     Motavita 47.03 30.35 38.690
## 101     Motavita 51.53 38.86 45.195
## 102     Motavita 28.28 50.40 39.340
## 103     Motavita 18.76 13.02 15.890
## 104     Motavita 21.16 15.31 18.235
## 105     Motavita 54.47 29.10 41.785
## 106     Motavita 13.84 15.67 14.755
## 107     Motavita 46.59 41.27 43.930
## 108     Motavita 20.82 21.28 21.050
## 109     Motavita 15.77 14.90 15.335
## 110     Motavita 31.50 29.21 30.355
## 111     Motavita 28.93 42.36 35.645
## 112     Motavita 26.10 20.98 23.540
## 113     Motavita 27.60 42.68 35.140
## 114     Motavita 28.08 30.35 29.215
## 115     Motavita 38.89 21.79 30.340
## 116     Motavita 31.02 34.29 32.655
## 117     Motavita 17.28 38.07 27.675
## 118     Motavita 12.28 14.47 13.375
## 119     Motavita 30.46 33.18 31.820
## 120     Motavita 41.50 36.13 38.815
## 121 Ventaquemada 65.35 48.32 56.835
## 122 Ventaquemada 43.08 74.01 58.545
## 123 Ventaquemada 29.60 31.85 30.725
## 124 Ventaquemada 24.09 28.60 26.345
## 125 Ventaquemada 34.57 36.92 35.745
## 126 Ventaquemada 38.11 29.54 33.825
## 127 Ventaquemada 43.70 40.78 42.240
## 128 Ventaquemada 33.47 44.30 38.885
## 129 Ventaquemada 36.68 40.19 38.435
## 130 Ventaquemada 67.52 51.75 59.635
## 131 Ventaquemada 23.81 28.20 26.005
## 132 Ventaquemada 30.60 41.99 36.295
## 133 Ventaquemada 30.12 28.45 29.285
## 134 Ventaquemada 18.09 24.95 21.520
## 135 Ventaquemada 26.15 19.24 22.695
## 136 Ventaquemada 18.87 22.49 20.680
## 137 Ventaquemada 17.04 22.95 19.995
## 138 Ventaquemada 19.52 17.65 18.585
## 139 Ventaquemada 16.33 11.31 13.820
## 140 Ventaquemada 16.17 11.45 13.810
## 141 Ventaquemada 17.33 20.84 19.085
## 142 Ventaquemada 41.61 65.19 53.400
## 143 Ventaquemada 32.15 32.79 32.470
## 144 Ventaquemada 24.71 25.92 25.315
## 145 Ventaquemada 39.00 33.34 36.170
## 146 Ventaquemada 37.02 40.09 38.555
## 147 Ventaquemada 49.91 49.85 49.880
## 148 Ventaquemada 24.78 33.70 29.240
## 149 Ventaquemada 30.50 41.92 36.210
## 150 Ventaquemada 52.02 52.46 52.240
## 151         Toca 29.13 36.94 33.035
## 152         Toca 17.22 15.39 16.305
## 153         Toca 18.76 16.49 17.625
## 154         Toca 11.47  8.37  9.920
## 155         Toca 10.42 11.26 10.840
## 156         Toca 28.55 31.76 30.155
## 157         Toca 39.20 34.73 36.965
## 158         Toca 87.52 51.61 69.565
## 159         Toca 32.06 31.44 31.750
## 160         Toca 49.57 31.42 40.495
## 161         Toca 57.71 46.42 52.065
## 162         Toca 25.71 27.40 26.555
## 163         Toca 38.60 28.77 33.685
## 164         Toca 31.41 38.64 35.025
## 165         Toca 49.76 47.13 48.445
## 166         Toca 28.34 25.90 27.120
## 167         Toca 12.26 15.36 13.810
## 168         Toca 29.15 21.06 25.105
## 169         Toca 27.71 37.50 32.605
## 170         Toca 12.65 15.72 14.185
## 171         Toca 33.74 31.98 32.860
## 172         Toca 21.98 29.54 25.760
## 173         Toca 17.78 20.76 19.270
## 174         Toca 20.30 30.40 25.350
## 175         Toca 28.04 34.03 31.035
## 176         Toca 21.38 24.40 22.890
## 177         Toca 32.60 31.01 31.805
## 178         Toca 24.54 38.09 31.315
## 179         Toca 29.93 47.27 38.600
## 180         Toca 25.01 30.42 27.715
Estadisticos_D_1= T_q |> 
                  group_by(Trt) |> 
                  summarise(
                    Media= mean(D_1),
                    Min= min(D_1),
                    Max= max(D_1),
                    Var= sd(D_1)
                  ); Estadisticos_D_1
## # A tibble: 6 × 5
##   Trt          Media   Min   Max   Var
##   <chr>        <dbl> <dbl> <dbl> <dbl>
## 1 Motavita      29.9 12.3   57.4 12.1 
## 2 Samaca        28.7  9.23  48.7 10.4 
## 3 Sibate        31.1  8.34  58.6 13.3 
## 4 Soraca        19.3  7.88  42.9  8.97
## 5 Toca          29.8 10.4   87.5 15.7 
## 6 Ventaquemada  32.7 16.2   67.5 13.5
#Diametro 1

ggplot(data= T_q, aes(x=Trt, y= D_1, color= Trt))+
  geom_boxplot()+
  ylab("Diametro 1 (mm)")+
  xlab("Tratamiento")+
  theme_bw()

#Analisis de varianza Diametro 1

D_1= aov(D_1~Trt, data= T_q)
Anova_D_1=anova(D_1);Anova_D_1
## Analysis of Variance Table
## 
## Response: D_1
##            Df Sum Sq Mean Sq F value   Pr(>F)   
## Trt         5   3372  674.41  4.2965 0.001038 **
## Residuals 174  27312  156.97                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(D_1)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = D_1 ~ Trt, data = T_q)
## 
## $Trt
##                             diff        lwr         upr     p adj
## Samaca-Motavita        -1.208000 -10.530087  8.11408731 0.9990404
## Sibate-Motavita         1.229667  -8.092421 10.55175398 0.9989541
## Soraca-Motavita       -10.577000 -19.899087 -1.25491269 0.0161259
## Toca-Motavita          -0.163000  -9.485087  9.15908731 1.0000000
## Ventaquemada-Motavita   2.817000  -6.505087 12.13908731 0.9529601
## Sibate-Samaca           2.437667  -6.884421 11.75975398 0.9746924
## Soraca-Samaca          -9.369000 -18.691087 -0.04691269 0.0480655
## Toca-Samaca             1.045000  -8.277087 10.36708731 0.9995258
## Ventaquemada-Samaca     4.025000  -5.297087 13.34708731 0.8143604
## Soraca-Sibate         -11.806667 -21.128754 -2.48457935 0.0046081
## Toca-Sibate            -1.392667 -10.714754  7.92942065 0.9980956
## Ventaquemada-Sibate     1.587333  -7.734754 10.90942065 0.9964491
## Toca-Soraca            10.414000   1.091913 19.73608731 0.0188422
## Ventaquemada-Soraca    13.394000   4.071913 22.71608731 0.0007569
## Ventaquemada-Toca       2.980000  -6.342087 12.30208731 0.9406263
#Diferencias encontradas entre: Soraca con todo los otros tratamientos

#Grafico de las diferencias
plot(TukeyHSD(D_1))

T_D_1=TukeyC(D_1,'Trt')
plot(T_D_1)

Estadisticos_D_2= T_q |> 
                  group_by(Trt) |> 
                  summarise(
                    Media= mean(D_2),
                    Min= min(D_2),
                    Max= max(D_2),
                    Var= sd(D_2)
                  ); Estadisticos_D_2
## # A tibble: 6 × 5
##   Trt          Media   Min   Max   Var
##   <chr>        <dbl> <dbl> <dbl> <dbl>
## 1 Motavita      28.4 13.0   50.4  10.9
## 2 Samaca        28.4  9.29  53.7  11.2
## 3 Sibate        29.7 10.5   69.4  13.7
## 4 Soraca        23.6  8.12  68.4  13.8
## 5 Toca          29.7  8.37  51.6  10.9
## 6 Ventaquemada  35.0 11.3   74.0  14.6
#Diametro 2

ggplot(data= T_q, aes(x=Trt, y= D_2, color= Trt))+
  geom_boxplot()+
  ylab("Diametro 2 (mm)")+
  xlab("Tratamiento")+
  theme_bw()

#Analisis de varianza Diametro 2

D_2= aov(D_2~Trt, data= T_q)
Anova_D_2=anova(D_2);Anova_D_2
## Analysis of Variance Table
## 
## Response: D_2
##            Df Sum Sq Mean Sq F value  Pr(>F)  
## Trt         5   2001  400.20  2.5082 0.03198 *
## Residuals 174  27763  159.56                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(D_2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = D_2 ~ Trt, data = T_q)
## 
## $Trt
##                               diff        lwr       upr     p adj
## Samaca-Motavita       -0.075333333  -9.474040  9.323374 1.0000000
## Sibate-Motavita        1.270666667  -8.128040 10.669374 0.9988220
## Soraca-Motavita       -4.786333333 -14.185040  4.612374 0.6853456
## Toca-Motavita          1.276000000  -8.122707 10.674707 0.9987980
## Ventaquemada-Motavita  6.603666667  -2.795040 16.002374 0.3326186
## Sibate-Samaca          1.346000000  -8.052707 10.744707 0.9984453
## Soraca-Samaca         -4.711000000 -14.109707  4.687707 0.6997960
## Toca-Samaca            1.351333333  -8.047374 10.750040 0.9984154
## Ventaquemada-Samaca    6.679000000  -2.719707 16.077707 0.3198867
## Soraca-Sibate         -6.057000000 -15.455707  3.341707 0.4321819
## Toca-Sibate            0.005333333  -9.393374  9.404040 1.0000000
## Ventaquemada-Sibate    5.333000000  -4.065707 14.731707 0.5764799
## Toca-Soraca            6.062333333  -3.336374 15.461040 0.4311581
## Ventaquemada-Soraca   11.390000000   1.991293 20.788707 0.0078713
## Ventaquemada-Toca      5.327666667  -4.071040 14.726374 0.5775603
#Diferencias encontradas entre: Ventaquemada-Soraca

#Grafico de las diferencias
plot(TukeyHSD(D_2))

T_D_2=TukeyC(D_2,'Trt')
plot(T_D_2)

Estadisticos_P_d= T_q |> 
                  group_by(Trt) |> 
                  summarise(
                    Media= mean(P_d),
                    Min= min(P_d),
                    Max= max(P_d),
                    Var= sd(P_d)
                  ); Estadisticos_P_d
## # A tibble: 6 × 5
##   Trt          Media   Min   Max   Var
##   <chr>        <dbl> <dbl> <dbl> <dbl>
## 1 Motavita      29.2 13.4   51.5 10.2 
## 2 Samaca        28.5  9.28  48.5  9.65
## 3 Sibate        30.4  9.4   50.6 11.8 
## 4 Soraca        21.5 10.5   53.5 10.7 
## 5 Toca          29.7  9.92  69.6 12.6 
## 6 Ventaquemada  33.9 13.8   59.6 13.2
#Diametro 2

ggplot(data= T_q, aes(x=Trt, y= P_d, color= Trt))+
  geom_boxplot()+
  ylab("Promedio de diametro (mm)")+
  xlab("Tratamiento")+
  theme_bw()

#Analisis de varianza Diametro 2

P_d= aov(P_d~Trt, data= T_q)
Anova_P_d=anova(P_d);Anova_P_d
## Analysis of Variance Table
## 
## Response: P_d
##            Df  Sum Sq Mean Sq F value   Pr(>F)   
## Trt         5  2488.1  497.61  3.8169 0.002635 **
## Residuals 174 22684.9  130.37                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(P_d)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = P_d ~ Trt, data = T_q)
## 
## $Trt
##                             diff         lwr        upr     p adj
## Samaca-Motavita       -0.6416667  -9.1374507  7.8541174 0.9999320
## Sibate-Motavita        1.2501667  -7.2456174  9.7459507 0.9982288
## Soraca-Motavita       -7.6816667 -16.1774507  0.8141174 0.1013628
## Toca-Motavita          0.5565000  -7.9392841  9.0522841 0.9999664
## Ventaquemada-Motavita  4.7103333  -3.7854507 13.2061174 0.6011678
## Sibate-Samaca          1.8918333  -6.6039507 10.3876174 0.9876519
## Soraca-Samaca         -7.0400000 -15.5357841  1.4557841 0.1662044
## Toca-Samaca            1.1981667  -7.2976174  9.6939507 0.9985559
## Ventaquemada-Samaca    5.3520000  -3.1437841 13.8477841 0.4585999
## Soraca-Sibate         -8.9318333 -17.4276174 -0.4360493 0.0330828
## Toca-Sibate           -0.6936667  -9.1894507  7.8021174 0.9999000
## Ventaquemada-Sibate    3.4601667  -5.0356174 11.9559507 0.8488178
## Toca-Soraca            8.2381667  -0.2576174 16.7339507 0.0631116
## Ventaquemada-Soraca   12.3920000   3.8962159 20.8877841 0.0005921
## Ventaquemada-Toca      4.1538333  -4.3419507 12.6496174 0.7215872
#Diferencias encontradas entre: Ventaquemada-Soraca, Sibate-Soraca

#Grafico de las diferencias
plot(TukeyHSD(P_d))

T_P_d=TukeyC(P_d,'Trt')
plot(T_P_d)

Hoja Numero 3: ALTURA Y CRC

Ac <- read_excel("C:/Users/JuanSebH2/Desktop/Muestreo Virulencia SS 1 7-06-24 (1).xlsx", sheet = "ALTURA Y CRC")
Ac=data.frame(Ac);Ac
##     Muestreo          Trt Altura  CRC
## 1     Mayo_8 Ventaquemada   26.4 39.9
## 2     Mayo_8 Ventaquemada   25.5 43.5
## 3     Mayo_8 Ventaquemada   23.1 39.4
## 4     Mayo_8 Ventaquemada   21.0 41.7
## 5     Mayo_8 Ventaquemada   26.1 45.8
## 6     Mayo_8 Ventaquemada   23.9 31.7
## 7     Mayo_8 Ventaquemada   21.0 39.8
## 8     Mayo_8 Ventaquemada   22.2 44.9
## 9     Mayo_8 Ventaquemada   25.7 48.3
## 10    Mayo_8 Ventaquemada   23.5 39.2
## 11    Mayo_8       Soraca   44.0 45.8
## 12    Mayo_8       Soraca   35.5 37.3
## 13    Mayo_8       Soraca   31.1 40.1
## 14    Mayo_8       Soraca   36.7 45.8
## 15    Mayo_8       Soraca   30.7 43.2
## 16    Mayo_8       Soraca   27.0 32.2
## 17    Mayo_8       Soraca   21.6 40.5
## 18    Mayo_8       Soraca   28.9 45.4
## 19    Mayo_8       Soraca   30.1 45.0
## 20    Mayo_8       Soraca   30.3 40.9
## 21    Mayo_8       Samaca   35.1 47.5
## 22    Mayo_8       Samaca   28.6 43.7
## 23    Mayo_8       Samaca   31.4 35.8
## 24    Mayo_8       Samaca   34.8 39.3
## 25    Mayo_8       Samaca   27.5 39.0
## 26    Mayo_8       Samaca   33.1 32.7
## 27    Mayo_8       Samaca   37.0 42.1
## 28    Mayo_8       Samaca   24.1 45.8
## 29    Mayo_8       Samaca   34.3 41.1
## 30    Mayo_8       Samaca   27.3 41.7
## 31    Mayo_8     Motavita   28.7 44.5
## 32    Mayo_8     Motavita   31.6 41.4
## 33    Mayo_8     Motavita   28.7 49.0
## 34    Mayo_8     Motavita   31.0 40.1
## 35    Mayo_8     Motavita   29.0 36.2
## 36    Mayo_8     Motavita   37.4 35.5
## 37    Mayo_8     Motavita   32.4 40.8
## 38    Mayo_8     Motavita   23.2 38.5
## 39    Mayo_8     Motavita   37.0 41.7
## 40    Mayo_8     Motavita   35.2 37.1
## 41    Mayo_8       Sibate   26.2 44.2
## 42    Mayo_8       Sibate   27.2 46.6
## 43    Mayo_8       Sibate   22.6 38.1
## 44    Mayo_8       Sibate   21.5 43.5
## 45    Mayo_8       Sibate   30.4 38.5
## 46    Mayo_8       Sibate   21.6 41.3
## 47    Mayo_8       Sibate   26.0 41.6
## 48    Mayo_8       Sibate   23.0 39.8
## 49    Mayo_8       Sibate   30.5 40.6
## 50    Mayo_8       Sibate   31.4 38.2
## 51    Mayo_8         Toca   25.5 47.9
## 52    Mayo_8         Toca   19.3 44.1
## 53    Mayo_8         Toca   31.0 40.0
## 54    Mayo_8         Toca   26.0 34.7
## 55    Mayo_8         Toca   23.1 42.2
## 56    Mayo_8         Toca   24.9 42.8
## 57    Mayo_8         Toca   37.5 45.3
## 58    Mayo_8         Toca   31.5 41.0
## 59    Mayo_8         Toca   29.4 42.9
## 60    Mayo_8         Toca   31.2 42.9
## 61    Mayo_8      Control   28.5 44.1
## 62    Mayo_8      Control   31.5 39.4
## 63    Mayo_8      Control   27.0 49.7
## 64    Mayo_8      Control   32.1 43.3
## 65    Mayo_8      Control   39.2 41.0
## 66    Mayo_8      Control   30.5 41.2
## 67    Mayo_8      Control   29.0 38.9
## 68    Mayo_8      Control   31.5 39.9
## 69    Mayo_8      Control   26.1 37.7
## 70    Mayo_8      Control   34.5 40.6
## 71   Mayo_17 Ventaquemada   26.5 38.8
## 72   Mayo_17 Ventaquemada   26.0 46.3
## 73   Mayo_17 Ventaquemada   24.2 26.5
## 74   Mayo_17 Ventaquemada   22.0 27.6
## 75   Mayo_17 Ventaquemada   27.3 44.4
## 76   Mayo_17 Ventaquemada   21.4 54.1
## 77   Mayo_17 Ventaquemada   21.5 30.2
## 78   Mayo_17 Ventaquemada   23.7 45.8
## 79   Mayo_17 Ventaquemada   21.9 35.4
## 80   Mayo_17 Ventaquemada   25.9 37.0
## 81   Mayo_17       Soraca   48.0 31.5
## 82   Mayo_17       Soraca   38.2 37.1
## 83   Mayo_17       Soraca   31.6 39.5
## 84   Mayo_17       Soraca   37.1 43.7
## 85   Mayo_17       Soraca   31.5 38.9
## 86   Mayo_17       Soraca   28.5 38.2
## 87   Mayo_17       Soraca   22.4 48.1
## 88   Mayo_17       Soraca   30.1 47.7
## 89   Mayo_17       Soraca   32.1 43.6
## 90   Mayo_17       Soraca   32.0 42.3
## 91   Mayo_17       Samaca   37.0 38.1
## 92   Mayo_17       Samaca   30.6 41.5
## 93   Mayo_17       Samaca   32.9 41.9
## 94   Mayo_17       Samaca   36.2 40.5
## 95   Mayo_17       Samaca   29.1 32.6
## 96   Mayo_17       Samaca   34.2 45.0
## 97   Mayo_17       Samaca   37.4 43.9
## 98   Mayo_17       Samaca   26.1 49.0
## 99   Mayo_17       Samaca   36.3 38.6
## 100  Mayo_17       Samaca   30.1 43.1
## 101  Mayo_17     Motavita   30.3 46.6
## 102  Mayo_17     Motavita   34.2 41.0
## 103  Mayo_17     Motavita   29.5 45.4
## 104  Mayo_17     Motavita   28.2 40.3
## 105  Mayo_17     Motavita   30.0 34.5
## 106  Mayo_17     Motavita   37.9 39.6
## 107  Mayo_17     Motavita   33.6 39.8
## 108  Mayo_17     Motavita   24.0 31.1
## 109  Mayo_17     Motavita   39.0 46.0
## 110  Mayo_17     Motavita   38.8 39.4
## 111  Mayo_17       Sibate   28.5 36.8
## 112  Mayo_17       Sibate   28.3 42.9
## 113  Mayo_17       Sibate   23.0 33.0
## 114  Mayo_17       Sibate   31.1 42.5
## 115  Mayo_17       Sibate   34.0 40.0
## 116  Mayo_17       Sibate   27.4 40.0
## 117  Mayo_17       Sibate   26.5 39.4
## 118  Mayo_17       Sibate   24.0 41.1
## 119  Mayo_17       Sibate   31.5 46.5
## 120  Mayo_17       Sibate   32.6 34.6
## 121  Mayo_17         Toca   25.6 45.7
## 122  Mayo_17         Toca   20.9 45.4
## 123  Mayo_17         Toca   32.9 38.0
## 124  Mayo_17         Toca   27.2 40.4
## 125  Mayo_17         Toca   24.0 49.1
## 126  Mayo_17         Toca   27.7 43.1
## 127  Mayo_17         Toca   38.5 46.0
## 128  Mayo_17         Toca   31.9 41.0
## 129  Mayo_17         Toca   28.8 44.8
## 130  Mayo_17         Toca   33.1 42.9
## 131  Mayo_17      Control   28.5 39.1
## 132  Mayo_17      Control   31.9 39.1
## 133  Mayo_17      Control   28.0 44.5
## 134  Mayo_17      Control   33.0 44.5
## 135  Mayo_17      Control   41.0 38.8
## 136  Mayo_17      Control   33.0 42.7
## 137  Mayo_17      Control   28.6 40.6
## 138  Mayo_17      Control   32.0 40.5
## 139  Mayo_17      Control   27.7 34.5
## 140  Mayo_17      Control   34.7 37.8
## 141  Mayo_24 Ventaquemada   30.0 46.8
## 142  Mayo_24 Ventaquemada   28.5 50.6
## 143  Mayo_24 Ventaquemada   25.0 46.2
## 144  Mayo_24 Ventaquemada   25.0 47.2
## 145  Mayo_24 Ventaquemada   31.0 33.8
## 146  Mayo_24 Ventaquemada   26.3 21.3
## 147  Mayo_24 Ventaquemada   24.5 42.1
## 148  Mayo_24 Ventaquemada   27.0 49.5
## 149  Mayo_24 Ventaquemada   28.0 49.4
## 150  Mayo_24 Ventaquemada   26.0 34.7
## 151  Mayo_24       Soraca   55.1 49.5
## 152  Mayo_24       Soraca   41.1 43.1
## 153  Mayo_24       Soraca   37.5 46.8
## 154  Mayo_24       Soraca   40.0 47.3
## 155  Mayo_24       Soraca   36.5 49.2
## 156  Mayo_24       Soraca   28.5 46.1
## 157  Mayo_24       Soraca   25.0 53.7
## 158  Mayo_24       Soraca   32.5 52.8
## 159  Mayo_24       Soraca   35.0 48.0
## 160  Mayo_24       Soraca   35.5 41.8
## 161  Mayo_24       Samaca   42.5 32.1
## 162  Mayo_24       Samaca   36.0 48.2
## 163  Mayo_24       Samaca   34.5 31.7
## 164  Mayo_24       Samaca   40.5 45.1
## 165  Mayo_24       Samaca   32.5 48.7
## 166  Mayo_24       Samaca   37.0 30.8
## 167  Mayo_24       Samaca   40.5 47.4
## 168  Mayo_24       Samaca   27.0 43.2
## 169  Mayo_24       Samaca   39.0 45.2
## 170  Mayo_24       Samaca   32.0 45.2
## 171  Mayo_24     Motavita   32.5 30.9
## 172  Mayo_24     Motavita   40.0 32.9
## 173  Mayo_24     Motavita   32.0 45.4
## 174  Mayo_24     Motavita   33.9 48.2
## 175  Mayo_24     Motavita   33.0 20.7
## 176  Mayo_24     Motavita   41.6 35.6
## 177  Mayo_24     Motavita   36.0 29.5
## 178  Mayo_24     Motavita   27.0 31.3
## 179  Mayo_24     Motavita   36.6 41.7
## 180  Mayo_24     Motavita   43.0 37.1
## 181  Mayo_24       Sibate   33.0 27.6
## 182  Mayo_24       Sibate   30.0 29.3
## 183  Mayo_24       Sibate   21.5 39.7
## 184  Mayo_24       Sibate   31.5 29.3
## 185  Mayo_24       Sibate   36.2 34.3
## 186  Mayo_24       Sibate   33.5 41.5
## 187  Mayo_24       Sibate   30.5 33.8
## 188  Mayo_24       Sibate   28.0 37.3
## 189  Mayo_24       Sibate   35.0 38.0
## 190  Mayo_24       Sibate   34.2 27.4
## 191  Mayo_24         Toca   30.5 50.0
## 192  Mayo_24         Toca   25.1 50.4
## 193  Mayo_24         Toca   35.5 41.8
## 194  Mayo_24         Toca   31.5 47.8
## 195  Mayo_24         Toca   30.0 31.1
## 196  Mayo_24         Toca   31.0 31.6
## 197  Mayo_24         Toca   42.0 49.3
## 198  Mayo_24         Toca   34.0 44.6
## 199  Mayo_24         Toca   32.0 50.3
## 200  Mayo_24         Toca   36.0 36.4
## 201  Mayo_24      Control   33.5 41.0
## 202  Mayo_24      Control   36.1 47.6
## 203  Mayo_24      Control   32.5 42.8
## 204  Mayo_24      Control   37.5 47.1
## 205  Mayo_24      Control   45.1 43.1
## 206  Mayo_24      Control   35.3 31.6
## 207  Mayo_24      Control   33.5 31.1
## 208  Mayo_24      Control   36.2 23.6
## 209  Mayo_24      Control   30.5 29.9
## 210  Mayo_24      Control   39.0 44.7
Ac$Muestreo <- factor(Ac$Muestreo, levels = c("Mayo_8", "Mayo_17", "Mayo_24"))
Ac_g= Ac |> 
  group_by(Muestreo, Trt) |> 
  summarise(
    Media= mean(Altura),
    Min= min(Altura),
    Max= max(Altura),
    Var= sd(Altura)
  )
## `summarise()` has grouped output by 'Muestreo'. You can override using the
## `.groups` argument.
Ac_g
## # A tibble: 21 × 6
## # Groups:   Muestreo [3]
##    Muestreo Trt          Media   Min   Max   Var
##    <fct>    <chr>        <dbl> <dbl> <dbl> <dbl>
##  1 Mayo_8   Control       31.0  26.1  39.2  3.83
##  2 Mayo_8   Motavita      31.4  23.2  37.4  4.35
##  3 Mayo_8   Samaca        31.3  24.1  37    4.23
##  4 Mayo_8   Sibate        26.0  21.5  31.4  3.81
##  5 Mayo_8   Soraca        31.6  21.6  44    6.04
##  6 Mayo_8   Toca          27.9  19.3  37.5  5.20
##  7 Mayo_8   Ventaquemada  23.8  21    26.4  2.04
##  8 Mayo_17  Control       31.8  27.7  41    4.06
##  9 Mayo_17  Motavita      32.6  24    39    5.01
## 10 Mayo_17  Samaca        33.0  26.1  37.4  3.87
## # ℹ 11 more rows
ggplot(Ac, aes(x= Trt, y= Altura, color= Trt))+
  geom_boxplot()+
  xlab("Tratamiento")+
  facet_wrap(~Muestreo)+
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1, size= 7))

#Filtrando por fechas
Ac_g8m=Ac |> 
  filter(Muestreo=="Mayo_8");Ac_g8m
##    Muestreo          Trt Altura  CRC
## 1    Mayo_8 Ventaquemada   26.4 39.9
## 2    Mayo_8 Ventaquemada   25.5 43.5
## 3    Mayo_8 Ventaquemada   23.1 39.4
## 4    Mayo_8 Ventaquemada   21.0 41.7
## 5    Mayo_8 Ventaquemada   26.1 45.8
## 6    Mayo_8 Ventaquemada   23.9 31.7
## 7    Mayo_8 Ventaquemada   21.0 39.8
## 8    Mayo_8 Ventaquemada   22.2 44.9
## 9    Mayo_8 Ventaquemada   25.7 48.3
## 10   Mayo_8 Ventaquemada   23.5 39.2
## 11   Mayo_8       Soraca   44.0 45.8
## 12   Mayo_8       Soraca   35.5 37.3
## 13   Mayo_8       Soraca   31.1 40.1
## 14   Mayo_8       Soraca   36.7 45.8
## 15   Mayo_8       Soraca   30.7 43.2
## 16   Mayo_8       Soraca   27.0 32.2
## 17   Mayo_8       Soraca   21.6 40.5
## 18   Mayo_8       Soraca   28.9 45.4
## 19   Mayo_8       Soraca   30.1 45.0
## 20   Mayo_8       Soraca   30.3 40.9
## 21   Mayo_8       Samaca   35.1 47.5
## 22   Mayo_8       Samaca   28.6 43.7
## 23   Mayo_8       Samaca   31.4 35.8
## 24   Mayo_8       Samaca   34.8 39.3
## 25   Mayo_8       Samaca   27.5 39.0
## 26   Mayo_8       Samaca   33.1 32.7
## 27   Mayo_8       Samaca   37.0 42.1
## 28   Mayo_8       Samaca   24.1 45.8
## 29   Mayo_8       Samaca   34.3 41.1
## 30   Mayo_8       Samaca   27.3 41.7
## 31   Mayo_8     Motavita   28.7 44.5
## 32   Mayo_8     Motavita   31.6 41.4
## 33   Mayo_8     Motavita   28.7 49.0
## 34   Mayo_8     Motavita   31.0 40.1
## 35   Mayo_8     Motavita   29.0 36.2
## 36   Mayo_8     Motavita   37.4 35.5
## 37   Mayo_8     Motavita   32.4 40.8
## 38   Mayo_8     Motavita   23.2 38.5
## 39   Mayo_8     Motavita   37.0 41.7
## 40   Mayo_8     Motavita   35.2 37.1
## 41   Mayo_8       Sibate   26.2 44.2
## 42   Mayo_8       Sibate   27.2 46.6
## 43   Mayo_8       Sibate   22.6 38.1
## 44   Mayo_8       Sibate   21.5 43.5
## 45   Mayo_8       Sibate   30.4 38.5
## 46   Mayo_8       Sibate   21.6 41.3
## 47   Mayo_8       Sibate   26.0 41.6
## 48   Mayo_8       Sibate   23.0 39.8
## 49   Mayo_8       Sibate   30.5 40.6
## 50   Mayo_8       Sibate   31.4 38.2
## 51   Mayo_8         Toca   25.5 47.9
## 52   Mayo_8         Toca   19.3 44.1
## 53   Mayo_8         Toca   31.0 40.0
## 54   Mayo_8         Toca   26.0 34.7
## 55   Mayo_8         Toca   23.1 42.2
## 56   Mayo_8         Toca   24.9 42.8
## 57   Mayo_8         Toca   37.5 45.3
## 58   Mayo_8         Toca   31.5 41.0
## 59   Mayo_8         Toca   29.4 42.9
## 60   Mayo_8         Toca   31.2 42.9
## 61   Mayo_8      Control   28.5 44.1
## 62   Mayo_8      Control   31.5 39.4
## 63   Mayo_8      Control   27.0 49.7
## 64   Mayo_8      Control   32.1 43.3
## 65   Mayo_8      Control   39.2 41.0
## 66   Mayo_8      Control   30.5 41.2
## 67   Mayo_8      Control   29.0 38.9
## 68   Mayo_8      Control   31.5 39.9
## 69   Mayo_8      Control   26.1 37.7
## 70   Mayo_8      Control   34.5 40.6
Ac_g17m=Ac |> 
  filter(Muestreo=="Mayo_17");Ac_g17m
##    Muestreo          Trt Altura  CRC
## 1   Mayo_17 Ventaquemada   26.5 38.8
## 2   Mayo_17 Ventaquemada   26.0 46.3
## 3   Mayo_17 Ventaquemada   24.2 26.5
## 4   Mayo_17 Ventaquemada   22.0 27.6
## 5   Mayo_17 Ventaquemada   27.3 44.4
## 6   Mayo_17 Ventaquemada   21.4 54.1
## 7   Mayo_17 Ventaquemada   21.5 30.2
## 8   Mayo_17 Ventaquemada   23.7 45.8
## 9   Mayo_17 Ventaquemada   21.9 35.4
## 10  Mayo_17 Ventaquemada   25.9 37.0
## 11  Mayo_17       Soraca   48.0 31.5
## 12  Mayo_17       Soraca   38.2 37.1
## 13  Mayo_17       Soraca   31.6 39.5
## 14  Mayo_17       Soraca   37.1 43.7
## 15  Mayo_17       Soraca   31.5 38.9
## 16  Mayo_17       Soraca   28.5 38.2
## 17  Mayo_17       Soraca   22.4 48.1
## 18  Mayo_17       Soraca   30.1 47.7
## 19  Mayo_17       Soraca   32.1 43.6
## 20  Mayo_17       Soraca   32.0 42.3
## 21  Mayo_17       Samaca   37.0 38.1
## 22  Mayo_17       Samaca   30.6 41.5
## 23  Mayo_17       Samaca   32.9 41.9
## 24  Mayo_17       Samaca   36.2 40.5
## 25  Mayo_17       Samaca   29.1 32.6
## 26  Mayo_17       Samaca   34.2 45.0
## 27  Mayo_17       Samaca   37.4 43.9
## 28  Mayo_17       Samaca   26.1 49.0
## 29  Mayo_17       Samaca   36.3 38.6
## 30  Mayo_17       Samaca   30.1 43.1
## 31  Mayo_17     Motavita   30.3 46.6
## 32  Mayo_17     Motavita   34.2 41.0
## 33  Mayo_17     Motavita   29.5 45.4
## 34  Mayo_17     Motavita   28.2 40.3
## 35  Mayo_17     Motavita   30.0 34.5
## 36  Mayo_17     Motavita   37.9 39.6
## 37  Mayo_17     Motavita   33.6 39.8
## 38  Mayo_17     Motavita   24.0 31.1
## 39  Mayo_17     Motavita   39.0 46.0
## 40  Mayo_17     Motavita   38.8 39.4
## 41  Mayo_17       Sibate   28.5 36.8
## 42  Mayo_17       Sibate   28.3 42.9
## 43  Mayo_17       Sibate   23.0 33.0
## 44  Mayo_17       Sibate   31.1 42.5
## 45  Mayo_17       Sibate   34.0 40.0
## 46  Mayo_17       Sibate   27.4 40.0
## 47  Mayo_17       Sibate   26.5 39.4
## 48  Mayo_17       Sibate   24.0 41.1
## 49  Mayo_17       Sibate   31.5 46.5
## 50  Mayo_17       Sibate   32.6 34.6
## 51  Mayo_17         Toca   25.6 45.7
## 52  Mayo_17         Toca   20.9 45.4
## 53  Mayo_17         Toca   32.9 38.0
## 54  Mayo_17         Toca   27.2 40.4
## 55  Mayo_17         Toca   24.0 49.1
## 56  Mayo_17         Toca   27.7 43.1
## 57  Mayo_17         Toca   38.5 46.0
## 58  Mayo_17         Toca   31.9 41.0
## 59  Mayo_17         Toca   28.8 44.8
## 60  Mayo_17         Toca   33.1 42.9
## 61  Mayo_17      Control   28.5 39.1
## 62  Mayo_17      Control   31.9 39.1
## 63  Mayo_17      Control   28.0 44.5
## 64  Mayo_17      Control   33.0 44.5
## 65  Mayo_17      Control   41.0 38.8
## 66  Mayo_17      Control   33.0 42.7
## 67  Mayo_17      Control   28.6 40.6
## 68  Mayo_17      Control   32.0 40.5
## 69  Mayo_17      Control   27.7 34.5
## 70  Mayo_17      Control   34.7 37.8
Ac_g24m=Ac |> 
  filter(Muestreo=="Mayo_24");Ac_g24m
##    Muestreo          Trt Altura  CRC
## 1   Mayo_24 Ventaquemada   30.0 46.8
## 2   Mayo_24 Ventaquemada   28.5 50.6
## 3   Mayo_24 Ventaquemada   25.0 46.2
## 4   Mayo_24 Ventaquemada   25.0 47.2
## 5   Mayo_24 Ventaquemada   31.0 33.8
## 6   Mayo_24 Ventaquemada   26.3 21.3
## 7   Mayo_24 Ventaquemada   24.5 42.1
## 8   Mayo_24 Ventaquemada   27.0 49.5
## 9   Mayo_24 Ventaquemada   28.0 49.4
## 10  Mayo_24 Ventaquemada   26.0 34.7
## 11  Mayo_24       Soraca   55.1 49.5
## 12  Mayo_24       Soraca   41.1 43.1
## 13  Mayo_24       Soraca   37.5 46.8
## 14  Mayo_24       Soraca   40.0 47.3
## 15  Mayo_24       Soraca   36.5 49.2
## 16  Mayo_24       Soraca   28.5 46.1
## 17  Mayo_24       Soraca   25.0 53.7
## 18  Mayo_24       Soraca   32.5 52.8
## 19  Mayo_24       Soraca   35.0 48.0
## 20  Mayo_24       Soraca   35.5 41.8
## 21  Mayo_24       Samaca   42.5 32.1
## 22  Mayo_24       Samaca   36.0 48.2
## 23  Mayo_24       Samaca   34.5 31.7
## 24  Mayo_24       Samaca   40.5 45.1
## 25  Mayo_24       Samaca   32.5 48.7
## 26  Mayo_24       Samaca   37.0 30.8
## 27  Mayo_24       Samaca   40.5 47.4
## 28  Mayo_24       Samaca   27.0 43.2
## 29  Mayo_24       Samaca   39.0 45.2
## 30  Mayo_24       Samaca   32.0 45.2
## 31  Mayo_24     Motavita   32.5 30.9
## 32  Mayo_24     Motavita   40.0 32.9
## 33  Mayo_24     Motavita   32.0 45.4
## 34  Mayo_24     Motavita   33.9 48.2
## 35  Mayo_24     Motavita   33.0 20.7
## 36  Mayo_24     Motavita   41.6 35.6
## 37  Mayo_24     Motavita   36.0 29.5
## 38  Mayo_24     Motavita   27.0 31.3
## 39  Mayo_24     Motavita   36.6 41.7
## 40  Mayo_24     Motavita   43.0 37.1
## 41  Mayo_24       Sibate   33.0 27.6
## 42  Mayo_24       Sibate   30.0 29.3
## 43  Mayo_24       Sibate   21.5 39.7
## 44  Mayo_24       Sibate   31.5 29.3
## 45  Mayo_24       Sibate   36.2 34.3
## 46  Mayo_24       Sibate   33.5 41.5
## 47  Mayo_24       Sibate   30.5 33.8
## 48  Mayo_24       Sibate   28.0 37.3
## 49  Mayo_24       Sibate   35.0 38.0
## 50  Mayo_24       Sibate   34.2 27.4
## 51  Mayo_24         Toca   30.5 50.0
## 52  Mayo_24         Toca   25.1 50.4
## 53  Mayo_24         Toca   35.5 41.8
## 54  Mayo_24         Toca   31.5 47.8
## 55  Mayo_24         Toca   30.0 31.1
## 56  Mayo_24         Toca   31.0 31.6
## 57  Mayo_24         Toca   42.0 49.3
## 58  Mayo_24         Toca   34.0 44.6
## 59  Mayo_24         Toca   32.0 50.3
## 60  Mayo_24         Toca   36.0 36.4
## 61  Mayo_24      Control   33.5 41.0
## 62  Mayo_24      Control   36.1 47.6
## 63  Mayo_24      Control   32.5 42.8
## 64  Mayo_24      Control   37.5 47.1
## 65  Mayo_24      Control   45.1 43.1
## 66  Mayo_24      Control   35.3 31.6
## 67  Mayo_24      Control   33.5 31.1
## 68  Mayo_24      Control   36.2 23.6
## 69  Mayo_24      Control   30.5 29.9
## 70  Mayo_24      Control   39.0 44.7
#Muestreo 8 de mayo Altura y CRC

Altura_8m <- ggplot(Ac_g8m, aes(x = Trt, y = Altura, color = Trt)) +
  geom_boxplot() +
  xlab("Tratamiento") +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1, size = 7))

CRC_8m <- ggplot(Ac_g8m, aes(x = Trt, y = CRC, color = Trt)) +
  geom_boxplot() +
  xlab("Tratamiento") +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1, size = 7))
  
grid.arrange(Altura_8m, CRC_8m, ncol = 2)

#Analisis de Altura

A_g8m= aov(Altura~Trt, data= Ac_g8m)
Anova_A_g8m=anova(A_g8m);Anova_A_g8m
## Analysis of Variance Table
## 
## Response: Altura
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trt        6  584.15  97.358  5.0998 0.0002534 ***
## Residuals 63 1202.70  19.091                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(A_g8m)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Altura ~ Trt, data = Ac_g8m)
## 
## $Trt
##                        diff         lwr        upr     p adj
## Motavita-Control       0.43  -5.5211011  6.3811011 0.9999897
## Samaca-Control         0.33  -5.6211011  6.2811011 0.9999979
## Sibate-Control        -4.95 -10.9011011  1.0011011 0.1652443
## Soraca-Control         0.60  -5.3511011  6.5511011 0.9999265
## Toca-Control          -3.05  -9.0011011  2.9011011 0.7070926
## Ventaquemada-Control  -7.15 -13.1011011 -1.1988989 0.0089083
## Samaca-Motavita       -0.10  -6.0511011  5.8511011 1.0000000
## Sibate-Motavita       -5.38 -11.3311011  0.5711011 0.1020154
## Soraca-Motavita        0.17  -5.7811011  6.1211011 1.0000000
## Toca-Motavita         -3.48  -9.4311011  2.4711011 0.5655444
## Ventaquemada-Motavita -7.58 -13.5311011 -1.6288989 0.0045049
## Sibate-Samaca         -5.28 -11.2311011  0.6711011 0.1146268
## Soraca-Samaca          0.27  -5.6811011  6.2211011 0.9999994
## Toca-Samaca           -3.38  -9.3311011  2.5711011 0.5991223
## Ventaquemada-Samaca   -7.48 -13.4311011 -1.5288989 0.0052928
## Soraca-Sibate          5.55  -0.4011011 11.5011011 0.0831897
## Toca-Sibate            1.90  -4.0511011  7.8511011 0.9581241
## Ventaquemada-Sibate   -2.20  -8.1511011  3.7511011 0.9177121
## Toca-Soraca           -3.65  -9.6011011  2.3011011 0.5086649
## Ventaquemada-Soraca   -7.75 -13.7011011 -1.7988989 0.0034134
## Ventaquemada-Toca     -4.10 -10.0511011  1.8511011 0.3663947
#Diferencias encontradas entre: Ventaquemada con Motavita, Soraca y Samaca

#Grafico de las diferencias
plot(TukeyHSD(A_g8m))

T_A_g8m=TukeyC(A_g8m,'Trt')
plot(T_A_g8m)

#Analisis CRC

C_g8m= aov(CRC~Trt, data= Ac_g8m)
Anova_C_g8m=anova(C_g8m);Anova_C_g8m
## Analysis of Variance Table
## 
## Response: CRC
##           Df Sum Sq Mean Sq F value Pr(>F)
## Trt        6  21.88   3.647  0.2344 0.9637
## Residuals 63 980.40  15.562
TukeyHSD(C_g8m)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = CRC ~ Trt, data = Ac_g8m)
## 
## $Trt
##                        diff       lwr      upr     p adj
## Motavita-Control      -1.10 -6.473052 4.273052 0.9957948
## Samaca-Control        -0.71 -6.083052 4.663052 0.9996448
## Sibate-Control        -0.34 -5.713052 5.033052 0.9999953
## Soraca-Control         0.04 -5.333052 5.413052 1.0000000
## Toca-Control           0.80 -4.573052 6.173052 0.9992947
## Ventaquemada-Control  -0.16 -5.533052 5.213052 0.9999999
## Samaca-Motavita        0.39 -4.983052 5.763052 0.9999894
## Sibate-Motavita        0.76 -4.613052 6.133052 0.9994743
## Soraca-Motavita        1.14 -4.233052 6.513052 0.9948903
## Toca-Motavita          1.90 -3.473052 7.273052 0.9325578
## Ventaquemada-Motavita  0.94 -4.433052 6.313052 0.9982411
## Sibate-Samaca          0.37 -5.003052 5.743052 0.9999923
## Soraca-Samaca          0.75 -4.623052 6.123052 0.9995128
## Toca-Samaca            1.51 -3.863052 6.883052 0.9776307
## Ventaquemada-Samaca    0.55 -4.823052 5.923052 0.9999197
## Soraca-Sibate          0.38 -4.993052 5.753052 0.9999909
## Toca-Sibate            1.14 -4.233052 6.513052 0.9948903
## Ventaquemada-Sibate    0.18 -5.193052 5.553052 0.9999999
## Toca-Soraca            0.76 -4.613052 6.133052 0.9994743
## Ventaquemada-Soraca   -0.20 -5.573052 5.173052 0.9999998
## Ventaquemada-Toca     -0.96 -6.333052 4.413052 0.9980208
#Diferencias encontradas entre: No se encuentran diferencias

#Grafico de las diferencias
plot(TukeyHSD(C_g8m))

T_C_g8m=TukeyC(C_g8m,'Trt')
plot(T_C_g8m)

#Muestreo 17 de mayo Altura y CRC

Altura_17m <- ggplot(Ac_g17m, aes(x = Trt, y = Altura, color = Trt)) +
  geom_boxplot() +
  xlab("Tratamiento") +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1, size = 7))

CRC_17m <- ggplot(Ac_g17m, aes(x = Trt, y = CRC, color = Trt)) +
  geom_boxplot() +
  xlab("Tratamiento") +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1, size = 7))

grid.arrange(Altura_17m, CRC_17m, ncol = 2)

#Analisis de Altura

A_g17m= aov(Altura~Trt, data= Ac_g17m)
Anova_A_g17m=anova(A_g17m);Anova_A_g17m
## Analysis of Variance Table
## 
## Response: Altura
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trt        6  661.03 110.172  5.2296 0.0002012 ***
## Residuals 63 1327.22  21.067                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(A_g17m)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Altura ~ Trt, data = Ac_g17m)
## 
## $Trt
##                        diff       lwr      upr     p adj
## Motavita-Control       0.71  -5.54158  6.96158 0.9998525
## Samaca-Control         1.15  -5.10158  7.40158 0.9976711
## Sibate-Control        -3.15  -9.40158  3.10158 0.7231278
## Soraca-Control         1.31  -4.94158  7.56158 0.9952247
## Toca-Control          -2.78  -9.03158  3.47158 0.8233089
## Ventaquemada-Control  -7.80 -14.05158 -1.54842 0.0057787
## Samaca-Motavita        0.44  -5.81158  6.69158 0.9999912
## Sibate-Motavita       -3.86 -10.11158  2.39158 0.5005518
## Soraca-Motavita        0.60  -5.65158  6.85158 0.9999450
## Toca-Motavita         -3.49  -9.74158  2.76158 0.6184326
## Ventaquemada-Motavita -8.51 -14.76158 -2.25842 0.0018999
## Sibate-Samaca         -4.30 -10.55158  1.95158 0.3683644
## Soraca-Samaca          0.16  -6.09158  6.41158 1.0000000
## Toca-Samaca           -3.93 -10.18158  2.32158 0.4786117
## Ventaquemada-Samaca   -8.95 -15.20158 -2.69842 0.0009243
## Soraca-Sibate          4.46  -1.79158 10.71158 0.3247888
## Toca-Sibate            0.37  -5.88158  6.62158 0.9999969
## Ventaquemada-Sibate   -4.65 -10.90158  1.60158 0.2770091
## Toca-Soraca           -4.09 -10.34158  2.16158 0.4295641
## Ventaquemada-Soraca   -9.11 -15.36158 -2.85842 0.0007075
## Ventaquemada-Toca     -5.02 -11.27158  1.23158 0.1974198
#Diferencias encontradas entre: Ventaquemada con Motavita, Soraca y Samaca

#Grafico de las diferencias
plot(TukeyHSD(A_g17m))

T_A_g17m=TukeyC(A_g17m,'Trt')
plot(T_A_g17m)

#Analisis CRC

C_g17m= aov(CRC~Trt, data= Ac_g17m)
Anova_C_g17m=anova(C_g17m);Anova_C_g17m
## Analysis of Variance Table
## 
## Response: CRC
##           Df  Sum Sq Mean Sq F value Pr(>F)
## Trt        6  150.48  25.080  0.9358 0.4759
## Residuals 63 1688.50  26.802
TukeyHSD(C_g17m)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = CRC ~ Trt, data = Ac_g17m)
## 
## $Trt
##                        diff        lwr       upr     p adj
## Motavita-Control       0.16  -6.891292  7.211292 1.0000000
## Samaca-Control         1.21  -5.841292  8.261292 0.9984220
## Sibate-Control        -0.53  -7.581292  6.521292 0.9999870
## Soraca-Control         0.85  -6.201292  7.901292 0.9997914
## Toca-Control           3.43  -3.621292 10.481292 0.7545422
## Ventaquemada-Control  -1.60  -8.651292  5.451292 0.9926580
## Samaca-Motavita        1.05  -6.001292  8.101292 0.9992942
## Sibate-Motavita       -0.69  -7.741292  6.361292 0.9999384
## Soraca-Motavita        0.69  -6.361292  7.741292 0.9999384
## Toca-Motavita          3.27  -3.781292 10.321292 0.7931659
## Ventaquemada-Motavita -1.76  -8.811292  5.291292 0.9878378
## Sibate-Samaca         -1.74  -8.791292  5.311292 0.9885445
## Soraca-Samaca         -0.36  -7.411292  6.691292 0.9999987
## Toca-Samaca            2.22  -4.831292  9.271292 0.9608415
## Ventaquemada-Samaca   -2.81  -9.861292  4.241292 0.8862684
## Soraca-Sibate          1.38  -5.671292  8.431292 0.9967167
## Toca-Sibate            3.96  -3.091292 11.011292 0.6117959
## Ventaquemada-Sibate   -1.07  -8.121292  5.981292 0.9992139
## Toca-Soraca            2.58  -4.471292  9.631292 0.9213853
## Ventaquemada-Soraca   -2.45  -9.501292  4.601292 0.9377539
## Ventaquemada-Toca     -5.03 -12.081292  2.021292 0.3249126
#Diferencias encontradas entre: No se encuentran diferencias

#Grafico de las diferencias
plot(TukeyHSD(C_g17m))

T_C_g17m=TukeyC(C_g17m,'Trt')
plot(T_C_g17m)

#Muestreo 24 de mayo Altura y CRC

Altura_24m <- ggplot(Ac_g24m, aes(x = Trt, y = Altura, color = Trt)) +
  geom_boxplot() +
  xlab("Tratamiento") +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1, size = 7))

CRC_24m <- ggplot(Ac_g24m, aes(x = Trt, y = CRC, color = Trt)) +
  geom_boxplot() +
  xlab("Tratamiento") +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1, size = 7))
  
grid.arrange(Altura_24m, CRC_24m, ncol = 2)

#Analisis de Altura

A_g24m= aov(Altura~Trt, data= Ac_g24m)
Anova_A_g24m=anova(A_g24m);Anova_A_g24m
## Analysis of Variance Table
## 
## Response: Altura
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trt        6  728.1 121.350  4.9161 0.0003518 ***
## Residuals 63 1555.1  24.684                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(A_g24m)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Altura ~ Trt, data = Ac_g24m)
## 
## $Trt
##                        diff        lwr       upr     p adj
## Motavita-Control      -0.36  -7.127053  6.407053 0.9999983
## Samaca-Control         0.23  -6.537053  6.997053 0.9999999
## Sibate-Control        -4.58 -11.347053  2.187053 0.3879752
## Soraca-Control         0.75  -6.017053  7.517053 0.9998721
## Toca-Control          -3.16  -9.927053  3.607053 0.7878508
## Ventaquemada-Control  -8.79 -15.557053 -2.022947 0.0035267
## Samaca-Motavita        0.59  -6.177053  7.357053 0.9999688
## Sibate-Motavita       -4.22 -10.987053  2.547053 0.4884405
## Soraca-Motavita        1.11  -5.657053  7.877053 0.9987766
## Toca-Motavita         -2.80  -9.567053  3.967053 0.8671343
## Ventaquemada-Motavita -8.43 -15.197053 -1.662947 0.0058862
## Sibate-Samaca         -4.81 -11.577053  1.957053 0.3291196
## Soraca-Samaca          0.52  -6.247053  7.287053 0.9999852
## Toca-Samaca           -3.39 -10.157053  3.377053 0.7284743
## Ventaquemada-Samaca   -9.02 -15.787053 -2.252947 0.0025228
## Soraca-Sibate          5.33  -1.437053 12.097053 0.2163262
## Toca-Sibate            1.42  -5.347053  8.187053 0.9951882
## Ventaquemada-Sibate   -4.21 -10.977053  2.557053 0.4913368
## Toca-Soraca           -3.91 -10.677053  2.857053 0.5794742
## Ventaquemada-Soraca   -9.54 -16.307053 -2.772947 0.0011590
## Ventaquemada-Toca     -5.63 -12.397053  1.137053 0.1650423
#Diferencias encontradas entre: Ventaquemada con Motavita, Soraca, Samaca y control

#Grafico de las diferencias
plot(TukeyHSD(A_g24m))

T_A_g24m=TukeyC(A_g24m,'Trt')
plot(T_A_g24m)

#Analisis CRC

C_g24m= aov(CRC~Trt, data= Ac_g24m)
Anova_C_g24m=anova(C_g24m);Anova_C_g24m
## Analysis of Variance Table
## 
## Response: CRC
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trt        6 1423.5  237.24  4.3667 0.0009514 ***
## Residuals 63 3422.8   54.33                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(C_g24m)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = CRC ~ Trt, data = Ac_g24m)
## 
## $Trt
##                        diff         lwr       upr     p adj
## Motavita-Control      -2.92 -12.9593893  7.119389 0.9734324
## Samaca-Control         3.51  -6.5293893 13.549389 0.9359564
## Sibate-Control        -4.43 -14.4693893  5.609389 0.8284843
## Soraca-Control         9.58  -0.4593893 19.619389 0.0709388
## Toca-Control           5.08  -4.9593893 15.119389 0.7191927
## Ventaquemada-Control   3.91  -6.1293893 13.949389 0.8967969
## Samaca-Motavita        6.43  -3.6093893 16.469389 0.4557137
## Sibate-Motavita       -1.51 -11.5493893  8.529389 0.9992526
## Soraca-Motavita       12.50   2.4606107 22.539389 0.0059224
## Toca-Motavita          8.00  -2.0393893 18.039389 0.2048270
## Ventaquemada-Motavita  6.83  -3.2093893 16.869389 0.3816725
## Sibate-Samaca         -7.94 -17.9793893  2.099389 0.2122294
## Soraca-Samaca          6.07  -3.9693893 16.109389 0.5259359
## Toca-Samaca            1.57  -8.4693893 11.609389 0.9990668
## Ventaquemada-Samaca    0.40  -9.6393893 10.439389 0.9999997
## Soraca-Sibate         14.01   3.9706107 24.049389 0.0013418
## Toca-Sibate            9.51  -0.5293893 19.549389 0.0747079
## Ventaquemada-Sibate    8.34  -1.6993893 18.379389 0.1663457
## Toca-Soraca           -4.50 -14.5393893  5.539389 0.8178704
## Ventaquemada-Soraca   -5.67 -15.7093893  4.369389 0.6054742
## Ventaquemada-Toca     -1.17 -11.2093893  8.869389 0.9998286
#Diferencias encontradas entre: Soraca contra motavita y sivate

#Grafico de las diferencias
plot(TukeyHSD(C_g24m))

T_C_g24m=TukeyC(C_g24m,'Trt')
plot(T_C_g24m)