# Load packages
# Core
library(tidyverse)
library(tidyquant)
# For reproducible work
set.seed(1234)
# Create a data from
df <- tibble::tibble(
a = rnorm(10),
b = rnorm(10),
c = rnorm(10),
d = rnorm(10)
)
# Re-scale each Function
df$a <- (df$a - min(df$a, na.rm = TRUE)) /
(max(df$a, na.rm = TRUE) - min(df$a, na.rm = TRUE))
df$b <- (df$b - min(df$a, na.rm = TRUE)) /
(max(df$b, na.rm = TRUE) - min(df$b, na.rm = TRUE))
df$c <- (df$c - min(df$a, na.rm = TRUE)) /
(max(df$c, na.rm = TRUE) - min(df$c, na.rm = TRUE))
df$d <- (df$d - min(df$a, na.rm = TRUE)) /
(max(df$d, na.rm = TRUE) - min(df$d, na.rm = TRUE))
df
## # A tibble: 10 × 4
## a b c d
## <dbl> <dbl> <dbl> <dbl>
## 1 0.332 -0.140 0.0663 0.336
## 2 0.765 -0.292 -0.243 -0.145
## 3 1 -0.227 -0.218 -0.216
## 4 0 0.0189 0.227 -0.153
## 5 0.809 0.281 -0.343 -0.496
## 6 0.831 -0.0323 -0.716 -0.356
## 7 0.516 -0.150 0.284 -0.664
## 8 0.524 -0.267 -0.506 -0.409
## 9 0.519 -0.245 -0.00748 -0.0897
## 10 0.424 0.708 -0.463 -0.142
rescale <- function(x) {
#body
x <- (x - min(df$a, na.rm = TRUE)) /
(max(x, na.rm = TRUE) - min(x, na.rm = TRUE))
#return x
return(x)
}
df$a <- rescale(df$a)
df$b <- rescale(df$b)
df$c <- rescale(df$c)
df$d <- rescale(df$d)
df
## # A tibble: 10 × 4
## a b c d
## <dbl> <dbl> <dbl> <dbl>
## 1 0.332 -0.140 0.0663 0.336
## 2 0.765 -0.292 -0.243 -0.145
## 3 1 -0.227 -0.218 -0.216
## 4 0 0.0189 0.227 -0.153
## 5 0.809 0.281 -0.343 -0.496
## 6 0.831 -0.0323 -0.716 -0.356
## 7 0.516 -0.150 0.284 -0.664
## 8 0.524 -0.267 -0.506 -0.409
## 9 0.519 -0.245 -0.00748 -0.0897
## 10 0.424 0.708 -0.463 -0.142
detect_sign <- function(x) {
if(x > 0){
message("Value is Positive")
print(x)
} else if(x == 0) {
warning("Value is not Positive, but it can be accepted ")
} else {
stop("Value is negative, the function must stop")
}
}
3 %>% detect_sign()
## [1] 3
0 %>% detect_sign()
# -1 %>% detect_sign()
?mean
x <- c(1:10, 100, NA)
x
## [1] 1 2 3 4 5 6 7 8 9 10 100 NA
x %>% mean()
## [1] NA
x %>% mean(na.rm = TRUE)
## [1] 14.09091
x %>% mean(na.rm = TRUE, trim = 0.1)
## [1] 6
mean_remove_na <- function(x, na.rm = TRUE, ...) {
avg <- mean(x, na.rm = na.rm, ...)
return(avg)
}
x %>% mean_remove_na()
## [1] 14.09091
x %>% mean_remove_na(na.rm = FALSE)
## [1] NA
x %>% mean_remove_na(trim = 0.1)
## [1] 6
Two types of functions: + one that takes a vector as the input + another that takes a data frame as the input