# Load package
library(tidyverse)
library(tidyquant)
df <- tibble::tibble(
a = rnorm(10),
b = rnorm(10),
c = rnorm(10),
d = rnorm(10)
)
# Rescale ach colum
df$a <- (df$a - min(df$a, na.rm = TRUE)) /
(max(df$a, na.rm = TRUE) - min(df$a, na.rm = TRUE))
df$b <- (df$b - min(df$b, na.rm = TRUE)) /
(max(df$b, na.rm = TRUE) - min(df$b, na.rm = TRUE))
df$c <- (df$c - min(df$c, na.rm = TRUE)) /
(max(df$c, na.rm = TRUE) - min(df$c, na.rm = TRUE))
df$d <- (df$d - min(df$d, na.rm = TRUE)) /
(max(df$d, na.rm = TRUE) - min(df$d, na.rm = TRUE))
df
## # A tibble: 10 × 4
## a b c d
## <dbl> <dbl> <dbl> <dbl>
## 1 0.659 0.211 0.702 0.948
## 2 0.848 0.794 0.164 0.636
## 3 0.618 0.544 0.627 0.222
## 4 0 0.00329 0.721 0
## 5 0.288 0.993 0.0546 0.426
## 6 0.364 1 0 0.596
## 7 1 0.714 0.398 0.219
## 8 0.105 0.390 1 0.191
## 9 0.0698 0 0.366 1
## 10 0.377 0.793 0.781 0.874
rescale <- function(x) {
#body
x <- (x- min(x, na.rm = TRUE)) /
(max(df$a, na.rm = TRUE) - min(df$a, na.rm = TRUE))
}
df$a <- rescale(df$a)
df$b <- rescale(df$b)
df$c <- rescale(df$c)
df$d <- rescale(df$d)
df
## # A tibble: 10 × 4
## a b c d
## <dbl> <dbl> <dbl> <dbl>
## 1 0.659 0.211 0.702 0.948
## 2 0.848 0.794 0.164 0.636
## 3 0.618 0.544 0.627 0.222
## 4 0 0.00329 0.721 0
## 5 0.288 0.993 0.0546 0.426
## 6 0.364 1 0 0.596
## 7 1 0.714 0.398 0.219
## 8 0.105 0.390 1 0.191
## 9 0.0698 0 0.366 1
## 10 0.377 0.793 0.781 0.874
detect_sign <- function(x) {
if(x > 0) {
message("Value is posetive")
print(x)
} else if(x == 0) {
warning("Value is not posetive, but can be accepted")
print(x)
} else {
stop("Value is negative, the function must stop")
print(x)
}
}
3 %>% detect_sign()
## [1] 3
0 %>% detect_sign()
## [1] 0
?mean
x <- c(1:10, 100, NA)
x
## [1] 1 2 3 4 5 6 7 8 9 10 100 NA
x %>% mean()
## [1] NA
x %>% mean(na.rm = TRUE)
## [1] 14.09091
x %>% mean(na.rm = TRUE, trim = 0.1)
## [1] 6
mean_remove_na <- function(x, na.rm = TRUE, ...) {
avg <- mean(x, na.rm = na.rm, ...)
return(avg)
}
x %>% mean_remove_na()
## [1] 14.09091
x %>% mean_remove_na(na.rm = FALSE)
## [1] NA
x %>% mean_remove_na(trim = 0.1)
## [1] 6
Two types of functions
one that takes a vector as he input another that takes the data frames as input